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On generalized power methods of limitation
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A. BIRKHOLC (Warszawa)

Introduction

The subject of this paper is to discuss the properties of so-called
generalized power methods, in particular power methods. A generalized
power method M(p, D) is determined by the function

p(w) = Dpaw”
n=0
holomorphic in the circle K, = {w:|w| < r} satisfying f(w) 0 for
7, <w = Re(w) < r and by a domain D = K, such that 0D, {7y, 7) = D;

the sequence # = (%,) is called limitable to t by the method M (p, D) if there
exists a function m(p,D;=,w) holomorphic in D such that

mp, Dz, w) = > palaw”

n—o0
in a neighbourhood of 0 and
m(p, D; z, w) —1
w=Re(w)—>r— P (w)

In the particular case of D = K, the method M(p,D) = M(p) is
called a power method. For p(w) = (1—w)~* resp. ¢” we obtain in this
way the classical methods of Abel resp. Borel. The method M(p, D)
is permanent if, for instance, the function p(w) satisfies the condition

pp>0 for »=0,1,..,
Lim p(w) = + oo,

w=Re(w)—+r—

(8)

which will be assumed very often.

Power methods have been investigated by several writers. Wiodar-
ski [11] proved in 1954 that every method M(p) for r < 4 oo is per-
fect. The perfection of the Abel method was noticed earlier by K. Zel-
ler. The investigation of methods M(p) for r = + oo is more difficult
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and the question whether these methods are perfect has
only in the case of the Borel method; RylLIl)Tardzewski b[zeinpiﬁivggrgd
1962 that this method is perfect. Generalized power methods have nntl;
been yet investigated except the generalized Abel methods, i.e. metho:l)
M(p, D),A where p(w) = (1—w)~*. These methods were disti’nguished 101:1s
2go, e.g. in the investigation of the consistency of Nérlund methods [10 ;
] In this paper the methods of functional analysis are applied Thl
definitions o.f spaces such as (B), (B,), (¥) are those of [1] and [Sj )
_The main results are contained in § 3, in which the problem ofl €
fection of generalized power methods is treated. First of all it ig proI:rer(i
tha.t a .method M(p, D) for r < + oo is perfect if and only if the domai
D 1s.S1mply connected. This result covers the theorem of W]ZOda;I':le
mentioned .above, concerning power methods. 8. Mazur suggested to thl’
present writer the investigation of the problem whether every powei
mej,thod M (p) for r = + oo is perfect. Only partial results concernin
this prob.lem have been obtained. It is proved that the power meth g
M (p). (p is supposed to satisfy condition (B)) is perfect if and only if 1;1
function p(w) has the following property (M): d °

(M) If w(u) is a function continuous on the right in the interval

“+o0
0
{0, + oo) and \./(a)) < + oo, then for ¢ > 0 the condition

+eo "
*
of P(w) dw@ =00

implies @(u) = const for u > g.
This result, in the writer’s opini iffi
. 0 pinion, shows the difficulties connected
Eﬂ;h the solving the p}'oblem of perfection of methods M (p) forr = + :a
he us remark. that if the function p(w) has the property (M), then it;
a8 the following property (LD): ’
" 17](II‘;D) The set.of funetions «"/p(u),n =0,1,..., is linearly dense
i sense of I%m.form convergence) in the space of functions f(u) con-
0us in the interval 0 < < -+ oo and such that lim flu) =0

n—>+oo

The writer does not know the angwer to the question whether every
entire functio -y :
N p(w) né’opnw“, where p, >0, has the property (LD)

or v;;hethe'r the property (LD) implies (M) (1).
n this paper a simple condition for the method M(p, D) to be

Y) After ¢
(*) After the author had sent the paper to press, he noticed that the answer to

the: former question was ne, iv
1 gative and i
- | ( ) gave a condition for the function P('w) to
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perfect is given (Lemma 2). Elementary considerations enable us to de-
duce the theorem of Ryll-Nardzewski, mentioned above on the perfection
of the Borel method.

T wish to thank Professor S. Mazur for drawing my attention to
these problems and for his helpful comments and suggestions made in
the course of my writing the present paper.

§ 0. The terminology and the notation concerning certain notions of functional
analysis and the theory of limitation

Definition 1. X is called a sequence-space if X is a linear space
of complex-valued sequences z = (t,) Wwith the usual definition of addi-
tion and multiplication by sealars.

Definition 2. Let X be a sequence-space of type (F). We say
that X is a sc-space if g,(x) = 1, are continuous functionals over X for
n=10,1,...,;% = (ta).

Definition 3. Let X be a sequence-space and let @(z) be an addi-
tive and homogeneous functional over X. Then the pair (X, ¢) is called
the method of limitation M. The set X = M* is called the field of the
method M; the number ¢(z) = M(2) is called the generalized limit of
the sequence ze M* (corresponding to the method M).

Definition 4. A method M is called permanent if T. < M* and
M (%) = limi, for every z = (t,)eT, where T, denotes the set of all

" !

convergent sequences.

Definition 5. Let M be a method of limitation. If M* is an (F)-
-se-space such that M(z) is a continuous functional over M*, we shall
say that M is an (F)-method. In particular, if M* is a (B)-sc-space we
shall say that M is a (B,)-method and similarly for the other spaces (see
[4] and [111). .

In this paper we use the following notation:

(1) T, denotes the set of all convergent complex-valued sequences.

(2) ¢ denotes the (B)-space of all convergent complex-valued se-
quences % = (t,) with the norm llzl] = sup |t

n

(3) s denotes the (B,)-space of all complex-valued sequences @ = (tn)
with the family of pseudonorms [z, = ltal;n =0,1,...

(4) C(Lry, 7)) Where — oo <7y <7 < + 00 denotes the (B)-space of
all continuous complex-valued functions f(u) on the interval 7, <u <7
with the finite limit lim f(u). The norm in C({ry, 7 >) is given by the

Ut —

formula ||fl] = sup [f(u)l
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(5) H(D) denotes the'( By)-space of all functions f(w) holomorphic
in domain®D with the family of pseudonorms ||fl; = Sup |f(w)] where
Z are compact subsets of D.

(6) H, denotes the (B,)-space of all integer functions f(w) with the
finite limit ]im f ). The pseudonorms in H, are given by the for-

If(w b Al = Suplf(

(7) K, denotes the circle {w: lw] < r} in the complex plane (where
0<r <+ oo).

(8) 4"+ denotes the family of all domains D in the complex plane
satisfying the following conditions:

1°D < Ky

2° 0eD;

3° there exists a number 7, <r such that {w:r, <w = Re(w)
<r} «D.

(9) #, denotes the family of all functions

o0
- \ n
= D/ pat
n=0

satisfying the following conditions:

1’. the radius of convergence of the power series 2 Paw™
tor;

2'. there exists a number 7, < r such that p(w)# 0 for To S W
= Re(w) < 7

(10) For pe#, and DeA", we shall denote by H(p, D) the (By)-space
of all functions f(w) holomorphic in D with the finite limit

Jw)

w=Re(w)or— P (1)

e(w)
mulas ||f|[°= sup [50=1,2,...
o<w

is equal

. The pseudonorms in H(p, D) are given by the formulas

J(w)
P (w)
where Z are compact subsets of D.

