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Convergence of Baire measures
by

R.M. DUDLEY (Berkeley, Calif.)

Introduction. For any topological space 8, let €(S) be the Banach
space of bounded real-valued continuous functions f on §, with the
SUpremum norm

flle = sup{lf(z)|: 8}.

A pseudo-metric space is a pair (8, d) where S is a set and d is a non-
negative real-valued function on §x § such that for all z,y and # in §,
(@, @) = 0, d(z,y) = d(y,s), and d(z,2) <d(z,y)+d(y,2). d then
defines a topology on § in the usnal way.

If (8, d) is a pseudo-metric space, then a real-valued function f on §
will be called Lipschitzian if

Ifile = sup {|f(2)—f@)/d(z, y): d(z, y) # 0} < co.

Then BL(S, d) will denote the Banach space of all bounded Lipschitzian
functions f on §, with the norm

[flsz = [+ o

This paper is mainly concerned with weak-star convergence in the
space .#(S) of all finite, signed Baire measures on § (i.e. pointwise con-
vergence on %(S)), and its close but rather complicated relations with
convergence for the norm | |, in the dual space of BL(S, d). The
results of §3 below show that the || [j5. metric metrizes a weak-star
structure (topology or uniformity) whenever it is mefrizable on .#(S),
or on the subset .7 (8) of non-negative measures, or the subset 2(8)
of probability measures on a separable metric space S. (For § completely
regular, Hausdorff, but not metrizable, none of the weak-star structures
in metrizable, since the set of unit point masses is homeomorphic to §
(see e.g. Varadarajan [14], Teorema 13, p. 621).

The best-known metrizations of weak-star convergence have ap-
peared in probability theory, in the work of Prokhorov [8] for complete
separable metric spaces and that of P. Lévy for the real line. These metrics
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are suitable only on £ (S). The BL* metric has the further advantage
of being defined by a norm on a linear space. A norm on .#(8) for 8§
compact, very close to the BL* norm in that case, has been defined and
similarly applied by Kantorovich and Rubinstein [5].

Weak-star convergence of measures seems to have been first studied
extensively by Alexandrov [1]. We shall quote several of his results,
as well as some from the more recent long paper by Varadarajan [14].
A related theorem has also been proved by Ranga Rao [9], as will be
indicated below.
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tion fellowship, and some in 1965 with the assistance of N.S.F. grant
GP-3977. V. 8. Varadarajan and G. A. Hunt (in 1960-61) and C. M. Deo
(1965) have made some helpful remarks. Section 4 below was added fol-
lowing conversations with L. LeCam, who has proved Theorem 18 by
his own quite different methods. I am indebted to Professor LeCam
for the use of some unpublished manuscripts.

1. Preliminaries. Let 8 be a topological space. There is a smallest
o-algebra % (8) of subsets of § for which all members of %(S) (or equi-
valently, all real continuous functions) are measurable. Elements of Z(8)
will be called Baire sets. # (8) is the set of all finite, real-valued, countably
additive set functions (signed measures) on #(S).

Given a topological space S, a signed measure x on § will be called
separable if for every continuous pseudo-metric d on 8, p is concentrated
in a subset of § which has a countable set dense for d. The set of all sepa-
rable elements of .#(§) will be denoted .#,(S).

It is consistent with all the usual axioms of set theory to assume
that #,(8) =.#(8) for every topological space §. (A cardinal number
a i8 said to be of measure zero if every finite, countably additive measure
on all subsets of a set of cardinal o, giving points measure zero, is iden-
tically zero. It was proved by Marczewski and Sikorski [7] that if a metric
space has a non-separable finite Baire measure, then it has a subset with
discrete relative topology and eardinality not of measure zero. The pro-
position that all cardinals have measure zero is consistent according
to Ulam [11] and Shepherdson [10]. Also, the continuum hypothesis
implies that the cardinal of the continuum has measure zero.)

One does have occasion to consider non-separable probability meas-
ures, defined on suitable sub-o-algebras of #(8) [4].

+#(8) is naturally a subspace of the dual space €(S)*. The weakest

topology on #(8)* (or any subset of it) making continuous each linear
functional

T—T(f), [e¥(8),

icm®

Convergence of Baire measures 253
will be called the weak-star or weak® topology. .#*(8) denotes the set
of non-negative elements of .#(S), and we let

MF(8) = AT (8) A M(8).
For any u in .#(8), there is the Jordan decomposition
uw=pt—pu
where u* and u~ are mutually singular elements of AT (8), uniguely
determined by these condiftions. We lef

: ol =pt+u.

A(8) will denote the class of all sets of the form {z: f(=) = 0} ff)r f
in #(8). Clearly 47(S) < #(8), and A4"(8) is closed under finite unions
and countable intersections (note that {z:f(z) = 0} = {z: |f](z) = 0}).
If 8 is pseudo-metrizable, 4 (S) is precisely the class of all closed sets.
The following two facts are known (see e.g. Alexandrov [1] or Varadara-
jan [14], Teorema 18, p. 45, and Teorema 6, p. 39):

LevyA 1. For any p in #7(S) and A in Z(8),

4(4) = sup{u(B): B < 4, BeA (S)}.

