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On some classes of modular spaces
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1. In this section we define some terms and introduce some nota-
tion we shall be using. By @-function we mean a continuous, non-de-
creasing function p(u), defined for > 0, vanishing only at » = 0, and
tending to oo with % — oo. g-functions will be denoted by ¢, ¥, ... and
their inverse functions by ¢_;, ¥_1, ...

A g-function ¢ will be called s-conver, 0 < s <1, if

plautpv) < o’p(u)+ B p(v)

for a,8 >0, °+§° =1 and arbitrary #,v > 0. A l-convex g-function
will be called briefly conver, as customary. It is readily seen that s-convex
p-functions are strictly inmereasing in (0, o0). A g-function ¢ is said to
satisfy the condition (0,) if ¢(u)/u — 0 as u — 0; it satisfies the condition
(00y) if @ (%) /u — oo as u — oco. For a p-function ¢ which satisties conditions
(0;) and (oo;) a complementary function can be defined by the formula

9" (v) = sup (wo—p (w).

The complementary function is always a convex g-function, and it
satisfies conditions (o0;), (ooy).

The function @(u) = (¢*)*(u) is the greatest convex q-function
satisfying (0,), (o0;), and for which g(u) > g(u) for any u > 0.

The letter T will always stand for an abstract set on which real-
valued functions #,¥,#,... are defined. For a set ¢ of elements of T,
1. denotes its characteristic function y,(f) = 0 for teT, if ¢ is an empty
set. We use very often the notation a, instead of ayr, and we occasionally
write 1 instead of yp. A simple function is a function of the form
@y X, (8)+ @ Lo, (8) -+ . .+ On 2, (P). For any p-function ¢ the symbol ¢ (lz|)
denotes the function ¢(|z(i)|) defined on T, supw denotes supw(t), where
the supremum is taken over all teT'; the symbols -y, oy ete. have the
usual meaning. By ., — % 48 % — co0 OF &, = & a8 © — co We always
denote that ,(f) converges pointwige or uniformly in T respectively,
to z(t) a8 » — co. The symbol 2 < y denotes that x(t) < y(t) for any teT,


GUEST


166 W. Orlicz
@ vy oraay stand for the function sup (#(f), y(t)) or nf(z(z) y(2)
respectively. 7 ’

1.1. Throughout this paper X will always denote a collection of
real-valued functions defined and bounded on T and satisfying the follow-
ing conditions:

1° The class of sets ¢ = 7, for which y,eX, is & Boolean algebra of
sets.

2° X is a real linear space.

3° For any & > 0 there exists a simple function a

o,

+ GuYe,, Such that g, X, and ey Oty o

lm—(“1%01+“2Xez+---+“n)(c")l <e.
4° If wpeX, @, =2 a8 n — oo, then zeX.

) By E we shall always denote the Boolean algebra of sets defined
in 1° By a partition of T we mean a finite clags of non-empty sets
01502y ...,6, Such that (Je;, =T, eeB, ¢~ e, =0 for ¢ #F, 4, =
1,2,...,n In the sequel when speaking of simple functions W:a ta:eitly
assume that y, X for i =1,2,...,n.

1.2, Any simple function # can be represented in the ecanonical form
(+) B = Gy e+ B e, +o o F One,,

zvhere (el, b2y ooy €n) 18 o partition of 7. This representation is unique
oT & %Wen partition of T; |#| = CAPAE QAP S Ze,,» and more
gﬁer? (e) = ¢1(a:)| o, +(lasl) y,+- ..+ ¢(lan]) ., For any simple

ct}ons %,y in X there exist canonical representation of x and y corres-
ponding to a common partition of T. If (+) and

y= blxel+bzxez+-- "‘l‘ana,,,

are such representations for » and y, respectively, then s vy or way
can be represented in the form ¢, Xey T Oadey,t. ..+ Cnye,, Where ¢; =
sup(ag, b;) or ¢; = inf(ay, b;), regpectively. "

1.3, (a) If 2,y X, then ay e X; (b) if weX, then for any p-function @,
(P(la}'l)sX H (c) X is a vector lattice, assuming the natural relation of order
in X; the join of elements x,y in X is » v y; and x Ay 18 their meet.