(11) #, denotes the family of all domains D in the complex plane
such that DeA,, {w: 0 < w = Re(w) < 7} = D.

flo=_ sup

reSw=Re(w)<r

s Ufl = sup )],
weZ

§1. The‘ definition and simple properties of the generalized power methods

De?fini‘tion; 6. By M(p,D) we denote a method of limitation
determined by a function p %, and a domain De.f",, defined as follows:

iom”
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. The field M*(p, D) of the method M(p, D) is the set of all complex-

valued sequences x = (4,) such that:

(a) the power series ) p,i,w" has a positive radius of convergence;

o« n=0
(b) the function Y p,t,w" is extendible to a function m(p,D; 2, w)
n=0

holomorphic in the domain Dj

() there exists a finite limit

Em m(P:D§m;‘w)_
w=Re(w)—+r— p(w)
The generalized limit M(p,D;z) of the sequence ze M*(p, D)
(corresponding to the method M(p, D)) is defined as the limit
: m(p, D; m, w)
M(p,D;z)= lIm ——=-———.
(P, s 2) w=Re(w)->r— P(w)

In the particular case of D = K, we shall denote the method M (p, D)
by M(p); M(p) is called a poier method. For example if » =1 and
p(w) = (1—w)~! or 7 = -+ oo and p(w) = ¢, is M(p) the Abel method
or the Borel method, respectively.

ReMARK 1. Let p eF, and D,, Dye #. If D; = D,, then M*(p, D
> M*(p,D,) and the methods M(p,D,), M(p,D,) are consistent :
M(p, Dy; ) = M(p, Dy; x) for we M*(p, D).

In the space M*(p,D) we introduce the family of pseudonorms

ol = [tal, where 2 =0,1,...;2 = (ke M*(p, D);
_ mp, Do, )|
(p) W= B pa0) |

lwllz = sup |m(p, D; », w)|,
weZ

where Z takes on the values from the family of all compact subsets of
D. (In fact the family of pseudonorms |lz|z is equivalent to a denu-
merable family of pseudonorms [j@|lz,, % =1,2,...).

It is easy to verify that M*(p, D) is the (B;)-sc-space under the
totality of pseudonorms (p,).

Now we consider a mapping U of the spa,ce M*(p, D) into the prod-
uct §x H(D)XC(<{r,, 7)), defined by the formula

m(p,D; x, ))
2(*) ’

Of course U is a linear homeomorphism. According to the separa-
Dbility of the spaces s, H(D), C(<{ry,r}) and the general form of linear

U(z) = (-’1" m(p, D; =z, ):


GUEST


218 A. Birkhole

functionals on those spaces, this implies that the space M*(p, D) is
geparable and the general form of linear functionals on M*(p, D) is
given by the formula

(L) e
:j’aﬂz +&(m(p, D; o, )+ }_wdw(u)' aM(p, D;
& n 3 4y Ly y _’P(%) T », 7"‘0)7

where @ is a linear functional on H(D); w(u) is a function continuous

3 A r— r—
on the right with V (o) < + co. The meaning of the symbol [ is
TO r R o

J=im ]
Let us suppose now that the function pe#, fulfils the condition
(«) nlp, =p™(0)#0 for n=0,1,...
It is easy to establish that M*(p, D) is now the (Bo);sc-space under
the family of pseudonorms

lelo =  sup
(p2) rg<w=Re(w)<r

mip,D; x, w) ‘
p(w) ’

lzllz = supim(p, D; @, w)|
(Z has the same meaning as in the formula (p,)).
o Under the hypothesis («) it is easy to establish that the space 3*(p, D)
is isomorphic to the space H(p, D). The isomorphism between M*(p, D)
and H(p, D) is given by the formula
(@) fw) =m(p, D;w,w), weDjze M*(p, D); feH(p, D).

The general form of linear functionals on M*(p, D) is given by the
formula

Whgre
L) gl@) = , D, - T*M
mip, Do )H,Of p(u)

where @, v have the same meaning as in the formula ().
In some considerations we shall suppose that

de(w)+ oM (p, D; o),

P >0 for
lim p(w) = + oo.
w=Re(w)—>r-—
The fulfilment of (8) implies the permanence of the method M(p, D).
~From the abeve considerations we get the following
THEOREM 1. Let peF,, De Ay Then

n=20,1,...,

(8

icm
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(a) M(p, D) is a separable (By)-method under the totality of pseudo-
norms (p,); the general form of linear funciionals on M*(p, D) is given
by formula (1,).

(b) If p™(0) #0 for n=10,1,..., then M(p,D) is a (Bo)-method
under the totality of pseudonorms (p,); the general form of linear functionals
on M*(p, D) is given by formula (1,); the spaces M*(p, D) and H(p, D)
are isomorphic and the isomorphism between M*(p,D) and H(p, D) is
given by formula (i).

§ 2. Rate of growth of the method M(p, D)

Definition 7. A sequence (8,) is called a rate of growth of the
method M if 6, > 0 and sup 6y, |tx| < -+ oo for every @ = (f,)¢ M*.

Definition 8. A sequence (0,) is called a strict rate of growth of
the method M if (6,) is a rate of growth of the method M and for every
rate of growth (6,) of the method M there exists a constant ¢ such that
6, < Cb, for m =0,1,... (see [4]).

REMARK 2. Let peF,, Det,. If p™(0) 0 for n=0,1,..., then
the method M (p, D) has a rate of growth.

Proof. Let us write

0o = infjw)|
wiD

‘v

and let us fix 0 < p < g,. For every & = (to) e M*(p, D) we have

Dipatale® < oo
n=0

Thus the sequence 6, = |p,] ™ is the rate of growth of the method
M(p, D), q.e.d. . )

TasoREM 2. Let ped, and p™(0)# 0 for n=0,1,... Then the
power method M (p) has no strict rate of growth.

Proof. Let us suppose on the contrary that a sequence (6,) is
a strict rate of growth of the power method M (p). ‘We consider the space
M*(p) as the (B,)-space under the family of pseudonorms

”ﬂ%%’_’_"l i lwll, = sup|m(p; ®, w)l,

llzfly =  sup
[wi<e

re<Sw=Re(w)<r

where 0 < g <7.
Since () = O,t, are linear functionals on M*(p) and

Bup| v ()] = sup O, |tn] < + oo
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for every « = (i,)e M*(p), there exist numbers ¢ and 0 < g, << such
that (see [5])

(#) Oultal < Cmax(fly, loll,) for n=0,1,...;2 = (t)e M*(p).

Since the sequence (|p,|¢™) is the rate of growth of the method
M(p) for 0 < ¢ < r, there exigts a constant C, such that
(*+) [Pnle” < Cpbp; n=10,1,..50< g<r.