LevMA 2. For any u in A(8) and f in €(8), let L(f) = [fdu. Then
LI = |l (8) where | |[* s the morm in €(8)*. .

A measure y in #(8) will be called tight if for every ¢ > 0 there is
a compact set K such that

S ~K)<e.

Then, by Lemma 1, for any ¢ > 0 and A in () there is a compact set C
such that

lpl{d ~C)<e.
The clags of all tight measures will be denoted by .#:(S). Note that
M(8) = M (8). A3 (S) has the obvious meaning.

Now suppose (8, d) is a pseudo-metric space. Then BL(S) = BL(S, d)
is & Banach space. Lemmas 3-8 below present facts we sha_]l need about
this space. (Llemmas 3 and 5 also appear in Sherbert [15].) First, BL(S, d)
is a Banach algebra: .

Levnia 3. For any f and g in BL(S) = BL(S,d), fg 4s in BL(S)
and||fgllsL < Iflew llgller.-

" Proof. Clearly [fglle < [fleollglleo-

If (@) g (@) —F@) g@)] < [f@)lg(a)—g @)+ g @Ilf (@) —F()]
< (Iflo lgliz+ 171z lollo) A (2, 9) -

For any x and y in 8§,

The conclusion follows.
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For any real-valued functions fi,...,f, on a set S, we let

firn oo Afu =min(fy, ..., fa),
BV oo Vo = max(fyy ooy fo).

LemMA 4. For any real-valued functions fi,...,f, on a pseudo-metric
space (8, d), if

g=Ffin...Anfyn and h=Ffv...

V fny
then

max (figllz, kllz) < max||fily.
1<ign

Proof. It suffices to prove the Lemma for » = 2 since induction

then gives the general case. By symmetry, it is enough to prove that
for any functions ¢ and v,

e A yllz < max(fglz, lylz) = M.

For any 2 and % in 8,
max(lp(@) — @), lv@) —p(Y)) < Md(z,y).
If (pAy)(@) =o(2), (pAp)(y) = p(y), then
pl@)—oy) < ol@)—py) <pl@)—p(y),

80 [p(z)—p(y)| < Md(z,y).

In the preceding, # and y can be interchanged. Thus the proof is
complete.

Suppose given a Lipschitzian function f on a subset T of a metric
space (8, d). Then f can be extended to all of S without increasing ||f|lz
(Czipszer and Geher [2]; one proof is a simpler form of the proof of the
Hahn-Banach theorem). Now if f is in BL(T), and ¢ is an extension to
8 with |lglz = {ifllz, we let

b= (gv —[Iflle) A fllo

then by Lemma 4, by = ||filsr.. Thus we have

Levwma 5: Given a metric space (8,d), T < 8, and feBL(T,d), f
has an extension h in BL(S, d) with |h|g;, = Iflsr-

Each x in #(8) defines an element of the dual space BL(S8)* with
the norm

llulbe = sup{1[fdul: |flle, = 1}.

In faet, the natural map of .#(8) into BL(S)* is one-to-one:
LevMa 6. For any p+ 0 in A (8S), |ulb > 0.
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Proof. Let A be a Baire set such that u(d)=u"(8) =a
(Hahn decomposition). If a = 0, the result is clear. If « >0, we take
closed sets B and ¢ with B c 4, ¢ =« § ~ A, p* (A ~ B) < a/4, and
u{(8 ~4) ~C)< o/t Since B and ¢ are disjoint, there exist closed
sets By,n =1,2,..., with B,1 B and d(z,y) > 1/n for all » in B,
and 4 in C. Thus there exist f, in BL(S, d) with [full, <1 for all =,
fo=1on B,, and f, = 0 on C. Thus

m [ fudu > p*(B)—af2 > af4,

80 [lulen > 0, q.e.d.

LeMMA 7. If 8 is a compact metric space, BL(8) is dense in €(S)
for I o

Proof. BL(S) is an algebra by Lemma 3, contains the constants,
and separates points by the extension property (Lemma 5). Thus the
Stone-Weierstrass theorem yields the resuls.

LemMa 8. For any metric space (S, d), the closure of BL(S,d) for
I o %8 the space %% (8) of all bounded uniformly continuous real-valued
funections on 8.

Proof. Ttis clear that #%(S)is closed for || |, and includes BL(S, d).
To show that BL(S, d) is dense, let fe#% (S, d). For n =1,2,..., let
A, be a maximal subset of S such that d(z,y) > 1/n whenever 5 #y,
@, yed,. Let f, = f on A,, and extend f, to all of § without increasing
Ifullsr.. Given &> 0, take m > 0 such that d(z,y) < 1/m implies [f(z)—
—f(y)| < & Forany zin § and # > m, choose x in 4, such that d(z, 2)
< 1/n. Then

(&) —fal2)] <If(2) =S @)+ fn(?) —Fa(@)] < e |fulle/n.

We next show that ||fyllz/n — 0 as n —> oo. Suppose not; then for
gome 8> 0,7 in an infinite set N, and @n, Yneda,

1 (@) = (Ya) 1@ ) = 8.