Ad (a). Because of the equalit = ? %) /4 it i i

. ¥ wy = ((@+y) —(z—y)) /4 it is suth-
c}ent to prove that 2’«X. But this is evidently true for an;z simple func-
tion, 8o also for any » in X, by 3° and 4°.

(;Adl (b). Let ¥ be a continnous function for w >0 and, for a given
€>0, let be IV(ul)"‘V(’W.z)l <e i Ju—uy| <6, [, 4y < uy, where
:Eg 2] <ﬁ/2. It y| Is a simple function such that |z—y| < inf(8, ue/2),

0 8upy| < ag, |y(l2))—y(ly))| < & v(lyl) is a simple functio i
0 n d
view of 3°, 4° the assertion (b) foll(;ws. ’ e
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Ad (c). Elements @ Ay, # vy belong to X with »,, for X is a linear
space, and [¢|eX if zeX.
1.4. For any ¢ > 0, weX, © > 0 there exists a simple fundtion y such

Cthat 0 <y <@, Byl <e

In fact, if for a simple function z we have lw—z2| <e /2, then
y=(¢—ef2)v0 is a simple function for which 0 <y <= le—v]
= |@z—s+ef2) At| S@z—24e[2 <e

1.4.1. A function = it said to be measurable with respect to I if for
any real number a both sets {f: x(t) > a}, {&: (1) < a} belong to H.

(a) If @ is bounded in T and measurable with respect to E, then veX.

(b) Any simple function in X is measurable with respect io B

(¢) If B is a o-algebra, then each function in X is measurable with
respect to H.

Let us prove (c), for example. It is enough to show that e = {t:
x(f) < a}eB. For m =1,2,... there exists a simple function y, for
which |z—y,| < 1/n. The sets e, = {t: ¥u(t) < a—1[n} are measurable
with respect to B, and 80 is ¢ = (J én.

n=1

15. A class of functions X, subject to the following conditions,
satisfies conditions 1°-4° in 1.3:

1° 1eX; 2° if weX, then 2*eX; 3° if @, =@, @neX, |z <1 for
n =1, 2, ..., then weX; 4° X is a real linear space. )

Under these assumptions B is a c-algebra and X a o-complete linear
lattice.

By 2° and 4° it folléws that @y e X if 4, y «X. This and 4° implies that
any finite union and intersection of sets e; belonging to E is algo-in E.
Because of 1° T < E, and by 3° B is c-complete, i.e. 6, c €, = ..., ¢peB
implies lime, <. Given a function y(u) continuous in (—oo, o). For

7500

any %, > 0 we can find a polynomial w;(u) such that ly{w)—wr(u)| < 1[k
it |u| < o, for k=1,2,... we have wy(w)eX, hence wy(w)= (),
whence y(z)eX, and in particular |#|eX. This proves that X is a linear
lattice, assuming the natural relation of order in X. Let us prove now
the property 1.1, 3°. In view of 1.4.1(a) we have only to show that each
xeX is measurable with respect to B. As readily seen it is enough to
prove the measurability of the set e = {i: x(f) < 1}, where x> 0. But
(@Al)"eX forn=1,2,..., l—(zAl)® -y, as n — oo and so, by 1°, 3°,
the function y, belongs to X.

2. Let X be defined as in section 1.1 and suppose that.a real-valued
functional #(-) is defined on X, which fulfils the following conditions:

1) m(1) = 1. s

- (2) m(la]) = m(a).
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(8) m(z) <m(y) for 0 <w<y.

(4) mz+y) <m(2)+m(y).

(8) m(Aw) = |A|m(x) for any real A.