In virtue of inequalities (), (**) we have for 0 < g < p; <7 and

[w] < o:
oo (e} n
< M 1Paltal " = il (-
Y DPnllbn| 0 V2 o1 [tal
n=0 n=0 91

- e\" 01
<, O b0 (—) < 00,
QIZ e [ a [ R

n=0

[m(p; @, w)| = Iantnw”
n=0

. max (|lallys {l2lly,)-

Thus we have

(%) llell, < CC, glg—l 0 max ([[afo, [2ll,) -

Inequality (++«) shows that the conditions

zre M*(p), h}fn”w}c“o = ]j’-;m”wk”eo =0
imply that

likm”w,,[]e =0 for every 0 < o <.

Thus in virtue of Theorem 1(b) the conditions

Julw) -

JeeH(p, K,), lim - sup
B (w)

k ro<w=Re(w)<r

‘ lim sup | fi(w)| = 0
: k wi<ep
imply that

lim sup | f.(w)] = 0
k wl<e

for every 0 < ¢ < r, but it is easy to establish that it is impossible, q.e.d.
The next theorem concerns the rate of growth of the generalized

Abel method.

In the case p(w) = (1—w)~, Det", we denote the method M(p, D)
by A(D). Let us write o, = infl|w|.
w¢D

) TBEOREJ\{F 3. A sequence (6,) (6, > 0) is a rate of growth of the gener-
alized Abel method A(D) if and only if there emist constants g, C such that
0< g < gy b <Og" for m=0,1,... : :

icm
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The sufficiency of the condition 6, < Cg" is trivial. To prove the
necessity we need two simple remarks and a lemma.

For # = (1,) we shall write 2 = (f,_z) = (0,...,0, %, %,...), where
t, = 0 for n < 0. Let us write

lellz = sup|4 (D; 2, w)]
weZ

for Z <D and zeA*(D), where A(D;z,w)=(1—w)m(p,D;jz,w);
p(w) = (1—w)™

ReEMARK 1. If zeA*(D), then sMcA*(D) for k=0,1,... and
129z < lielz-

This is a consequence of the simple identity A (D;z®, w) = w*4(D;
&z, W).

REMARK 2. To prove Theorem 3 it is sufficient to prove it for a domain
of the form Dy = {w: w| << 1} — {wy}, where |wo] < 1.

Indeed, let w, be a point such that |we| = g4, W ¢D (if gp =1 we
put w, = —1). Sinece D = D, we have 4*(D) = A*(D,). Thus if (6,)
is a rate of growth of the method A (D), then (6,) is also a rate of growth
of the method A (D).

We consider the space A*(D) as the (B,)-space under the totality
of pseudonorms

lely =  sup |A(D;z,w),

rosw=Rew)<1

loll; = sup |A(D;=,w)| for
jw—wg|=1/i
[l1-1fi

i = gy fgF1y ey

where 7o, 4, are fixed numbers (4 — a positive integer) such that the
cirele {w: |w—w,| <1/} lies inside the circle {w: jw] <1—1/i,} and the
interval {w:7, <w = Re(w) < 1} lies outside the circle {w: |w—wy
< 1/}

Lemma. Let (9,) be a sequence such that ¥y >0 and the inequalities

B ltnl < amax (|zlo, il

are satisfied for n = 0,1, ... and for every o = () e A*(D), where o and
1 are fized (I > 4,). Then there exists a constant f§ such that
o m
Dim gﬁ(—Vlé) for m=0,1,..
Proof. Let us consider the functions
5

1—w
fm(w) = T—wju)™™
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Expanding them in a power series we get

Fnlo0) = (hw)Z’("j,;"”) (-:{}) b ol < ol = -

n=0
Writing
Tp = ("), where " = (n+M)_1_E,
m | wy
we geb meA*(D) and fp(w) = A(D; @, w).
For [w—w,) =1/l we have

w, m+-1
n = Lmwl |22 < 2 = 2g
and we get the inequalities
Znll < 200777, lamlh < 205710

According to the hypothesis of the Lemma we have Pt <
omaX(|2mlly, [|Znll) and consequently

n-4+m\ 1
79"'4( >_n < 2a97011+llm+1 for Ty, m = 0, 17
m | @o

Putting in the above inequality n = Im we get
lm~+m
ﬂzm( + )<2al’"“g{,”“+l’” for m=0,1,...
m t sl
We have

(lm—l— m) _ (Im+m)(Im+m—1) ... Im+1) _ m™
m m! > m!

and eonsequently
mm™

'ﬂlm 1
m.

1 Imtm41
< 2al™H pgntmrL

and after simplification we get

T

V

The radius of convergence of the power series

m! m! Im
P < 20l — g™ = 9l gm [ 0
m o Qo a D .

8

m! o
m
m

o~

=0
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is equal to e; thus

2 !
m!
Zm'"‘ < oo

m=0
and consequently there exists a constant 8 such that

m!
2al— 2" < B for m=0,1,...
m

Finally we get
0 im
0Zm<ﬁ(-l—°) for (m =0,1,..),

q.e.d.

Proof of Theorem 3. Let the sequence (6,) be a rate of growth
of the method A (D). As y,(z) = 6,1, are linear functionals over A*(D)
and

Sup |y ()| = sup O lte} < —+oco
n n

for every = = (i,) eA*(D), there exist an index I >4, and a constant a
such that (see [5])

Onltnl < amax(lizll; lzll), @ = (t)<A*(D).
Putting «® = (t,_,) in place of z we get
Ot x| < amax ({2, [0lh),
and according to Remark 1 we get

Onltn_l < amax(lwly, o), &,7=0,1,...,
ie.

Onreltnl < amax(lafly, lelt), k*,n=0,1,...

In virtue on the Lemma there exist constants g, for £ =0,1,...
such that

Qo
Blan+k < ﬂk@lm) where . o= << Qo-

Let us write f = max(By, f1y -+, Br-1)-
Now let n be an arbitrary non-negative integer. We may write
n =Im-+k where ¥ =0,1,...,1—1;m = 0,1,... Thus we have

O = Opmyre < B0™ = o 0™ = fo " 0" < Bo'Ho" = Cc”,

where ¢ = 8o, q.e.d.
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COROLLARY. A sequence (8,) (0, > 0) is a rate of growth of the Abel
power method 4 if and only if there exist consiants ¢ and C such that
0<o<l,0,<Co" for n=0,1,...

§ 3. Perfection of the methods M (p, D)

Definition 9. Let M be a permanent {B,)-method. M is called
a perfect method at a point mye M* if for every permanent (By)-method N
such that M™ = N* the equality M (m,) = N (w,) is satisfied. M is called
a perfect method if it is perfect at every point wye M*.

The following criterion plays an essential role in the considerations
concerning the problem of perfection in the theory of limitation (see [3]):

LEMMA 1. Let M be a permanent (B,)-method. The method M is
perfect in xye M* if and only if z, is a point of accumulation of the set T,
of the convergent sequences. In particular, the method M s perfect if and
only if the set T, of all convergent sequences is dense in the space M*.

