A remark on reflexivity and summability

by

I. SINGER (Bucharest)

Let us recall that a summability method \(T \) is a real matrix \((c_{mn}) \),
\(m = 1, 2, \ldots, n = 1, 2, \ldots \) The \(T \)-means of a sequence \(\{a_n\} \) in a Banach
space \(E \) are
\[
T_n = \sum_{m=1}^{\infty} c_{mn} a_n.
\]

\(T \) is said to be regular if \(a_n \) real, \(a_n \to x \) (finite), implies that \(T_n \) exists
and \(T_n \to x \). According to the Toeplitz-Silverman theorem, \(T \) is regular
if and only if
1) \(\sum_{n=1}^{\infty} |c_{mn}| < M \) for all \(m \),
2) \(c_{mn} \to 0 \) as \(m \to \infty \), for all \(n \), and
3) \(\sum_{n=1}^{\infty} c_{mn} \to 1 \) as \(m \to \infty \).

A regular method \(T \) is said to be essentially positive [2], if
4) \(\sum_{n=1}^{\infty} |c_{mn}| \to 1 \) as \(m \to \infty \).

A Banach space \(E \) is said to have property \(\mathcal{S} \) (w\(\mathcal{S} \)) [2] if for every
bounded sequence in \(E \) there exists a regular method \(T \) and a subsequence
whose \(T \)-means converge strongly (weakly); or, equivalently [2], if for
every bounded sequence \(\{a_n\} \) in \(E \) there exists a regular method \(T \) such
that the \(T \)-means of \(\{a_n\} \) converges strongly (weakly).

Recently, T. Nishihara and D. Waterman have proved ([2], theorem 2) that for a Banach space \(E \) the following statements are equivalent:
(i) \(E \) is reflexive.
(ii) \(E \) has property \(\mathcal{S} \) with essentially positive \(T \).
(iii) \(E \) has property w\(\mathcal{S} \) with essentially positive \(T \).

The purpose of the present Note is to show that in this result the
essential positivity of \(T \) can be omitted, i.e. that we have the following
THEOREM. For a Banach space E the following statements are equivalent:

(i) E is reflexive;
(ii) E has property \mathcal{S};
(iii) E has property $w\mathcal{S}$.

In the arguments of [2] the essential positivity of T plays a fundamental role. Our proof is different from that of [2], being based on a profound result of A. Pelczyński ([3], theorem 2) concerning basic sequences.

Proof of the theorem. For (i) \Rightarrow (ii), see [2]. (ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i). Assume that E has property $w\mathcal{S}$ and let (x_n) be an arbitrary basic sequence (i.e., a basis of a closed linear subspace) in E. Then the closed linear subspace $E_1 = [x_n]$ of E has property $w\mathcal{S}$ (by the theorem of S. Mazur [1]), according to which the $\sigma(E, E')$-limit of any $\sigma(E, E')$-convergent sequence in E_1 belongs to E_1. Hence, by [3], theorem 3, the basis (x_n) of E_1 must be boundedly complete (1). Thus every basic sequence in E is boundedly complete, whence, by [3], theorem 2, E is reflexive, which completes the proof.

(1) I.e., for every sequence of scalars (a_n) such that $\sup_n \left| \sum_{k=1}^{n} a_k x_k \right| < \infty$, the series $\sum_{k=1}^{\infty} a_k x_k$ converges.

References

Institute of Mathematics, Romanian Academy of Sciences

Bepu par la Rédaction le 14.12.1964

STUDIA MATHEMATICA, T. XXVI. (1965)

A remark on the preceding paper of I. Singer

(From a letter to R. Sikorski)

by

A. PELCZYŃSKI (Warszawa)

The results of Nishura and Waterman [2], and Singer [4] suggest the following

Theorem. Let W be a weakly closed bounded subset of a Banach space E. Then the following conditions are equivalent:

(o) W is weakly compact;

(oo) for every sequence (w_n) of elements of W there is a matrix $(c_{m,n})$ such that

1) $c_{m,0} = 0$ and $c_{m,n} = 0$ for $n > n(m)$ ($n, m = 1, 2, \ldots$),

2) $\sum_{k=1}^{n} c_{m,n} = 1$ ($m = 1, 2, \ldots$),

3) the sequence $\left(\sum_{k=1}^{n} c_{m,n} w_k \right)$ is convergent;

(oo0) for every sequence (w_n) of elements of W there is a regular matrix $(c_{m,n})$ such that the sequence $\left(\sum_{k=1}^{n} c_{m,n} w_k \right)$ is weakly convergent to an element of E.

Proof. (o) \Rightarrow (oo). Let (w_n) be an arbitrary sequence in W. According to the Eberlein-Šmulian theorem ([1], p. 48) the sequence (w_n) contains a subsequence (w_{n_k}) which is weakly convergent to an element x of W. Then a theorem of Mazur ([3], p. 48) implies the existence of finite averages

$$w_m = \sum_{k=1}^{m} t_{m,k} w_{n_k}$$

such that $||w_m|| < m^{-1}$ ($m = 1, 2, \ldots$). Let us set $c_{m,n} = t_{m,k}$ for $n = n_k$ ($k = 1, 2, \ldots, k(m); m = 1, 2, \ldots$) and $c_{m,n} = 0$ in the other case. Then the matrix $(c_{m,n})$ has the desired properties 1)-3).

(oo) \Rightarrow (oo0). This implication is trivial.

non (o) \leftrightarrow non (oo). It follows from [3] that non (o) implies the existence of a basic sequence (x_n) of elements of W and a linear functio-