Conditions (2)-(b) are nothing but usual axioms defining a monotone
pseudonorm in function spaces. In view of purposes which we have in
mind it seems more appropriate here to call 7 (-) a subadditive (or an
upper) mean value in the space X, or shortly a mean value. In section 8
some examples of mean values, which may be of some interest from the
viewpoint of applications, are given. Let us remark that spaces X pro-
vided with the pseudonorm () are closely connected with so called
Banach (normed) function spaces. During the last ten years many authors
have contributed to the general theory of normed function spaces. Parti-
cularly Luxemburg and Zaanen give a systematic presertation of the
theory in question in a series of papers, which they started to publish
3 years ago [3] (cf. also [2]). In their papers the basic space X is the space
of functions measurable with respect to a o-additive and o-finite (totally
finite} measure u, while our space X fulfils more general conditions.
Besides, we are only concerned in this paper with some special questions
connected with the theory of spaces L** (spaces of g-integrable func-
tions) [1], [6]. In the theory of space L** (called also Orlice $paces) one
defiies a modular by means of an integral. Instead of an integral the
notion of mean value to define modulars is uged systematically in thig
paper. We restrict ourselves to the class of bounded functions. But this
restriction is not always necessary, and we intend to return, in the second
part of the paper, to some questions concerning the generalized spaces
of g-infegrable functions, without this restriction.

The following lemmata will be used often:

2.1 (@)~ (Y)| < M(w—y).

244, If @, =2 as n — oo, then m(2,) — W (x).

2.2. Let us introduce the notation m(e) for i(y,), where ecB. If e
is an empty set, then 7i(e) = 0. The set function () i3 a finitely sub-
additive and monotone measure on E, i e.

m(Ll)ei) < m(e)+...+7(ey),

where e;ell, m(e,) < MW(e,), if 1y e¢ll, ¢ = ¢;. However, 7(-) need not

be countably subadditive in general. In'the example 8, IT, 1«), m(e) is

the upper relative Lebesgue measure on the half-line # > 0; in this case

there exist disjoint sets e; for which 7 — Ueés, Mi(e;) =0fori=1,2,..
1

but @ (T) = 1. We shall call 7 (e) the m-measure of the set . In general,
the range of the set function m(-) is contained in (0,1 but need not be
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i ical with it. If the set of values i(e), e<E, is dense in <0, 1) the
ﬁz];}zlr? of sets B is said to fulfil the property (2) (with respect todi.',he
given 7 (-)). In the example 8,I(a) 2), (b) 2), I1, loc)_, 2), the OOI‘I'AeSf(lliL .m'gs'
algebra B fulfil the property (92), exactly speaking, the range o g( ) 1(1
<0, 1>. The posgibility that under suoh' generall.assumpmons on ta?m
#i(+) ag in this paper, the values 7 (e) lie dense in <0,1, but douno :
up <0,1) is not a priori excluded, although we cannot actually give
an example for such a situation.

23, If A>1, A>0, a, = {t: |o(t)] > A} (a = {t: lv(t)] > A}), there
exists an T-measurable set e; such that a, = €

(*) LA (es) < ATi(x)-

Leb 0 < 7 < 4; by 1.4 there exists a non-negative simple function y
such that ||#|—y| < #. In virtue of 1.4.1(b) the set e, = {I: g{(t) >_/1—77}‘
is measurable with respect to B and a, < ¢;, for |z| < g—k 7. Since lm(w);f
—7i(y)] <7, the inequality (A—n)m(e) <m(Y) < 'M(wH-'n. holdj-_ i
7 () > 0, we assume » sufficiently small to fulfil tllle mequahm? AV Ag)
< A—n, T(@)+n < VA,m(z); we obtain z(}/i;)- 7(e;) <1/z_?m1(ﬂag, ani
(+) follows. If m(z) = 0, the inequality (¥) is also ‘mie, for in <s E&zs)
m(e;) = 0. In fact, we can assume y < ||, whence 7(e;)(A—1n) < WY
< mx) =0, M(e) = 0. ‘ 3

234, Let |z, <2forn=1,2, ( I(fl, fr)?)‘ a qa-fqmotwn ¥, Wy (@)~ 0

ny o-function Mo (|,])) = 0 as n — co.
© nlito;’;” ie?tf Z(linfi)f” ; (A} Inqx)riew of 2.3 there exist sets e} e®

such that a® c e, w(A)M(e}) < 27(p(|ea])). We choose 4 >0 in suo;bh
a manner that the inequality w(u) < (1) implies @(u) <e. If teT—fa,l,
then y(|@a(t)]) < (4) and consequently ¢(|#4(2)) < e We have the in-
equalities .