Proof. 1° Suppose that z,¢7,. Thus there exists on M* a linear
functional y(x) such that y(x) = 0 for xeT, and y(x,) = 1. Let us con-
sider a method N defined in following way: N* = M* N(z) = M (z)+
+y(z) for xeN* Thus N is a permanent (B)-method but N(z,)
= M (2,) +w(z) = M(2)+1 # M(x,), whence M is not a perfect method
at the point x,.

2° Suppose that x,eT, and M* = N*, where N is a permanent (B,)-
method. Let us denote by |- |la, |- |lx the (F)-norms in the spaces M*
and N* respeetively. Since

lillcnﬂmk—%llu =0,
where zpeT, for ¥k =1,2,..., we obtain
]iiﬂﬂwk“%ulv =0

(it is a result of K. Zeller; see e.g. [11], p. 190).
Thus we have
N(ay) = ﬁ}inN () = hl;m M () = M (%),
g.e.d.

In this lia;ra,gra,ph we shall congider the methods M (p, D) under
the hypothesis

Pp0)>0 for m=0,1,...,

® lim  p{w) = + co.
Re{w)->r—

W=

icm
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REMARK 3. Let Dedy, peF,. If the method M(p, D) is perfect,
then D is a simply connected domain.

Proof. Suppose that D is not a simply connected domain. Hence
there exist a pq.int wo¢D and a simply connected domain @ such that
wee@ and I' = G¢—@G < D. Let us consider the sequence

o — 1
"= gt

‘w'n
m(p, D; &y, w) = an_n =
— Pnq

Since

and
m(p, D; 2y, w) —0
p(w)

’
w=Re@w)->r—

we obtain 2,e M*(p, D).

Suppose that the method M (p, D) is perfect. According to Lemma 1
there exists a sequence z T, such that

limzy, = .
k

Congequently the sequence of the functions m(p, D; zx, w) is uniformly
convergent on I' to the function w,/(w—w,), and consequently the se-
quence of the functions m(p, Dj; 2y, w) is uniformly convergent on the
domain @, but this is impossible since m(p, D; 2, w) are holomorphic
funetions for |w] <7, g.e.d.

LEMMA 2. Let DeAy, peF,. The method M(p, D) is perfect if and
only if the set of all functions of the form W (w)-+tp(w), where W (w) denotes
a polynomial and t — an arbitrary constant, is a dense subset of the space
H(p, D).

Proof. 1° The sufficiency is a simple consequence of the equality

k
ZanW"-l—t‘P (w) =m(p, D; =, w),
n=0
where

a, a a
@ = (—"—[—t, Ly e, — 1, 8, 8, ),
Po P Px
since the spaces M*(p, D) and H(p, D) are isomorphic.

2° Suppose that the method M (p, D) is perfect. Hence the set of
the functions of the form
D pataw”,
n=0

15
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where (t,)¢T., is dense in the space H(p, D). Let

m

= Y pulta—t)u"+tp ().

n=0

limi, = and  fn(w)

We show that the sequence of the functions f,(w) tends to the

funetion
oo
= 2 Dnln w”

n=0

(in the sense of convergence in H(p, D)). Of course f,(w) - f(w) uni-
formly in the circle |w| < ¢ <r. It remains to prove that fy.(u)/p(u)
— f(u)/p (») uniformly on the interval 0 <wu <7.

Let ¢ > 0. We have |i,,—1t| < & for n > n,. Hence we get for m = n,
and 0 <u <7r:

Im(u)  flu) > _ 1 Ll o
i) —m ‘n; Dy (b —t) U™ )";Llpnitn tlu
q.e.d.

LevmvA 3. Let g(l) be a holomorphic function in the circle |[— &,
< p < -+ oo with the finite radial limit lmw(Z), where {; denotes a fized

number such that |¢,— | = e. Then for every & > 0 and for every 0 < p; < p
there exists a polynomial W () such that

{W(l)—9g for <oy and for {e[&, &)

Proof. According to the uniform continuity of the function g(f)
on the set Z = {{:|f— &) < 0o} v [&y &) there exists 0 <7 <1 such
that

O <e [E—2&l

for (eZ.

(%) l9(Cotr(E—2)—g(0)] < =

Sinee g(Z,+7(£—&)) is a holomorphic function on the circle |Z— &
< gfr > o, there exists a polynomial W ({) such that

(%%) | W (&) —glLo+ric— c.)))]< for |{—&| <o

In virtue of the inequa]ities (*) and (#x) the proof of the Lemma is
completed, q.e.d.
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LemMA 4. The set of the functions of the form
m
o+ D) 0o,
j=1

where g; > 0, s dense in the space H,.

Proof. Given an arbitrary number &> 0 and a square K = {w:
|Re(w)] < R, Im(w)| < R}. Let us fix a number ¢ > 0 such that aR < =/2.
Let us consider the mapping [ = ¢~ which maps the square K onto
the set Q = {{:e™F < [Z] < €%, |Argt] < oR} and the interval 0 < w
= Re(w) < -+ oo onto the inferval 0 < { = Re(Z) < 1. The inverse map-
ping is given by the formula

1
w = —ELogC.

Let feH,. We consider the function
1
9(8) =F|— Lost),
which is a holomorphic function on the open complex plane except
{ = Re({) < 0, with the finite limit

Lim  ¢(f).
t=Re(t)->+0

Let us write § = {¢:|{— | < 01}, Where £, o, are fixed numbers
such that {, = Re({,) > 0,2 = 8, o; < ;. (Such numbers &,, g, exist,
since aR < =/2). Putting, in Lemma 3, p =7, and {; =0 we find that
there exists a polynomial W({) such that

W) —g(¢ [E—Gol
After the substitution { = ¢~ ™ we get

)| <e for <p,and for 0 < =Re({)<1

[W(e™)—f(w)] <e for weK and for 0 < w = Re(w) < + oo.

Writing

m

W) =D at and o =4
N =
we have
W(e ™) ao+z a6,
i=1

q.e.d.

LeMMA 5. The set of functions of the form e "W (w)-+t, where W (w)
denotes a polynomial and t — an arbitrary constant, is dense in the space H,.
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Pro of. In virtue of Lemma 4 it remains to prove that the function
¢~%, where ¢ > 0, can be approximated (in the sense of Hy) by functions
of t.he form e’"’W( ), where W(w) is a polynomial. At first we shall
prove it for the same special cases with respect to ¢.

We use the following notation:

fi(w) = f(w) denotes uniform convergence on every compact subset
of the open complex plane;

fr(w) = f(w) denotes uniform convergence on the interval 0 <w
= Re(w) < + o0;

frx(w) — f(w) denotes convergence in the sense of the space H,.

If fi, feH,, then fi(w) —f(w) if and only if fi(w) =f(w) and fi(w)
= f(w).