If d(2n, Y, =0 a8 n—> oo through N, then flzn)—Ff(yn) = 0 by
uniform continuity, while nd(#,,¥,) >1, giving a contradiction. Thus
@(%s, Ys) =y >0 for infinitely many » in N, and

1f(@n) —F (yn) [ (20, Yn) < 2 iflleo/ny < 6

for some large enough x in ¥, again a contradiction. The proof is complete.
Note that Lemma 7 follows from Lemma 8.
Let (S, d) be a metric space. Then the d uniformity is discrete if
and only if there do not exist points z, 7 y, in 8 with d(zn, ¥s) = 0.
In this case we shall call @ uniformly discrete. A topological space is metri-
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zable by a uniformly discrete metric if and only if it is discrete, but
a metric defining the discrete topology need not be uniformly discrete.
LemMA 9. If (8,4d) is a metric space, the following are equivalent:
(a) €(8) = w¥%(8).
(b} If {za} s o sequence of distinct points such that (2, Bay, ) — 0
as n - oo, then {z,} has a convergent subscquence.
(¢) There is o compact set K = 8 such that for every &> 0, the set
of points at distance & or more from K is uniformly discrete.
.Proof. Suppose (b) is false for a sequence {z,}, which then forms
a discrete, closed sef. Then we can let f(wy,) =1 and f(@y,,,) = —1
for all n, and extend f to a bounded continuous function on S which ig
not uniformly continuous. Thus (a) implies (b).
. Next, agsume (b). Let K be the set of all aceumulation points (non-
Lsola,te_d pomi.:s) of 8. Then K is compact, and clearly (c) holds for this K.
Finally, it is easy to see that (¢) implies (a) (cf. Lemma 1 of [4])
80 the proof is complete.

A metric space S satisfying (a), (b) or (¢) of Lemma 9 will be called
o uniform continuity space (u.c. space).

’

2. Convergence of measures. UW* will denote the weak-star uni-

fozmity on #(8) or any subset o« of it. A base of UW* consists of all
sets

[y wyest ot |[fid(u—n)| <e,§ =1,...,m}

W?lere £>0 and fi, ..., f, is any finite set of elements of #(8). TW*
m]:1 denote the weak-star topology. UBL* and TBL* will denote the
uniformity and topology, respectively, defined by || I, and likewise
UV* and TV* for the total variation norm || [ els = |@l(8)). Se-
quences {un:n =1,2,...} will be written simply {u,}.

The following basic result is due to Alexandrov [1], 1943, Theorem 1,
D. 202, and Theorem 3, p. 209. It has also been proved by Varadarajan
[14], Teorema 19, p. 68, and we give it approximately as in the latter
reference:

TmmorEM 1. Let 8 be any topological space, and let {u,} be a TW*
Canchy sequence of elements of #(8S). Then

(a) {un} converges for TW* to an element of A(8). (#(8) is UW*

sequentially complete)

; (b) Suppose Cred (8),k =1,2, ..., 0y is included in the interior of
w+1 Jor each &, and the union of the Oy is 8. Then for any &> 0 there is
@ k such that for all n,

[l (8 ~ Cp) <e.
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If § is & non-compact completely regular Hausdorff space, then §
is a proper dense subset of its Stone-Cech compactification S, and each
member of #(S) extends to an element of ¥ (8), so there exist weak-star
Cauchy nets or filters of elements of .#(8) which do not converge to ele-
ments of #(8).

Let (8, d) be a pseudo-metrie space. If 5 > 0, a subset B of 8 is called
S-totally bounded if there is a finite set F — B such that for each y in
B, d(x,y) < & for some & in F. B is fotally bounded if and only if it is
s-totally bounded for every 4 > 0. (A set is compact if and only if it is
complete and totally bounded.) The following is a consequence of Theo-
rem 1:

TrEoREM 2. If (S, d) is a pseudo-metric space and {u,} is o TW*
convergent sequence of elements of Me(8), then for every &>0 there s
a totally bounded set B such that |um|(8 ~ B) < ¢ for all n.

Proof. We may assume S is separable since the union of the sup-
ports of the u, is separable. It suffices to show that, given a positive
integer m, there is a 1/n-totally bounded set B, with

Junl (8 ~ Byy < gf2™  for all n
(since then we can let B = (\B,). Let {#;} be dense in 8. For each posi-
tive integer %k let

Cy = {@: d(z, 7)) < (k—1)[kn for some i < k}.

Then the Cj satisfy the conditions of Theorem 1 and are 1/n-totally
bounded for all &, so the proof is complete.

Sinee total boundedness is not a topological property (in fact, every
separable metric space is homeomorphic to @ totally bounded one),
Theorem 2 is of most interest in complete spaces where “totally bounded”
can be replaced by “compact”. Thus we have a

CoROLLARY (Ulam and Oxtoby [12]). If § is a complete metric space,
M (8) = A 8).

‘We shall call a topological space S inner regular if A (S) = M(8S).
‘We then have (see Varadarajan [14], b, p. 97):

TaeoREM 3. A separable metric space S is inner regular if and only
if 8 is Carathéodory measurable in its completion § for every p in A* (8).

It follows from Theorem 3 that S is inner regular if it is a Borel or
analytic set in its completion. Using the axiom of choice, one can obtain
an § which is not inner regular by taking a subset of the interval (0,1)
which is not Lebesgue measurable.