7 (@ (laal)) = m(‘}'([“’n])le?’{'q)(lwn!)(l“ xgp)) < supg(lal)m(e1)+e

< 2supe(|a))p(A) " Ty (j2a))) + 25

and the relation 7(p(lz,l)) =0 as n— co follows. .
2.3.2. If, for a o-function vy, 7 (p(|z|)) = 0, then for any g-function
m(p(l@])) = 0.
This is a trivial consequence of 2.3.1.

2.4. A necessary and sufficient condition for m(x) = 0 is that for any
A >0 there ewists a set e, with W-measure 0, such that a, c €, where
a; = {8 |z (t)| > A} .
The necessity follows from 2.3, immediately. To prove the suffi-
ciency we use the inequality
() < (@) +7 (T (1— o)) < sup o] 7 () + Am (1).
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2.5. By 2.4 it is seen that if, for a function =, #(z) = 0, then the
sebe = {t: [#(f)| # 0}is in the union of countably many sets of m-meagsure 0.
Let us remark that the converse assertion is not true in general.

The clags of all m-measurable sets with the #-measure 0 will be
denoted by B,. Evidently By is a ring, but not a o-ring, even when B
is a o-algebra. Let us still observe, that if B is a o-algebra, then in 2.5
Wwe can assume @, = ¢;. Under this hypothesis the necessary and suffi-
cient condition for m(w) = 0 is a;eX, for any positive A

2.6. For a p-function ¢ and weX, m(p(Ale])) - 0 as 2 -» 0+, holds.

2.6.1. (a) For any @-function, m(rp(Mw[)) is a continuous non-decreas-
ing function for A = 0.

The inequality 7 (p(4 o)) < M(p(Jglzl)) for 0 <A <4 follows
immediately from ¢(4; |2]) < ¢(A;|2]). Given an & > 0 we choose a § >0
such that |2— Jolsuplo| < & implies |p(A]w])— (4 |2])] < e, hence

|72 ( (4 121)) =75 ( (o [2]))| < (o (2 o) — (4 |2])) < e,

and the continuity of #(p(ilz|)) follows,

2.6.2. If a p-function ¢ is s-comvew, then m(p(Alw|)) ds strictly increas-
ing for A = 0.

The same statement is true for any p-function for which inf @ (Au) [ (u)
>1 for any A > 1. b

2.6.3. For any g-function  (p(ix)) — oo as A -» co, if (@) > 0.

There exists a simple function y > 0 such that Yy <|z), lo—y] <e.
We can assume % (y) > 0, for (7 (2)— 7 (y)| << & The sets e, = {Z: y(£) > A}

are m-measurable and, by 2.4, m(e;,) > 0 for a 4 > 0. Because of the
inequality
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2.2.1. The functional sup® || 4 o subadditive mean value on’ X. For
any m, YeX the imequality
(%) m(wy) < sup*|a|m(y)

holds. ] )
‘We ghall prove the condition 2 (4), for example. Since

~

(o] v Ay —Ag) + (9] v Ay— Ag) = o491V (Aa+2o)— (At ),y

we have m((m+y)v(/11+12)—~(ll+lz)) =0 when sup:]w[ < llzk sup* |y|
< 2y, hence sup*|o4yl <A+2s sup* |z +y| < sup*la|-+sup*lyl. To
prove (*) it suffices to remark that

ol lyl < (l=llylvA—AlyD+ ALyl

for A > sup*|zl,

m(wy) < m(|al [y|v A—2Aly))+ A7 (y) = Am(y)
and consequently 7i(zy) < sup” [#|7 (¥).
2.2.2. Let y be o simple funciion whose canonical form 4s
(*) Y = e+ az%ez+---+anxe"+ bl%cl+b2x?z+---+bsx53’
WhEre (Esy €gy -+ bny Bry Bag ooy 8s) U5 & partition,* m(e) >0 for i =1,
%)y my W(E) =0 for j=1,2,...,¢ Then sup'y = sgpai.
Since
YVi—A = (alvlml)xsl+...+(anvl— A) Kep,
-!—(blv}.—l)x;l-l—...—i—(bsvl—l) Xogr

we get m((a;vA—A)xg.) = (a;vi—A)Ti(e) =0, if m(yvi—A) =0, and

M(p(Al@l)) > 7 (p(ky)) = (A A5y)) = 7 (61,) 9 (Ado) consequently a;vi =4, a; < 4, sup a; < sup*y. Conversely, if A > supay,