1° Tet 0 < g < 2. We have ¢7® = ¢™"¢™, where ¢ =1—g, |a| <1.
Writing

k—l
Wk(w =

§=0

j'
we get 6 "Wy (w) % ¢

Let ¢ > 0. For j =>m we have la’| < ¢; consequently we get for
k>m and 0 <w = Re(w) < + oco:

ool K4
i —T<£,
~ j! < !

i=

. 67— "Wy (w)] < e

thus ¢~*Wy(w) = ¢ ® and consequently e™"Wj(w) — ¢
2° Let p = 2. Writing

k—1 ;
W) Z(—W)
=0 it
we obtain ¢ W (w) = e ™.
For 0 < w = Re(w) we have
e—ﬂw
6 = eV W(w)+(—1)e “"T'wk, where 0<60=0(k,w)<1;
hence we obtain
w w1 . KEeE
fe™ " —e~ Wk(w)[ =e e “ﬁ- < ~k—' ew" < k!

According to Stirling’s formula k! = k*¢e~*Vkay, a - V2, we get
Ko ® 1

—— -0
k! ak]/i

icm®
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Thus we have proved that e “Wi(w) = ¢ * and consequently,
W (w) — 67,

3° Now we prove that every function ¢ *2W,(w), where W,(w)
is a polynomial, can be approximated by functions of the form e~*W (w),
where W(w) is a polynomial.

It suffices to prove this for W,(w) = w™, m =0,1,...

o )

J 1 w\’

ey ™ — gV = Vg™ § 1 (_ ) .
=~ i 2

‘We have
Writing

we obtain e “Wy(w) =z e~ ™ For 0 <w = Re(w) < + oo we have

. 1 1%
oM™ = e“"’Wk(w)—]—e‘“’w’”F(—E) e %Pyp*  where 0<6<1.

Hence we get

—3w/2w'm__ 8—w 6—6w]2wk+m <

2% k) ok
(k+m) e O+m (4 m)*+™
2k k! (% +m)!

le e Wy (w)| = e ykt™

1
< o e (- m)* " =

L G

oF 1,0 if

k — +oo.

Thus we obtain e YWy(w) = ¢ >*w™ and consequently e=*W(w)

> Wi,

4° Now we show that every function ¢ *W,(w) can be approxi-
mated by functions of the form ¢ *"*W(w), where W,(w) and W(w)
denote polynomials.

Indeed, in virtue of 2° there exists a sequence of polynomials Wi(w)
such that ¢“Wy(w) — ¢ 2. After substituting w/2 for w we establish
e~YEW , (w2) - ¢, and multiplying by ¢ "W,(w) we get

=S (1) W, (?) > Wy ().

5° In virtue of 3° and 4° we establish that every function e™* W, (w)
can be approximated by functions of the form ¢~“W(w), where W (w),
W(w) are polynomials.

8° Now the proof of Lemma 5 can be completed by the method of
mathematical induction. Tet 4 < g <i-1, where i = 0,1, ... According
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to 1° the assertion of the Lemma is true for ¢ = 0. Suppose that the asser-
tion of the lemma is true for ¢ and let i+1 < o <49+2. In virtue
of the inductive hypothesis and ¢ << p—1 < i+1 we conclude that there
existy a sequence of polynomials Py(w) such that e “Py(w)—» ¢~@-D,
After multiplication by ¢~* we obtain ¢ 2*P,(w) -» ¢~%. In virtue of 5°
there exists a sequence of polynomials Wy (w) such that "W (w) — ¢~
q.e.d.

Elementary Lemmas 2 and 5 enable us to prove the following theorem
of Ryll-Nardzewski (see [9]):

TuEOREM 4. The Borel power method is perfect.

Proof. Let p(w) = ¢”. According to Lemma 2 we have to prove
that the set of funections of the form W(w)+i¢” is dense in the space
H(p, K,,), where W(w) is a polynomial.

Let feH(p, K). Hence the function ¢ “f(w) is an element of the
space H,. According to Lemma 5 there exists a sequence of polynomials
Wx(w) and a sequence of numbers i*) such that the sequence of func-
tions 6 "W (w)-+t® tends to ¢~"f(w) uniformly on every compact subset
of the open complex plane and uniformly in the interval 0 < w = Re(w)
< + oo. Hence Wy(w)--t®p(w) tends to f(w) uniformly on every com-
pact subset of the open complex plane and (Wi(w)+t®p(w))/p(w)
tends to f(w)/p(w) uniformly in the interval 0 < w — Re(w) < 4 oo,
but this means that the sequence of functions Wy (w)+:®p(w) tends
to f(w) in t«I}e sense of convergence in the space H(p, K,.), q.e.d.

Definition 10. Let y(u) be a positive continuous funection in the
inferval 0 <w <7 (0<r < + oo) such that

n

sup < +oo

ocu<r (%)

for n= 0., 1,... (e.g. we may take 1(1'4,) == p(u) where p ¢ Z, if hypothesis
(B) is fulfilled). We shall say that y(u) has the (M)-property if for every
number 0 < ¢ <r and for every function w(u) continuous on the right

r—
such that \/(w)< + oo the condition
0

r—
u'n

ofmd“"“) =0(¢")
implies (%) = const for ¢ < u < 7.

According to Mikusiriski’s theorem of bounded moments the function
-z(w) =1 hag the (M)-property if r < -+ oo (see [7] and [8]). .
) LeMmA 6. Let peF,, DeAt, and let condition (B) be fulfilled. If D
8 @ simply connected domain and the function p(u) has the (M)-property,
then the method M(p, D) is perfect.

icm®
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Proof. Lete=(1,1,1,...),€,=(0,...,0,1,0,...)for m=0,1,...
0 m
Let ¢ (x) be alinear ;unctional on M*(p, D) suchthat p(e) = ¢(en) =0
for m = 0,1, ... To prove this lemma we show that ¢(z) = 0 for every

we M*(p, D).
In virtue of formula (1,), §1, we have

" mip, D;z, u
(@) = B(m(p, D0, )+ [ 0D G0+ ad(p, D5 o)
hoo
Putting » = ¢, we get

where  fi,(w) = w™,m = 0,1, ...

@ [ p”‘(z) doo(u) = —B(fa),

Since @ is a linear functional over H (D), there exist a constant C
and a compact subset Z of D such that

12N <0§Dlg)lf(W)i for  feH(D).
Writing
o = sup|w|
weZ
we obtain
[D (fm)] < O™ m=0,1,...

Thus in virtue of (x) we get

_ N
[ S o = o™
()
According to the hypothesis of the Lemma, w(u) = const for ¢ <u
< 7. The functional @(x) may now be written in the form

p(z) = Y’(m(p, Dj; w, ‘))+aM(P, Dj; x),
where

W(f):@(f)—i—f%-))—dw(u) for  feH(D).

Equality (%) implies ¥(f,) =0 for m = 0,1, ... and consequently
Y (W) = 0 for every polynomial W.

According to the theorem of Runge we get y(f) = 0 for every func-
tion feH (D) since ¥ is a linear functional over H(D). Thus we have,
p(®) = aM(p, D;x) for m<M*(p,D). Putting o =e¢ we finally get
a =0, q.e.d.
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LevnaA 7. Let y(u) be a positive continuous function on the interval
0 <u<r such that

n -

< oo

8
0<u1<)r x(w)

for m=0,1,..., where 0 <7< + oco. Then x(u) has the (M)-property.