A set B in a topological space T is called relatively compact if its clo-
gure B is compact. B is sequentially relatively compact if every sequence

17
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in B has a subsequence convergent to a point of 7. The following result
is due to Varadarajan [14], and generalizes a result of Prokhorov [8%:

TusorEM 4. Let (8,d) be an inner regular separable metric space

and B < #(8). Then the following are equivalent:
(I) B is TW*-relatively compact. :
(II) B is TW*sequentially relatively compact.

(L) sup{|ul(8): peB} is finite, and for every & > 0 ihere is a compact
set K such that |u|(8 ~ K) < ¢ for all u in B. .

Proof. (I) is equivalent to (II) in any separable metric space ([14],
Teorema 27, p. 76). (I) is equivalent to (III) under our hypotheses ([14],
Teoremsa 2, p. 96). ’

Thus, in Theorem 2, “totally bounded” can be replaced by “com-
pact” for a large class of incomplete spaces S.

We next have a joint sequential continuity result:

THEOREM 5. Suppose S is an inner regular separable metric space,

ﬂns.'//{(‘g); tn —> g for TW*, fre€(8), falloe <M < 00 for all n, and f,—f
uniformly on compact sets. Then

[ Fnlpn — [ ftp.
Proof. There is an N such that

[nl(8) K N< oo for all »

(Banach-Steinhaus theorem, or Theorem 4). Also, given &> 0 there is
a compact set K < § such that

lan| (8 ~ K) < e/2M
for all #. Then

| [fatin— [ Jau| <| [ falim—)| + | [ (Famfrian] +| [ h D
K ~K

The first two terms approach zero as n — oo, and the last is at
most . Lebting &{ 0, the proof is finighed.

We now begin our investigation of the relations between weak-star
and || |3, convergence of measures.

TewoREM 6. Let (8,d) be a pseudo-metric space, Unets(8), and
o —> @ weak-star. Then ||u,— ullsr, = 0.

Proof. First, we can identify points at zero distance, and assume
(8, d) is a metric space. Let S be the completion of §. Then the w, and u
naturally define elements u, and u of «#(8), with 4, —> & weak-star. The
spaces BL(S,d) and BL(S, d) are naturally isometric. Thus we can

@s;l;me § is complete. Since u,e.#,(S) for all n, we can assume S is sepa-
rable.

icm®

COonvergence of Baire measures

We want to show that

sup | [ Faea— )] Wl < 1) 0.

Suppose not. Then, passing to a subsequence, there exist an ¢ > 0 and
Jo With |[fallsr <1 such that

lffnd,un_ ffndﬂ| =&,
Taking another subsequence, we can assume fy(x) converges to some
f(x) at each point = of a countable dense set in S. Then since Ifallsr < 1,
we have f, — f uniformly on compact sets and ||fallo <1 for all n. Thus
by Theorem 5,

n=1,2,..

ffnd/‘n*ffdﬂy and ff"d/"%f,fdp'

Thus we have a contradiction, completing the proof.

Sequences can be replaced by general nets in Theorem 6 if and only
if § is finite; see Theorem 17 (k) below.

Here is a result proved for non-negative measures on (separable)
metric spaces by Ranga Rao [9]:

TuEOREM 7. Let 8 be any topological space, and let uy, in #s(8) con-
verge weak-star to u. Then u, — p uniformly on any equicontinuous and
uniformly bounded class F of functions on S.

Proof. Let d(z,y) = sup{[f(z)—f(y)l:feF}. Then d is a conti-
nuous pseudo-metric on §, and for every fe&, feBL(S, d) and sup {||fllsr:
feF} < co. Thus Theorem 6 applies.

The converse of Theorem 6 is true if and only if § is uniformly dis-
crete (Theorem 11 below), but it holds for non-negative measures:

THwROREM 8. Let (S,d) be any wmetric space, pn,pued™(8), and
llttn = sl — O as n — oo. Then p, — u weak-star.

Proof. u,(S)— u(8) since the constant 1 belongs to BL(S, d).
Thus by a well-known characterization of weak-star convergence (1,
1943, p. 180) it suffices to show that for any open set U in S, limp,(U)
> u(U). Let F, be the closed set of points z such that d(z,y) = 1/m
for all y¢U. Then {F,} is an increasing sequence of closed setis whose
union is U. By Lemmas 4 and 5 there is an f,, in BL(S, d) such that
fm=1 on F,, fn =0 outside U, and 0 <f,, <1 everywhere. Given
£ >0, choose m so that p(Fn)> p(U)—ef2, implying

[fndp > p(O)—2f2.

We can then choose 7, so that for n = n,,
Iffmd(/"n_/-‘)l < &f2,
pal0) 2 [fndpn > p(U)—e.
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Letting ¢} 0, we have the resulb.

TaEoREM 9. Suppose (8,d) is a complete meitric space, uped;(8),
and {ua} is @ Cauchy sequence for UBL*. Then u, converges weak-star to
some p in MF(S), $0 py ~> p for TBL*,

Proof. We may assume § has a countable dense subset {@;}. Given
&> 0, let

0 if

fi(w) = 1w

d(z, %) < /2 for some 4 < j,
d(z, %) = ¢ for all 1< 5.

