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dar. Weil die rechtsstehende Reihe absolutkonvergent ist, gibt es dann
in B; eine beschrinkte Teilmenge B mit :

D pslanfa) <+ o0

N=]

(vgl. [4], 8. 135, Cor. 4, oder [7], 1.5.8).
Nun bestimmen wir die rationalen Zahlen a,, 8o, daf

P3(tnfr— Omnfn) <M
gilt. Da es zu jeder auf Ey, stetigen Halbnorm p eine positive Zahl ¢ mit
p(b) < opp(d)  fiir alle bl (B)

gibt, bat man
m 00
pla—n) < D' D(onfa— tunfr)+ D P(anfn)
=1 . N=m-1

< 9["”"_1;}‘ Zoo: pB(anfrln)]-

N=MA-1
Deghalb gilt in H;, wie behauptet, die Beziehung
lima, = a.

Da wir soeben gezeigh haben, daB F; folgenseparabel ist, muB der
nach dem Darstellungssatz zu einem Folgenraum A isomorphe (F)-Raum
E anf Grund von [6], S. 421, (4), reflexiv sein. Nun folgt aber aus Satz
1 und Satz 2, daB die Systeme B,(F) und BV, (H) fundamental sind.
Somit ist B nach Satz 3 nuklear.
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The extended spectrum of completely non-unitary
contractions and the spectral mapping theorem

by
C. FOIAS (Bucharest) and W. MLAK (Krakéw)

Let H* be the algebra of bounded functions, analytic in the open
unit disk A4 = {z: |¢| < 1}. Suppose T is a completely non-unitary con-
traction [5] in the complex Hilbert space 5. There was developed in [6]
the functional calculus for H® and such T. More precisely, it was shown
that there is a unique representation % — % (T) (weH™) of H™ into a certain
operator algebra on #, such that

(1) %(T) = I for uy(2) = 1, u;(T) = T for u,(2) = 2.

(i) |u(T)] < suI; |u(2)| for weH™ (*).

[#l<

(iti) I un(€®) — u(e") boundedly, almost everywhere on <0, 2r),
then wu, (T) — «(T) strongly.

The restriction of the mapping u — u(T) to wued, the algebra of
functions analytic on 4 and continuous on —A, coincides with the functional
caleulus of J. von Neumann for 7 and S-analytic functions with § = 4
(for details see [1]). Let o(¥V) stand for the spectrum of the operator V.
Tt is known (see [1]) that for von Neumann calculus the spectral mapping
theorem holds true, i.e.

(*) o[u(T)] = wle(T)]

Tt is then natural to ask, how the things are going on with olu(T)]
and %[c(T)] in case where ueH™.

The present paper attempts to give a certain golution of this problem.
We always assume, if otherwise not stated explicitely, that T' is comple-
tely non-unitary comtraction.

1. We notice first that u(e") for weH™ is defined only almost every-
where by formula :

for wed.

u(e™) =-']i1inu(re“).

(1) |V| stands for the norm of the linear bounded operator |V| in #.
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Consequently, the symbol «[¢(7)] makes no sense in general. The
reason i3 that the boundary part of o(7), namely o(T)~ 0 (0 stands
for the unit circle of the complex plane) may be non-empty and included
in the set of those #zeC for which limu(re) does not exist. Tt is not

ral—
clear what we should mean by w(z) in this case. One can hope that it
is pessible to prove a certain limit form of (x). This seems to be a rather
delicate question, as shown by the following example,
_Let # = L,(0,1) and let T, be a strongly continuous one parameter
Semi-group of confractions in # defined by

0 if s<tand 0 <t<1,
(Tif)(@) = {fla—t) i @>tand 0 <t<1,
0 if =1,

Let T be the cogenerator of T:. Then T, = u,(T) where

U (2) = exp (t :—%) eH™,

Since % (T) =0 for t =1,

(1.0) oluy(T)] = {0} for ¢=1.