Taking y(u) =1 we get Mikusiriski’s theorem of bounded moments
(see [7] and [8]). The above lemma may be deduced from the theorem
of Mikusingki but we shall give a new proof which is based on the fol-
lowing well-known approximation theorem of Mergelian (see [67):

THEOREM OF MERGELIAN. Let g(w) be a function defined on a com-
pact subset F of the open complez plane C and suppose that the following
conditions are satisfied:

1. The function g{w) is continuous on F.

2. The function g(w) is holomorphic in Int(F).

3. The set C—F is connected.

Then for every &> 0 there ewists o polynomial W(w) such that
lg(w) —W (w)| < e for every weP.

Proof of Lemma 7. Suppose that

r— n

Y dw(u) = 0("
!7(_4;)_ w(u) = 0(o"),

where 0 << o< 7 and the function e(u) is such as in definition 10.
Hence

- '

f 2 do(u) = 0(d".
J xw)

Thus we have .
r— 'M,n
——dw(U) = a,0"
5{ 7 () e
where |o,| <O for n =0, 1 . Hence for an arbitrary polynomial
W(w) = Zaﬂu"
n=0

we- geb

f ‘Z‘:)) dou) = Zm] tntn”™

icm
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Let us fix the numbers g,, 0, 50 that p < p; < g, < r. Applying the
inequalities of Cauchy

1
laa] < o o [W (w)]

1 [wi<e;

r— m

m
g n
< lan] |an] 0" < O (—) sup |W(w
§ laale n; o lwé;l] (w)]

n=0

L sup |W ().
— @ <oy

Thus we have

W ()
éf 80

Now let f(u) be an arbitrary continnous function in the interval
o1 <% <7 such that f(p,) =0 = f(u) for g, <u <r. Let us consider
a function g(w) of the complex variable defined as follows:

& sup [W(w).

€17 0 |w|<ey

<C

‘ 0 for |w| <oy
g(uw)f(u) for g <

Applying the theorem of Mergelian to the function g(w) and the
set F = {w: [w| < g,} v {w: 0, <w = Re(w) <}, we can choose a se-
quence of the polynomials Wi(w) tending to g(w) uniformly on F. It
is easy to see that Wy(u)/x(u) tends to f(u) uniformly on the interval
01 < u < r since the function 1/y(u) is bounded for o, < w << r. In virtue
of (¥) we have

Wilu)
B

In the limit for k¥ — <+ oo we finally obtain

g{w) =

w=u<r.

sup |Wy(w)].
Q wi<ey

]OQI

[ fdow) =0
Q1

Sinee f(w) is an arbitrary function, we deduce that w(u) = const
for o, < %< g, and since gy, g, are arbitrary numbers we deduce that
w(u) = const for o <u<r, q.e.d.

According to Lemmas 6, 7 and remark 3 we have the following theo-
rem (see [11], Th. XTI):

THEOREM 5. Let p eF,, Ded, and let hypothesis (B) be satisfied for
7 < 4+ co. Then the method M (p, D) is perfect if and only if D is a simply
connected domain.
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LevMA 8. Let f(u) be a continuous function for w =R >0 such
that
F(B) =0 = lim f(u)

U—>+o0

Then for every ¢ > 0 there exists & function h(w) of the form

m
— 207-6—97'"1
j=1
where o; > 0 such that
[h(u)—flu)|<e for u>=R,
[h(w)]<e for |Re(w)| <R, |Im(w) <R.
Proof. We apply the same method as in the proof of Lemma 4.

Let the symbols K, a, 2 have-the same meaning as in the proof of Lemma 4.
Let us consider a function ¢(¢) defined as follows:

0 for (eQ,

90 = | f(—%LogC) for 0 <{=DRe(f) <e¢°E

Applying the approximation theorem of Mergelian to the function
g(¢) and to the set F = Qo {{:0 < ¢ = Re({) < ¢™°F}, we can choose

a polynomial
W) =Dyl
j=1

such that |W({)—g(l)| < e for {eF. After the substition ¢ = ¢~ we
get the assertion of Lemma 8, g.e.d.

Levma 9. Let peF, and hypothesis (B) be satisfied for r = +oo,
and let the power method M (p) be perfect. If feH, and

Lim ~ f(w) =0,

w=Re(w)++o0o
then for every &> 0 and for every compact subset Z of the open complen
plane there exists such a polynomial W{(w) that
\W(w)—po)fw)] <e for wez,
W (w)
‘ »(w)
Proof. Let

—f(w) L<e for  w = Re(w) > 0.

4 = sup|p(w)|.
weZ
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According to Lemma 2, since the function p(w)-f(w) belongs to the
space H(p, K,.), there ex:Lst a polynomial W(w) and a number { such
that

() W)+ tp () —pl)f ()] < 12 for ez,
W(w) €
(%) __(_)__!. —f(w) 2(1_]_1) for w = Re(w) >0

Taking the imitin (#+) if w = Re(w) - + oo, we obtain [¢] < &/2(1+ 4).
Hence we get for weZ
[W () —p (w)f (w)] < lW(W)thp(W)—p(W)f(w)H [il1p ()]
3 el
< 1+12 9(1—[—2)
For w = Re(w) > 0 we get

W(w)
Sy I <

S+ =e.

&
2(1+/1)+2(1+/1)< !

W(w
T2t <

q.e.d.
LeMMA 10. Let p e, and hypothesis (B) be satisfied for r = + oo;
let y(u) be a positive continuous function for 0 < u < -+ oo such that

n

sup < +oo for n=0,1,...

uzo x (%)
_ If the power method M (p) is perfect and the inequality x(u) = p(u)
s satisfied for w = 0, then the function y(u) has the (M)-property.
Proof. Suppose that

+oo »

f Y _do(u) =0(d", 0< o< oo,
A

and fix the numbers p,, g, 80 that o< g, << g, << + oco. Repeating par-
tially the proof of Lemma 7 we get

EER

0

sup |W(w)|
— 0 jy<ey

(*)

for an arbitrary polynomial W (w).
Now let f(u) be an arbitrary continuous function in the interval
01 <% < + oo such that f(e;) = 0 = f(u) for g, <% < 4 oo. Letb

_feage)

asu< + co.
p(u)

g(u)
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Let ¢ > 0. According to Llemma 8 there exists a function

m
h{w) = ) oo~

[h(w)—glu)|<e for u> e,
hw)l<e for |w| <.

such that

According to Lemma 9 there exists a polynomial W(w) such that

WO _hwyl<e for us o,
") .
IWw)—pmw)h(w)| <e for |w] <o
‘Writing
A = sup |p(w)|
fwl<ey

we get for |w] < oy
[W(w)] < |W(w)—p (w)h(w)|+ |p(w)h(w)] < e+ Ze.
For u = p; we geb

T - 20 (700 _, )

x(w) TR
whence
W(u)_ W( ) W )
2w T S|y IO S |y TR =g < 2e.