Then for eaf:h Jslifille =1 and ||fjlz < 2/e. By Lemmas 4 and 5,
the f; can be defined on all of § so as to form a decreasing sequence of
functions with

Ifiller <14-2/e  for all j.

Given 6 > 0, we choose m so that
ltn— plBr, < 65/3(e+2)

for m > m, and ¢ such that [fidu, < 6/3. Then [fidu, < 25/3 for n > m.
]?‘or each r =1,2,...,m—1, we choose i(r) so that SFun@ur < 8. Let
j =max(i(1),...,4(m—1),4). Then Jfidu < 8 for all . Thus there is
an e-totally bounded set B, such that 4r(8 ~ B,) < é for all r. Thus,
a8 in the proof of Theorem 2, for any y > 0 there is 3 totally bounded
set B such that u.(8 ~ B) < y for all . Of course B can be closed, so
by Theorem 4, the g, form a TW*-sequentially relatively compact set
and have a subsequence u,y, converging for TW* to some u in #1(8).
T}.len by Theorem 5, ||thm— ullin — 0, so lptr— pllEz, = 0. This deter-
mines u in .#*(8) uniquely by Lemma 6. Thusg all weak-gtar conver}gent
subsequences of {u} converge to u, so since {w} is TW* sequentially
relatively eompact, u, — u weak-star, q.e.d.

 Varadarajan has proved that if § is a metric space, then (4 (8), TW*)
is metrizable, by a complete metric it & is complete ([14], IV, p. 49,
Teorema 13, p. 62, and Teorema 18, p. 68). Theorem 9 and Theorem 18
below yield new proofs of these facts.

. The next theorem is very close t6 a result of Kantorovich and Ru-
bm_steiu [5], who start from a ditferently defined norm on #(8) but
arrive at essentially the same conclugion:

THEOREM 10. Let S be a compact metric space. Then a sequence {u,}
of elements of #(8) = & (8)* converges weak-star if and only if
(a) sgpl,unl (8) < oo,

(b) {pa} is @ Cauchy sequénce for UBL*.
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Proof. “If” follows from density of BL(S) in #(8) (Lemma T),
and “only if” from Theorem 6 and the Banach-Steinhaus theorem.

We shall see below (Theorem 17) that condition (a) of Theorem 10
cannot be removed unless § is finite.

Non-negativity of the measures in Theorems 8 and 9 cannot be
weakened to boundedness of |u,](S): let § be the real line and leb u,
have mass 1 at # and —1 at (n24-1)/n. I have an argument to show that
it 8 is complete, {u,} is a UBL*-Cauchy sequence in 4#(S) and |u,|(S)
is bounded, then {u,} converges for TBL* to an element of .#(S), bub
this result seems irrelevant to the main purpose of this paper, and the
argument seems too long to be worth giving.

3. Topologies and uniformities. Throughout this section we assume
that (S, d) is a separable metric space. We investigate in detail the possible
inclusions between TW* TBL* and TV* and their uniformities, and
metrizability of the weak-star structures, on .#(8), .4*(8) and #(8).
We show that whenever a weak-star structure is metrizable, | s
metrizes it. We first note two useful meta-results:

LeMuMa 10. Suppose Ty and Ty are filters of sets containing 0 in A (8).
For any o = #(8), let T; be the filter of subsets of o7 Xsf with a base con-
sisting of all sets

(s 9yt p—veB}, Bely,

for i =1, 2. Then the following are equivalent:

(@) Ty = Ty,

(b) U, = U, on #(8),

(¢) U, c U, on #+(8).

Proof. Clearly (a) = (b) = (¢). Given (c), we have that for every
A €T, there is a BeT, such that

(<t ¥ et (S) X MT(8): p—ved} D {(py vy el * (8) XM (S): p—veB}.

But by the Jordan decomposition, this implies (a), g.e.d.

We shall ses below that “U; = U, on #(8)” is not equivalent to
the conditions of Lemma 10. However, we have

Lemvia 11. Suppose T, and T, are topologies on #(8) making it
a topological linear space for which the linear functional u— p(8) is con-
tinwous. Then T, < T, on A7 (8) if and only if T, = T, on #(8).

Proof. “Only if” is obvious. To prove “if”, suppose T; = Tp on
#(8). We must show that if {u,} is a net in #*(8) and p, — p for T,,
then g, — p for Ty. Now #,(8) = u(8). Leb vy = pio]pia(8) it p.(8) >0,
otherwise », = 0. If u(8) >0, then g,(8) >0 for a sufficiently large,
and v, — u/u(8) for Ty, hence for T,, thus u, — p for T,. If u(8) =0,
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ie, u=0, let ce#™(8) satisfy o(S) > 0. Then o+ u,— o f
. ,, 0!
hence for 7', thus g, u for T, g.e.d. g ator
It is trivial that for any 8, UW* < UV* UBL* * *

\ c UVH, TW* < TV*
and TBL* = TY* on A (S), bence on any subset. We ghall :iiseover wheli
?(%h))of these inclusions is proper (all are if § is not discrete, even on

TaeoREM 11. The following are equivalent:
(a) S is uniformly discrete, (e) TW* < TBL* on #(8)
H
(b) UBL* = UV* on #(8), (f) OW* = UBL* on .#(8),
*
{¢) UBL* = UV* on #*(8), (g) UW* < UBL* on 4t (8),
(d) TBL* = TV* on #(8),  (h) UBL* = UV* on 2(S).
Proof. Suppose §is uniformly discrete, i.e.
, : : , 1.e. for some ¢ > 0, d(z, y) >
whenever o 7 y. Given u in . (§), let f = 1 on the support of’,u+,f’J=) —;
elsewhere. Then [iflpy < (¢4 2)fs, and [fdu = |u|(8), so

[21(8) = llulltr, > elul (8)/(s+2).