The set L of limit values of exp((#--1)/(z—1)

It was fshown in [2] that ¢(T) = {1}. It follows now that u[o(T)] may
be not in general replaced in (*) by the set of limit values of u at o(T)
However 0eL. In terms of maximal ideals of H*
that there is an element m in the space #(H™)
such that m ()

) at 2 = 1 equals to 4.

this last property means
of maximal ideals of H*®
e = 0for ¢ = 1. Such m belongs to the fiber # 1 correspond-
Ing to z = 1 and one ea,n‘ hope that a certain subset of & 1 should imitate
In some way 'cr(T) = {1} in a reasonable generalization of (*). This point
of view requires a cerbain modification of the idea of the spectrlim of
31 (;zm?traitlllon. 1Wl;afu we have in mind may be better understood by con-
éring the algebra 4 and the related image al ising f ih
von Neumann caleulus. g algebma arising from the
"Let T be now an arbitrar racti i
¥ contraction and let @, be the uniforml
closed operator algebra generated by (eI—T)"' for Jz;fa(T). Obviousl;’

%(T)eslp for ued and the maxima]l ideal
i 8 space of o7y n he identifi
with ¢(T) (see [1]). We have P » may be identified

PaN
(1.1) w(T)(2) = u(z) for 2ea(T), ued (2

(*) By 4 —4 we always ; .
commutative Banach algebri ‘v;'f:]:'nuthe Geelfand representation of a considered

nit.,
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under this identification. On the other hand, it was proved in [1] that

the spectrum of u(T) (ueA), considered as an element of /p, equals
exactly to o[u(T)]. The Gelfand formula

f7(o'(T)) = gpectrum of V as an element of <Zp

together with (1.1) implies o[%(T)] = w[o(T)]. Two facts should be
pointed out. The first is that the maximal ideals space of /5, namely
¢(T) is naturally embbeded in that of algebra 4. The other is that 7p
may be obtained as an algebra generated just by (:I—T)' (2¢0(T)).
To have the first property we essentially needed such rich algebra. o/p
may not be replaced, for instance, by the uniformly closed algebra gene-
rated by polynomials in 7. The reason is that if o(T) separates the complex
plane, then the suitable homeomorphic image of maximal ideals space
of polynomially generated algebra does not. The example below, which
is of its own interest, shows that such situation may realy happen.

Example. It is sufficient to show that for some 7' and some z¢o(T),
(I —T)~! is not a uniform limit of polynomials in 7. Let T be a contrac-
tion of class C, and such that o(T) is the whole unit circle. It was proved
in [7] that such T exists. We will show that 7~! is not a uniform limit
of polynomials in 7.

Suppose, for contrary, that there is a sequence of polynomials p,
such that p,(T) — T~' in the operator norm. Since o(T) = C,

g(T)] = mgqu(z)l

for ged (see Prop. 1.2.1 of [1]). Consequently p,(2) — f(#)c 4, uniformly
on A. Hence f(T) = T"". Put now ¢(2) = f(z)2—1. Then g¢(T) =0.
Since T belongs to ,, the minimal function my of T is a divisor, in H®,
of g. On the other hand, by theorem 7 of [7]
it +z
mate) = bexp (— [ 2 dun), =1,
[1]

and the closed support of the singular measure x is the whole unit eircle.
Tt follows then that for every te{0, 2x) there is a sequence z, — {jan) < 1)
such that mp(2,) — 0. Consequently g(z,) -0 = g(¢%) beeause g is con-
tinnous (ge4). Hence g() is identically zero which implies that 1z = f(2)
for = belonging to the unit circle. But this is in contradiction with the
fact that f belongs to A.

Going back to our previous considerations, we observe that what
we needed in fact for the proof of (+) in case of algebra A, were (1.1) and
the Gelfand representation formula. Both this points admit a natural
generalization in case of algebra H*, in place of A.