_ . m(yvi— =0, sup*

e obtatn T{p (1) - oo 25 7 oo ile;lpzvl—}. =0 for i=1,2,...,m, hence m(yvi—2) ) Sup'y
*2.’?: The essontial supremum of a funetion @, which will.be written '
sup'a, is by definition the infimum of numbers A for which m(ovi—2)
= 0. This definition is equivalent to the following ome:

The essential supremum of # is the infirum of A’s with the property
that a; = {t: w(f) > A} can be covered by an ¢;<H,.

Indeed, if o, < ¢, ¢,eH,, then, in virtue of v i—1 = (22— 2) 2ay5
we have m(zv A—1) = 0. If m(zv A—A) = 0, then, by 2.4, there exists
a set e,¢H, which covers the set {t:avi—2>el = {t:2(t) > A+eh

Evidently sup*|o| = 0 implies 7 () =0 and conversely; sup*[a|
< sup lal.

2.2.3. Let 0 < 4 < sup*|z|. There exisis a set e with positive M-measure
such that e < {i: |2(t)] > A}.

Choose a simple function y such that 0 <y < |2|, [lm|—~y1 < &. Since,
by 2.7.1,

|sup* @ —sup® lyl| < sup*lo—yl <,

it can be assumed sup*|y] > A Representing |y| in the canonical form
2.7.2 (x) we have, for a certain k, a; > 1, and since a;,b; >0, for
tee = ¢, the inequality |z (t)] > a; > A holds, moreover m(e) > 0.
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2.74. For amy g-function sup*e(lz|) = o(sup™|z|).
. Assume first & to be a non-negative simple function y, represented
in the canonical form 2.7.2 (). Then, a;, b; > 0, sup*y = supa;, and
[3

PY) = 9(01) oy +9(00) ey o 9 0) ey 0 (0) 2540 (B)
+o(bs) 1,
consequently

'

sup*p(y) = supp(a;) = @ (supa;) = ¢ (sup*y).

We verify the f.orlm.ﬂa sup*p(j#|) = p(sup*|»|) for an arbitrary

function #<X, approximating |#| uniformly by simple functions.
B 2.8. Th*e mean value () is said extreme mean value, whenever
m(z) = sup” || for any o in X.
Hach of the following conditions is necessar ficient
y and sufficient for
value to be an extreme mean value: d Jor & mean

A. For any ee<H is either m(e) = 1 or m(e) = 0.

B. m(z?) = (m(@)? for any weX.

A:l A. The condition is sufficient. Let 0 < sup*lz| and 0 < 2
< sup®|z[. By 2.7.3 there exists a set e with positive #-measure such
tha.’i [#lze > 2 for tee. By A we have mi(e) = 1, whence 1 < m(x), and
su <m M
ian[.w[ <7(z). On the other hand, we have m(2) < sup*(#| for every

Ad B. The necessity follows by 2.7.4. The suffici is trivial si

7.4, iciency ig trivial
for any eel, 7(e) = m(y)) = i(e)™ v e

3. En thls section as well as in the following sections the notation
w_= y[m] will bﬁ used for a pair of elements %, y ¢ X, whenever m(e—1y)
=0. If mmz y[m], then the functions x,y are called m-equal. Clearly,
ey =7552£m], for 6, 6ch, it and only if (61— €) v (6,—ey)) = 0;
-m(m) = m'(y) if @ =y[m]. It is eagily seen that the relation - = -[m]
Is an equivalence relation. We introduce still the notation X, = {zeX:
m(x) = 0}; of course X, is a linear subspace of X.