Thus UV* = UBL¥, and (a) = (b). We have (b) < (c) < (d) and (e)
<« (f) < (g) by Lemma ]:0. (d) = (e) and (b) = (h) are obvious.
Suppose § is not uniformly discrete, and take x, and Yy With

0 <&, =d(wn, yn) - 0.

Let p. and g, be unit magses at =, and ¥, respectively, and let

n = 8;1/2

(Pn—n).
Z.‘]k;c;n ”]},unﬂﬁj_,—>0,0 bub [u,[(8) = o0 80 py-+0 for TW* and (e) = (a).
complgéz' Gull > 0 and |p,— ¢,/ (S) = 2, so (k) = (a), and the proof is

THEOREM 12. For any (separable metric)

. space 8, TBL* = TW* o
MAT(8), hence on P(8) and TW* is metrizable on bo’th spaces. "
Proof. § is a Lindelof space ([6], Th :

"roof . , Theorem 15, p. 49). Thus TW*
on‘,‘ll (8) is metrizable (Varadarajan [14], IV, p. 49,’Teorema, 13, p. 62);
an mdepend'ent proof of metrizability of £ (8) will be given’ below,
;n §4). E,‘he identity map of .4*(8) is sequentially continuous from TW",‘
Toh SBL ‘[;y Theorem 6, hence continuous, i.e. TBL* = TW* on .£*(8)

orem 9 asserts that the identity is sequentiall i i \
opposite direction, hence continuous, q.e.dq v contimons i the
We now need a lemma. For an .
. y set 8, we let 1,(S) be the set of
bounded real-valued functions on 8, Wiﬂ’l the suprerzmm norn(i ot ol

fle = liflleos = sup {If (2)]: 8}
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LEMmA 12. For any set S,f in 1,(8), and findte-dimensional sub-
space H of 1,(8),
A(f, Hy = inf if — hll, = sup {inf]lf — Allwz: B finite}.
heH heHl

Proof. Suppose H has dimension n. We may assume fe¢H. Let J
be the subspace spanned by f and H. Then there is a subset N of S, eon-
taining #-+1 points, such that the natural projection (restriction) of
1.(8) onto I,(N) is one-to-one on J. Thus for some § > 0, we have

I3llcor 2 1Ll
for all j in J: Now the set K of all kin H such that
e < flleo+28(f5 H)/S
is compact. Let ¢ > 0. For each k in K there is a finite set B such that

If = Mlleo,z > If — Bllca— &

Tor each finite B, the set of all i for which the inequality holds is
open for | |l Thus we have an open cover of K. We take a finite sub-
cover, and let ¢ be the union of the corresponding finite sets. Let D
= N v C. Then

Hf— huoo,C > ”f'_ h”co'—a

for all » in K, so that
it {|[f—hll,p = &(f, H)—e.
heE

For h in H ~ K, we have
1f = hlloop = If — Rl = 81If — hlloo > 24(f; H).

Thus
inf|lf — hllw,p = 4(f, H)— -
hell

Letting e | 0, the proof is complete.

TrEoREM 13. The following are equivalent:

(a) § is compact,

(b) UW* = UBL* on #(8),

(e) UW* is meirizable on 2(8).

Proof. If § is compact, then Z(S) is TW*relatively compact by
Theorem 4. It is TW*-closed, hence TW*-compact. By Theorem 12,
TW* — TBL* on #(8). Thus UBL* and UW" on £(§) are each the
unique uniformity yielding the compact Hausdortf topology TW* on
2(8) (see Kelley [6], Theorems 29, 30, Pp. 197-198; I thank ©. M. Deo
for this simple proof). Thus (a) = (b).
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Clearly (b) = (¢). Finally, suppose (¢) holds. Then UW* on 2(8)
has a conntable base, i.e. there exist countably many functions f,, f,, ... s
in #(8), such that for any f in ¥ (S) and £ > 0 there exist » and §> ¢
such that for any p and ¢ in £(8), i

() 1[fdp—g| <8,i=1,...,n,implies | [fdlp—g) <e.

We may assume f; = 1. Suppose that § is not compact, so that it
contains an infinite set 4 with no accumulation points. Then there is
an f in €(8) with ||fje = 1 and [[f— glle,« = $ for every g in the subspace
spanned by the f;. Choose # and & so that () holds with ¢ = 1. Then
by Lemma 12, there is a finite set F such that

If— 9l > %

for every g in the linear span of fy, ..., f,. Then we take u in A (F), by -

the Hahn-Banach theorem, such that
[fidp=0,i=1,...,a, [fiu =1,
Sinee f; = 1, we have u = A(p —¢) where 2 <1 and p, qe?(8). Now
[lrap—q)=0,i=1,...,n, [fip—g)=12>1,

a contradiction. Thus § is compact, q.e.d.