Thus we have proved that for every ¢ > 0 there exisfs a polynomial
W(w) such that

W) <(@+24)e for |w] < ey

W)

—f(w)
()

<2 for u=op.

Taking e =1/k (k=1,2,...) we get a sequence of polynomials
Wi(w) tending to zero uniformly in the circle |w| < g, such that
Wi(u)/x(u) tends to f(u) uniformly on the interval p, < %< +oo. In
virtue of () we have

To Wk(u)
x(w)
Taking the limit if % - + oo, we get

sup [Wi(w)|.
— @ lwi<e;

o]y

[ fwadew) = o.
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Hence we finally deduce that «(u) = const for » > g, g.e.d.

As a consequence of Lemmas 6 and 10 and Theorem 4 we get the
following

THEOREM 6. Let p,qe#,, Det', and let the functions p,q fulfil
condition (B) for r = + oco. Then

(a) The power method M (p) is perfect if and only if the funciton p(u)
has the (M)-property.

(b) If the power method M (p) is perfect, D is a simply connected domain
and the inequality q(u) = p{(u) is satisfied for w > 0, then the method M (q, D)
is perfect; in particular, if q(u) = e€* for u =0, the method M(g, D) is
perfect.

Note. Let us denote by M*(p) (peFr;r < +oo) the set of all real
sequences ze M*(p) and pub M(p,m) = M(p; =) for ze M*(p) Thus
7 (p) is a “real” power method. It is easy to see that the “real” power
method 74 (p) is perfect if and only if the method M (p) is perfect.

§ 4. Methods “extracted” from methods M (p, D)

Definition 11. Let DeAt,, peZ, and let 4 = (u,) be a sequence
of real numbers such that wugzeD, limu; = 7.
k

By M(p,D,4) we denote a method defined as follows. The field
M*(p, D, 4) of the method M(p, D, 4) is the set of all complex-valued
sequences z = (4,) such that conditions (a), (b) from definition 6, §1,
are satisfied and

(¢’) there exists a finite limit

m(p, Dz, uz)
k P (ug)

The generalized limit M(p, D, w; ) of the sequence xe M*(p, D, 4)
(corresponding to the method M(p,D,4)) is defined as the limit
m(p,D 2, Uz

P (ux) '

REMARE 4. The methods M(p,D,4), M(p,D) are consistent and
M*(p, D) = M*(p, D, 4).

In the space M*(p,D,4) we now introduce the family of pseudo-
norms

(p,D i; z) =

m(p, D;x, ux) |
()

llwllz = supjm(p, D; ¢, w)|, Z — compact subsets of D.
weZ )

[lzllo = sup
(ps) E
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It is easy to verify that under the hypothesis p™(0) £ 0 (» = 0,1, ...)
the space M (p, D, 4) is a (B,)-sc-space under the family of pseudonorms
(ps)- Considering the mapping U of the space M*(p, D, 4) into the prod-
uet H(D)Xe,

U(z) = (’m(p, D;z, ), (w

() )) <H(D)xe,

we deduce that the space M*(p, D, 4) is separable and the general form
of linear functionals over M*(p, D, %) is given by the formula

D.
1) olo) = S(m(, D;, >)+2 R0 oy, D, 450,
‘where
Zlak1< +o0;
k=0

@ is a linear functional over H(D).
Thus we have the following
Leuwa 11. Let DedrypeFr, p™(0) %0 for n=0,1,... and let

4 = (uz) be a sequence such as in definition 11. Then M(p, D, 4) is a sepa-

rable (Bg)-method under the totality of pseudonorms (ps); the general form

of linear functionals over M*(p,D,d) is given by formula (ly).
THEOREM 7. Let the hypotheses of Lemma 11 be satisfied, where the

Sunction p fulfils conditions (), § 3. If the power method M (p) is perfect

and D is a simply connected domain, then the method M(p, D, 4) is also

perfect (see [11], Th. XII).

Proof. To prove the above theorem it suffices to consider the case
of the increasing sequence 4 = (uy).
Let e=(1,1,1,. )e,,._(O ,0100

Let ¢(#) be a linear funetional on M*(p, D, u) such that ¢(e) = @(en) = 0
for m =0,1,... We have to show that ¢(w) = 0. Putting x = ¢, in
formula (1) we have

..) for m =0,1,

i ‘m

*) kZ ey = U

As in the proof of Lemma 6 we deduce that there exist constants C,
0 < p < r such that

[9(fn)] < 0™ for
In virtue of (*) we get

where  f.(w) =w™;m=0,1,...

m=0,1,...

m

0 Y. B
2 gy = 01"

k=0

(k)

icm
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Let w(u) be a function defined as follows:

0 . for 0K
aqtat ...

U< U,
o(u) = [

+a  for wpy<u<up; k=0,1,...

Thus w(%) is continuous on the right and such that

o (up) — o (Ux-) = oz,

r— )

V() = Dl < +oo.
0 k=0

‘We have

a
= p{w)

In virtue of (*+) we obtain

r— s
= J‘ P do (u).

£

r— o .
ef 10 = 0.

According to Theorem 6 (a) or Lemma 7 we establish that w(u)
= const for ¢ < u < r and consequently a = 0 for k > k,. Thus ¢(z)
may be written in the form

,D;
pla) = B(m(p, D; 2, ) +Z AR )

px) = T(m(p,D; &z, '))‘}‘QM(Z’:D,'E?W):

+aM(p, D, i;2).

where

flug)

L)
() = va(f)+2ak for feH(D).
k=0

In virtue of (*) we have ¥(f,) =0 for m = 0,1,... and ¥(W) =0
for every polynomial W. According to theorem of Runge we get ¥(f) =
for every feH (D), since ¥ is a linear functional on H(D). Thus we have
() = aM(p, D, 4: x). Putting z = e we get a =0, g.e.d.

§ 5. Relations between the generalized power methods M (p,D)
and the Toeplitz methods

THEOREM 8. Let DeA,, peF, and let 4 = (uz) be a sequence such
as in definition 11. There ewists a sequence of row-finite matriec methods
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such that
M(p,D,d;m) = likka(W)

Cos 01, Csy -

for every me M*(p, D, 4).

Proof. Let D, be such a domain that DeA",, D, = D, which can
be conformally mapped onto the cirecle {(:|[|<<1}. The existence of
such a domain D is the consequence of Riemann’s theorem. Let w = h({)
be a conformal mapping of the circle {{:[{| < 1} onto the domain D,
such that h(0) = 0. It can be shown by easy induction that for¢ = 0,1, ...
there exists such a system of funetions g;4(%), g:1(2),...
morphic for [{|< 1 that the formula

d{ i3
I 10) = 3 a0 ()
n=0

is satisfied for |{| < 1 and for every function f(w
‘Writing a;, = §;,(0) we obtain

0) = > H(Zsie),_ot =

S Vo)
for || < 1. e

Let & = b (w) for k = 0,1, .. and let us put f(w) = m(p, D; =, w).
We have f™(0) = n! p,t, and consequently

) holomorphic in D,.