34. (a) If o, = my[m], ¥, = Y:[m], then for amy reals a, B,
a4 By = awy -+ By, [M];
(0) 4f & = a,[7), then for any g-function ¢ (o) = p(lea) [7];
(e) if @y = m[m], y, = Yo[M], then wyy; = myy,[m].
B iaﬁd_(b).FE:rom the. inequality [l2,] — ]| < |y —,| it follows |z
= |m}[m]. For an arbitrarily prescribed number & >0 let us choose

0>0 such that |[w(t)|— |o Gl impli
; 1a 3 < & implies |p(|z, (8)]) — (|2 (0)])] < e
Since @, = ,[m], there exists a set in E, Which(eéver)s tqlit(el ;ét),)' :

o= {t: [lay (t)| — | (9)]] > o}
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Therefore

mlp(e)—o(m) <@ =& and  g(m)) = @{|o.]) (7]

follows.
Ad (c). Tt suffices to apply the inequality

(%191 — TaYfs) < SUP 19’11m(yl—?/z)‘l’suplﬁ‘/zlm(ml—‘ma) = 0.

3.2, If @, = @[M], Y1 =Y:[M], then VY1 =2V Ye [@], @AYy
= &%, A Y2 [T].

324, If w, = a,[7], then sup*a, = sup*a,.

In virtue of 8.1 and 3.2 we have 4 VA—A=mV A—2A{m],
Wy v A— ) = W(w, v A—1) and we apply now the definition of the
essential supremum.

33. In order to provide the quotient space X/X, with a vector
lattice structure we will now introduce an order relation in an appro-
priate way. We will say that an element @ is less or equal to y in the
sense 7, and denote this by # < y[m], whenever 7z VvV y—y) = 0, or,
equivalently, vy = y[m]. It follows from this definition that ||
< |y|[m] implies m(|z]) < m(ly))- If = <gy[m], then there exists a func-
tion m-equal to ¥ (to ) and >» (< y). In fact, since ¢ Vy—y = &—L AY,
the equality # = @ A y[%] holds, hence 2, =x Ay <Y, 2 LeVY =2,
Conversely, if 2, = #[m], 2, = Y[M], &1 < 22y then 2 < y[m].

3.3.1. (a) If o, < @[] and @, < 3, [™M], then @, = ®,[™], and con-
versely.

(b) If o, = x5[M], ¥1 = Y=[MW], o1 <Y:1[7], then my < Ya[M].

(¢) If & <y[m], 2> 0, then Ao < y[m].

(@) If « <y[m), then otz <y-+z[m] for any zeX.

(e) If @ < 2[m], y <z[m], then & v y < z[M]; if 2 <w[m], z <y[m],
then z <o Ay[m].

&) If |ool < |wal [, then o(|@]) < @(|wa))[] for any o-funciion o.

For example, we shall prove (b). We have @,V ¥y, = y,[m], and,
by 8.2, @,V y; = @, V Y,[7], therefore y, = #, VY 2], ®s < Ya[1.

4. In the sequel the letter % always stands for the quotient space
X|X,. It follows from the lemmata given in section 3, that defining the
addition of classes of m-equal functions and their multiplication by real
sealars, in a natural way, & becomes a real linear space. It follows also
from 3.3.1 that the relation ,, < -[m]’ makes & to a linear structure.
Supremum with respect to the ordering of classes represented by the

elements @ or y respectively, is the class represented by « v y, and ana-
logously @ A y represents the infimum of these classes.

From now on we will freely use the letters x, y, 2, ... either as sym-
bols of individual functions or as symbols of classes of 7-equal elements,
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to which they belong, i. e. as symbols of elements of 4. In a similar way
the symbols » < y[ml, » = y[m], sup*|al, (|2]), zy, p(|a]) ete. will be
used, and that is motivated by corresponding invariant properties with
respect to m-equality, as given in 3. What concerns symbols <y,
@ — @, B, = @ ete. we attach the same meaning to them as before, i. .
they will be applied only to funections as elements of X.

4.1, For any q-function g, m(rp(lmD) is & modular z'n: Z in the sense
of [81], [12], 4. e. this functional possesses the following properties:

A. mp(|2])) = 0 if and only if @ = 0[m].

B. m(g(jeu)) < p(@a))) o 0] < |2 (7).

C. Tp(lwal v o)) < (@) +7 (3 (|aal))-

D. m(p(Alw])) >0 as A - 0.

Property A follows by 2.3.2, to prove C let us remark that
9(lo:] v [@a]) < p(12a]) +¢(l@el) for any @;,w,eX. The property D is &
consequence of 2.6.