TEBOREM 14. UBL* < UW* on 2(8) if and only if 8 4s totally
bounded.

Proof. We have TBL* = TW* on #(8) in general. If § is totally
bounded, Elet S be itis completion, which is compact. The natural map
9f A (8) into #(8) is weak-star uniformly continuous, and BL(S, d)
is naturally isometric to BL(S,d). Thus UBL* « UW* on #£(8) by
Theorem 13.

If § is not totally bounded, there is a § > 0 and an infinite set 4 = §
such that d(z,y) > 6 for any distinct # and y in A. Suppose that for
some fi, ..., fr in #(8) and & >0,

I[fidp—q)| <ej=1,...,% implies |p— gl < 8/(5-2) for an
and ¢ 1o B8 3eeey By qliBr /(64-2) y P

Wte can assume fi =1. Let H be the linear space spanned by the fi-
There is an f in 1,.(4) sueh that ||f||, = 1 and d(f, H) > %. Then by Lem-
ma 12, there is a finite set B < 4 such that

If—Ploz > %

for all b in H. Thus py the Hahn-Banach theorem there i a 4 in # (B)
:Eeh that [f;du =0,j=1,...,k, ffau =1, |u](B) < 2.f can be extended
all of § with |fllar < (8+2)/0, s0 that [ulfhy > 8/(5+2). Also

I () < 2.

icm
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4 = A(p—q) for some p and ¢ in #(8) and 0 < A <1, so that ||p—gllas
> 8/(6+2). This is a contradiction, so the proof is complete.

THEOREM 15. UW* <« UBL* on #(8) if and only if 8 is a u.c.
space.

Proof. If §is a u.c. space, then the identity on #£(8) is uniformly
continuous from UBL* to UW* since BL(S, d) is uniformly dense in
#%(8S) (Lemma 8).

Conversely, if § is not a w.c. space, then by Lemma 9 we fake distinct
@y in 8 With d(@an, Lany) — 0 and {z,} having no convergent subsequence.
Let f(2m) =1, f(®my1) = —1, and extend f to a continuous fanchion
on 8. Let p, be the unit mass at Z,,, and g, ab @any;. Then

lPa— gullsr. = 0, ffd(l’n‘— qn) = 2.

Thus UW* ¢ UBL*, and the proof is complete.

In [3], in the proof of Theorem 5.1, I considered weak-star “uni-
form” continuity of a function whose values are probability measures.
In view of the differences shown by Theorems 14 and 15, it now appears
that the uniform continuity assertions should refer to UBL¥, not to
UW*. With this interpretation, one obtains a correct proof of the theorem.

THEOREM 16. The following are equivalent:

(a) 8 s diserete, (d) TV* = TBL* on #™(8),

(b) TV* = TW* on A*(8), (e) TV* = TBL* on 2(8).

(e) TV* = TW* on 2#(8),

Proof. Suppose § is diserete. To prove (b), we note that TV* and
TW* depend only on the topology of 8, not on the metrization. Thus
we may assume § is uniformly discrete, and apply Theorems 11(d) and
12 to obtain (b).

(b) < (e) < (d) < (e) by Lemma 11 and Theorem 12.

Suppose TV* = TBL* on #(§). If § is not discrete, let z, be a se-
quence of distinet points converging to a point @. Then the unit masses
at the @, converge to the unit mass at » for TBL* but not for TV, a con-
tradiction, so (a) holds, g.e.d. i

THEOREM 17. The following are all equivalent:

(a) 8 is finite, (h) UW* = UBL* on #(8),

(b) UW* on #(8) is meiricable, (i) UW* = UBL* on #+(8),

(¢) UW* on #*(8) is metrizable, (j) TW* = TBL* on #(8),

(@) TW* on #(8) is meirizable, (k) TBL* = TW* on #(8),

(e) TW* =TV* on #(8), () UBL* <« UW* on #(8),

&) UW* = UV* on #(8), (m) UBL* « UW* on #*(8),

(g) UW* = UV* on #*(8), (n) TW* = UV* on 2#(8).
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Proof. It is easy to see that (a) implies all the other condi-
tions, specifically (h) which in turn implies (b). (b) < (¢) < (d) as in
Lemma 10. (d) impliés (e) by a result of Varadarajan [13]. (e) < () < (g) by
Lemma 10.

(e} implies that S is discrete (by Theorem 16) and (g) implies that
8 is compact (by Theorem 13), thus either implies that § is finite, and (a)
through (h) are equivalent.

(h) < () = (j) = (k) < (1) < (m) by Lemma 10. (k) implies
that there exist fi,...,f, in €(8) and & > 0 such that | [fidu| < ¢, =1,
..., n, implies [|plpL <1 for g in £(8). If § is infinite, let ¥ be a seb
of n--1 points of 8. By Lemma 5, we obtain an fin BL(S, d) which is not
a linear combination of f, ..., f, even on F. Thus there is a » in #(F)
such that

[ty =0, =1,...,n, [fiv 0.