Studia Mathematica XXVI z. 3 . 16
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2. Let T' be now a completely non-unitary contraction in the comp-
lex Hilbert space #. We have for disposition operators «(7') with weH®,
By analogy with «#y we define #% as the uniformly closed algebra ge-
nerated by (eI —u(T))™" with weH*® and z¢o[u(Z)]. Notice that

‘z(zI—u(T))“ldz

3
[¢l=e

. 1
Ty =—
u(T) 2nt
with ¢ = [« (T)[+41. This shows that w(T)es#’S for ueH>. Let M(HF)
and «#(H*) be the spaces of maximal ideals of the algebras /% and HF
respectively.
We define & mapping ¢:.4# (%) -+ #(H®) by formula

N\
(2.0) w(DV(m) = dlp(m)), meM(HF), ucH®,
N
u(T) stands for the Gelfand representation of u(T) considered as an ele-
ment of #7. We will show that ¢ is one-to-one. Indeed, suppose ¢(m,)
= @(tmy) (my, mye (#7)) and consider the operators (e — (1))~ and
(eI —u(T)) (2¢o[u(T)]) which both are in #. Then

/‘\ — T
(zI~—u(T))‘1(mi)(zI-u(T)) (my) =1, i=1,2,

for 2¢o[u(T)]. Bus wu(T)(ms) = it(p(my) = s (p(ma)) = 1(T)(mmy). Hemeo

/‘\ /\\
(I—u(D) ™ (m) = (I —w(T) " (my) (240 [u(T)]).

Since w is arbitrary and (eI —w (7))~ generate %, (2.1) implies
that m, = m,, q.e.d.

It is easy .1:0 see that ¢ is continuous. Consequently, ¢ establishes
& homeomorphic correspondence between . (£7) and a certain closed
m_lbset of #(H*). We denote this set by 0yy L.e. 0y = @[ M (#F)] by defi-
nition.

We will prove that

(2.1)

(2.2) o[u(T)] = (o) for every uweH™.

Let 6[u (T)] stand for the spectrum of i
of 5 T D of u(T) considered as an element

(2.8) o[u(T)] < o[u(T)].

On the other hand, if 2 yo[%(T)], then ( ~1_poo 3aine o
- ; y 2l —u(T)) ™" 7 which implies
2¢0o[u(T)]. Using (2.3) we get therefore that ) !

(2.4) o[u(T)] = G[u(T)].
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By Gelfand formula

(2.5) Su(1)] = u (D) A #D)].
It follows from the definition (2.0) of p and from (2.4) that ofu(T)]
= u(T)[# (#%)] = (o) which proves (2.2). '

We put
or(u) = {m: me# (H”), u(m)eo[u(T)]}

for ueH®. Equality (2.2) implies
(2.6) #lop(w)] = olu(T)] = @(o)

for every weH®. Consequently, the intersection (0 op(u) is non-empty.
UeH®
We call this intersection the extended spectrum of T and denote it by
Goxi(T). Hence, by definition
oext(T) = () op(w).

ueH>®

I = op(uw) and

Our basic theorem is the following one:

TEHEOREM. Suppose that T is a completely mon-unitary contraction in
a complex Hilbert space. Then:

(a) For every weH™ the equality (0w (T)) = o[u(T)] holds true.

(b) If y is a closed subset of M (H®) such that u(y) = o[u(T)] for
every ueH™, then y < Ooxi(T).

Proof. It follows from (2.6) that o, = e (T). Hence, using again
(2.6), we obtain i (oy) @ #(0ex(T)) < B {or(w)) = olu(T)] = @ (0y) for u e H™.
This proves (a).

Suppose now that mes#(H*) and %(m) e o[u(T)] for every ueH™.
Then

me m O'T(”’) = Uext(T)
ueH>®
which proves (b).

The assertion (a) of the theorem is just the analogy of the spectral
mapping theorem. We could use overthere only o, in place of the extended
spectrum. However, (b) shows that the extended spectrum is a maximal
subset of .#(H™) among all closed sets y for which o{u(T)] = %(y) for
each ueH™.

3. Several comments are now in order. We first remind some pro-
perties of 4 (H™). For references see [3].

Let w,(s) =2 and me#(H*). Define the map =:.(H*) >4 by
formula

(3.0) w(m) = m(wu).