M(p, D, d; ) =hmw
E P (ug)

1 1
=1i — 1
v p(u) 2’;@, (2"‘” pate 4
1
] (Zaznn'pn n) ]
m

1
im [ m
& P ()

m
=0

I

i [t 3 (e o]

n=0

Writing
n! ;
Crmn — p? ai,nC;’c—.'“
P () & 2
for # =0,1,...,m, m=0,1,... and k¥ =0,1,..., we finally obtain

Mp,D,d;2) = hm(hm ch,“ ,,)

m a0

= hkm Cx(),

where Cr = (ck,m,n)y q.e.d.

» 944() holo-
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COROLLARY. Let De A, peF,. There exists a sequence of row-finite
matriz methods Cy, Cy, Cs, ... such that

M(p,D;x) = Lm0 (x)
k

for every wel™*(p,D)

Definition 12. We shall say that a method 3 has the (Z)-pro-
perty if there exists no permanent row-finite matrix method O such that
M* c C*.

Zeller [12] has proved that the Abel power method has the (#)-
property. Zeller’s theorem may be generalized as follows:

THEOREM 9. Every perfect power method M (p) has the (Z)-property,
where peF, and the function p satisfies hypothesis (B), § 3.

In particular, if r<< -+ oo, then the power method M (p) has the (Z)-

roperty; the Borel power method has the (Z)-property.

The proof of this theorem may be obtained by a small modifica-
tion of the proof of Zeller [12] with the use of Lemma 7 (if » << + o0)
or of Theorem 6 (a) (if r = + oo).

TaeorEM 10. Let De A", and let p be a function such as in Theorem 9.
If the power method M (p) has the (Z)-property and D = K,, then there
exists no permanent matriz method C such thai M*(p, D) < C*.

Proof. Suppose that such a method C = (¢nn) exists. Thus we
have M*(p) =« M*(p, D) = C*. Let w, be such a complex number that
[wo] <7, w, ¢ D. Writing z, = (1/p,wy), we easily establish that z,e M *(p, D)
and x,eC%, and consequently the series

o0

.S- Conn
n

2

£ Py

Consequently there exist indices n,, where

is convergent for m = 0,1, ...
Ny = m such that

!C‘m,nl
<
Palwi]

Let us consider the row-finite matrix method ¢ where

T
) = lim 2 Conlns
M p=0 -

We show that M*(p) = C* and {(z) = C(x) for ze M*(p), but this
leads to a contradiction because the method M (p) has the (Z)-property.
Let jw,| < o< r and & = (&,)e M*(p). Hence

for nZ=zny;m=01,...

z = ().

Lmp,1, Qn =0
n

16
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and consequently p,|t,| 0" < A for n =0,1,... We have
5m(w) = 0771.(97) - Cm,ntn;
n=Tgp+1
whence
On(@) = Cn@)] < D lomallta
=Ty +1
. o 1 o0 |w[ n
<1 ) Zompe =1 3 (1) o
="M p" 4 n=m @

if m — -+ oco. This shows that z<C* and C(z) = C(x), g.e.d.

§ 6. The U(p) methods

REMARK 5. Let pe&F,. If D,, Dyet,, then the methods M(p, D)),
M(p,D,) are consistent.

Proof. Let e M*(p,D;) ~ M*(p, D,). We have m(p,D;;z,w)
= m(p, Dy; 2, w) for 0 <w = Re(w)<r, since m(p, Dy;x,w) and
m(p, Dy; w, w) are analytic functions of the real variable on the interval
0 < w = Re(w) < r and the above identity is satisfied in a neighbourhood
of 0, g.e.d.

REMARK 6. If Dy, Dye#,, then there exists a Dyet, such that D,
c D, ~ D,, and consequently M*(p, D,) v M*(p, D,) = M*(p, D,) where
PeF,.

Proof. For every ue{0,r) there exists an open circle S, = {w:
[w—u| < gy} = Dy ~ D,. It suffices to take D; = (J 8,, gq.e.d.

o<cu<r

Owing to Remarks 5 and 6 we can define the following method of
limitation U (p):

Definition 13. Let pe#,. The field of the method U (p) is defined
a3 the set

U*(p) = U M*(p, D).
Deky

The generalized limit U(p; ) of the sequence zeU*(p) (correspon-
ding to the method U(p)) is defined by the formula U(p;z) = M(p, D; =),
whereze M*(p, D); De MH,.

THEOREM 11. Let p e, and conditions (B), § 3, be fulfilled. The meth-
od U(p) s a permanent method of Vimitation in the sense of definition 3,
but U(p) is not an (F)-method (definition 5).
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Proof. Suppose that U*(p) is an (F)-sc-space under a norm [|-.
Let us consider the sets 4, = U*(p), where

kn
Ay ={m = (L) e U*(p): |ta| Sp— for n = 1,2,...}; EF=1,2,...

n

The sets A4 are closed, since p,(z) = t, are continuous functionals
on U*(p).
We show that

U*(p) = U 4.
s
Indeed, let e U*(p), whence ze M*(p, D) where Ded,.

power series
0
D Datat”
n=0

has a positive radius of convergence:

Thus the

]j-—m’;/pnltnl< +oo.

Hence there exists a & such that nv Pultel <k for n =1,2,... and
consequently zed;.

According to a theorem of Baire there exist a natural number %
and a ball K = {x: [[p—x|| < o} = 4s; 2 = (i"). Putting y = (s,), where
8y = (—k—1)"/p,, we have

S =L
non -
= 14 k+1)w

and consequently ye M*(p, D), where

1
k———+1 eM,;

hence y< U*(p). For sufficiently great integer m we have

D={lw]<r:w¢——

1
—y+zyeK
m
and consequently
1 "
!——sn+t$f) <— for n=1,2,...
|m Pn

Hence
1 k" o1 E\"
el < — 9 <2—; = <2|l— .
o loal < I <22 (k+1)

Taking the Limit for » > 4 oo, we obtain a contradiction, g.e.d.
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REMARK 7. Let p be such a function as in Theorem 11. A sequence
On (6, > 0) is a rate of growth of the method U(p) if and only if

h'm]/-elb— = 0.

n Pn
hm]/—aﬂ =0
n Pn

and let @ = (f,) e U*(p). We have

Proof. 1° Let

limp,t, 0" = 0
n

for certain g > 0, since the power series

oo
D putaw”
N=0

has a positive radius of convergence. For # >n, we have 7;/07,/19,, < g3
B, < P 0™, hence 6,[ta] < Palinl” — 0 I 7 — + oo, ’
) 2° Let (0,) be a rate of growth of the method U(p) and let & > 0
It is easy to see that )
ey R
e ?)
and consequently” the sequence (6, —&)") is bounded: 4
Hence ( [Pl )) ounded: 0,/p,s" <C.

"/ 6 n,— _—"
Or<ovo, my/ <.
Pn n pn
but this means that
. /0
lim 2 = 0,
n DPn

q.e.d. '

CoroLLARY. If the hypothesis of Remark T is satisfied, then the method
U(p) has no strict rate of growth.
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