Letting g = My for M large enough, we have a contradiction. Thus
(k) = (a). Since (g) = (n), it remains only to prove (n) = (a). This follows
from Theorems 13 and 11. The proof is finished.

4. Metrizability of .4 (8). In this section, (8, d) will be an arbitrary
(not necessarily separable) metric space. For any subset A of S and
&> 0, we let

A® = {zeS: d(z,y) < & for gsome y in A}.

We shall gshow that TBL* = TW* on . (S). The proof (unlike
that of Theorem 12 above) does not use the fact that TW™* on .7 (8)
is metrizable. Thus a new proof of the latter fact is obtained, shorter
than the original proof of Varadarajan [14], p. 61-64.

Lemua 13. Suppose uedy (8). Then TW* on 4+ (8S) has a countadle
neighborhood-base at u. -

Proof. Let K, be an increasing sequence of compact sets such that

}3‘3}10 B(En) = u(8).

For n =1,2,..., let ¥, be a countable set of functions dense in
%(K,), and extended continuously to all of § without increasing their
supremum norms (Tietze extension). (Incidentally, the known fact that
#%(K) is separable for any compact metric space K follows directly from
Lemma 7 and the fact that a set of funections bounded for || |lgy, is uni-
formly relatively compact (Ascoli), hence separable.) For m,n =1, 2, ...,
let A, be a continuous function on S such that A, () = 0 for all  in
Ky hg(®) = 1 if ge8 ~ K™, and 0 < hypole) <1 for all 2. Let F be
the union of all the sets F,, and the set of all functions %,, and the con-
stant function 1.
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COonvergence of Baire measures ) 267
Let fe#(8),0 <e <1, and
®
max (4(S), flke, 1) = 3.
We take n such that u(8 ~ K,) < ¢/27M, and g in ¥ so that
f(;r all 7

f@)—g(z)] <ef4M 2 in K,.

Then for some positive integer m, |f(z) —g(=z)] < ¢/3M for all « in
K™ Suppose ves™(8), and
l(r—»)(8) < M, | [gdlp—r) <e3,

Then #(8 ~ K™ < [huny < 2e[2TH,

]fhmnd(,u_'ﬂ)) < £/27J[.

<[ gdlu—)| +1[(F—q)d(u—] <3+ [If—gld(u+»)
<e3+ [ e3Md(p+v)+ [ 3Ma(u+r) <e.

1
rLm S~ELm

| [ fata—»)|

}fow for each finite subset @ of F and positive integer %, let
N(@, &) :{ve/ﬁ(S): | [ ga(u—)] < 1[k for all g in G}.

Then the set of all N(G,k) is a countable neighborhood-base at u
for TW* on #£7(8), g.e.d.

THEOREM 18. For any metric space S, TW* = TBL* on 43 (S).

Proof. Suppose p, is a net in .4, (8) which converges to u for TW*,
Then if § is the completion of 8, u, converges to u for TW* on .7 (S).
Suppose u, does not converge to u for TBL* on S. Then, by Lemma 13,
we can replace the net u, by a sequence %, which converges for TW*
but not for TBL*. By Theorem 6, this is impossible. Thus g, - pu for
TBL* on § and hence on S.

Continuity in the converse direction holds by Theorem 8 since TBL*
is a metric topology. The proof is complete.

For any topological space X,.#,(X) is the set of all measures u
in #(X) such that if f, is any net in ¥(X) decreasing pointwise to 0,

ff,,d,u—>0.

Varadarajan proved that for any metric space 8, #,(8) = M (8S) ([14],
Corollary, p. 50), and that .#,(8) is metrizable. For a general topological
space X, we have the inclusion #,(X) c #,(X) since #,(X) is defined
in terms of continnous pseudo-metries on X. Whether the converse inclu-
sion holds seems unclear.
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Interpolation of additive functionals
by
ROBERT KAUFMAN (Urbana, IIL)

"In this note a generalization of the theorem of Mazur and Orlicz ([1],
p. 147) is presented; the proof of the latter was simplified by Sikorski [3]
and Ptak [2]. We state first our extension and its proof and then explain
how the previous statement may be obtained as a special case.

‘We consider a semi-group S, composition in § being denoted by
@y, provided with a real functional o subject to two conditions:

(1) 00 > w(s) = — oo
(2) o(s)+ow(t) > o(s+1) for

for seS,
s,1e8.

Tn addition to  there is given a real functional L on 8, restricted
ag follows:

(3) oo > L(s) >
@) If {sy,...

— o0, 8e8,L % — oo.

y 8z} 18 a finite sequence in S,
n
(8t .o +8,) = ZlL(s,).

This condition iz abbreviated: o> L.

TerorREM. There exists an additive fumctional & on 8 such that

=2é=L.

Proof. We begin with the observation that if w = L in §, then o
is already additive. Let us exclude this and choose an element gye§ and
a number 7 such that w(ae) > > L(a).

We claim now that either A or B holds, among the next two sta-
tements:

A o(magtu,+ ... Fu) = 1 and elem-

mr—l—ZL w;), for any m >

ents %,...,u, in 8.
w
B. w(s)+m'r = Y L), wheneyer m'a,+8 =t,+...+tw, m' =1;8¢8;
=1

By eeey twelS.
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