GUEST


244 C. Foiag and W. Mlak

Then B

(3.1) | (H?)) = 4

and m restricted to #7'(4) is a homeomorphism. Let D = a~'(4).
The fiber #, of aeC (ja| = 1) is defined by

F, = {m: me# (H®), n(m) = a}.

It is known that if  is- continuously extendable to o and u(a) is
the corresponding limit value of u, then %#(m) = w(a) for all meZF,.
CorOLLARY 3.0. We always have

(8.2) % (0ot (T)) = o (T).

Indeed, 7(oex(T)) = {#: 2 = Uy (m) Where meaes(T)} and i, (ooxt(T))
= o(T) by definition of u,(2) =# and (a). If ¢(7T) reduces to a single
point set {a} and |a| = 1, then, by (3.2), oexi(T) = F,.

Let us remark also that since ™ (4) = D, (3.2) implies
(3.3) Oext{T) n D = a7 (o(T) A A).

It was proved by M. Schreiber in [4] that for 7' which unitary dila-
tion has an absolutely spectrum
(3.4) w(o(T) ~ A) < o[u(T)] for weH™.

For cnu. T we can prove this as follows. Let zeco(T) ~ 4. Then
there is a unique me.# (H*) such that u () = i (m) for we H®. For u,(2) =2
we geb then 2z = z(m) which implies #~'(2) = m because s is one-to-one
on p It {ollows then from (3.3) that meoy,(T) and consequently w(z)
= (m)e oo (T)) = o[u(T)], q.e.d.

Since % (oo (T)) < @(# (H®)) = u(4), we may complete (3.4) by the
inclusion o[u(T)] = u(4). Finally we obtain the following

COROLLARY 3.1 For every completely non-unitary contraction T

w(o(T) ~ 4) < o(u(T)) < u(d).

COROLLARY 3.2. Suppose mow that the set of boundary points of 4

to w?mlch the given ueH> is continuously extendable includes the set o(T) ~ €
(C s the unmit circle). Then

(3.5) olu(D)] = ule(D)],

that is, the classical spectral mapping theorem holds true.
In the proof we argue as follows:

Goxi(T) = (Uexb(T) al D) “ !a[U:l'g:a ~ ext(T)

=7o(0) ~ 4) o U (F (D).

laj=1
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Batended spectrum of completely mon-unitary coniractions 245

8ince 7 (oex(T)) = o(T), the intersection &, ~ ox(T) is non-empty
iff aeo(T). But in this case %(#,) = {u(a)} becanse u is continuously
extendable to o(T) ~ C. Hence

olu(T)] = ’I:c[n_l(o'(_’l') ~ A)] um(%’)) c{’u,(a)}

=ulo(T)~ 41w U {u(a)} = u[o(D)],
aeo(T)nC

which proves (3.5).

References

[1] C. Foiasg, Unele aplicatii ale mullimilor spectrale I, Studii si Cerc. Mat.
X. 2. (1959), p. 365-401.

[2] — O Hexomopux noayepynnaxr cocamuil, CEASAHHBIL € NpeICMABACHUEM
ronsoaoyuonnux aseebp. I, Rev. Math. Pures Appl. 7(2) (1962), p. 319-325.

[3] K. Hoffman, Banach spaces of analylic functions, Englewood Cliffs, N. Y.
1962.

[4] M. Schreiber, Absolulely continuous operators, Duke Math. J. 29. 2(1962),
p. 175-190

[6] B. Sz.-Nagy et C. Foias, Sur les contractions de Vespace de Hilbert, IV,
Acta Sei. Math. 21 (1960), p. 251-259.

[61 — Sur les contractions de Vespace de Hilbert VI, Calcul fonctionnel, ib.
23, 1-2 (1962), p. 130-167.

[71 — Sur les contractions de Vespace de Hilbert VII, Trangulations canoniques.
Fonction minimum, ib. 25. 1-2 (1964), p. 12-37.

INSTITUTE OF MATHEMATICS, ACADEMY OF ROUMANIA
INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SBCIENCES

Regu par la Rédaction le 27. 5. 1965


GUEST