Suppose now ¢ to be an s-convex function, then the inequality '

g(alm|+Blel) < op(jen])+ Fp(iws]) for o, 20,0+ =1
holds, which implies
Cs. M (p(almy]+plmsl)) < &7 (|1])) + 87 (@ (Joa]))
for a, =0, o4 =1.
In particular, if ¢ is convex, the modular 7 (p(|x|) is a convex fune-
tional on Z.

4.2. It follows from the general theory of modular spaces [7], [8]
that in & an F-norm can be defined, by the formula

lelly = inf{e > 0: 7 (p (o] fe)) < e}.

For an s-convex g-function two others norms — both s-homoge-
neous — can be defined, as follows [5], [10]:

llzlly = int {& > 0: 7 (p(Ja| [s*7) < 1},
ol = inf (4" + 277 (g (1))

It ¢ is convex, i.e. 8 =1, the norms |2, ||-|% are homogeneous.
For these homogeneous norms the symbols Il ox |||} respectively will
be used, instead of ||.[; or ||| respectively. Let us notice that all norms
mentioned above are monotonie, and for an s-convex p-function, they
are equivalent (in %) each to the other. An immediate consequence of
the definition of ||-||, is, that the relation lwlly = 0 as n — oo, and the
relation m(p(4|z,))) 0 a8 n — oo, for any i > 0, are equivalent.

4.3. The norm |Axll, is continuous with respect to Ay and if x|, > 0,
it tends to oo with A.
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We have ||Mmll¢~[ilomf|,,| < |(A— )], as A —A,. The second part
of the statement follows by 2.6.3.

44, For any x + O0[m] in & there holds the equation T (p|z| /llaql[q,)
= |lw]l,, and the equation W (p(lw|/(lxls)")) =1 (under the assumption
that @ is s-convex). The number ¢ = |af, or & = ([=l})"® respectively, is
the unique solution, of the first equation or the second one, respectively.

The first part of the statement is a consequence of 2.6.1 and 2.6.3.
It m(p(lwle™) = ¢, T(p(lale?) = & and 0 < & < &, then 7 (p(lz]e™)
> 7(p(j@|e; ")) — a contradiction. As concerns the norm [zff, it suffices:
to apply 2.6.2.

4.5. Assume |v,| < |2|[W] for n = 1,2, ... Then the relation m(qo([mnn)
— 0 as n — oo, and the relation |wyll, =0 as n — oo are equivalent. In
particular, the relation #i(e,) >0 as n—oo and |z, [, =0 as »— oo,
one implies the other. ) .

By 2.3.1 % (p(4|z,])} — 0 as n — oo, for every 1 >0, and 5o [lw4ll, 0
as n — oo, follows. The converse implication is trivial, for m(p(|a.l))
< ”"l"nnw when ”mnn<p <1

4.6. (a) If m(e) >0, then the equalities m(e) = e[p(e™")I'A and
xell, = €A, are equivalent.

(b) If m(e)>0, then |gols = [p-1(m(e) Y)|"% in particular, for

a conven p-function we have |lglls = [o_. (M (e) )]

In conclusion of this seetion we will give the formulae for norms under
consideration in the classical case ¢(u) = u* or u°[a, a > 0. Straightfor-
ward computation shows that if p(u) = u®, we get

(8) E0<a<l, a=s, |l =m(lz),

(b) if 1 < aq [lafy = m(jel)™",

(0 f0<a<l, a=s |lly =@,

(@) if 1 <a [lollp = m(lal*)";
when @(%) = 1/a-u®, where ¢ > 1, 1/a+1/a’ = 1, the following formulae
hold:
(a) llzlle = o= m(ja|*)",
(b) llellp = & 7 (ja| )",

1

There also holds the formula |z, = @ (|2|*)0+2 for ¢(u) = 4" and
any a > 0.

5. Suppose ¥ fulfils the property (2). If for any z,e%, the relation
|l — 0 as % — oo, implies the relation |z,ll, — 0 as n — oo, then

(%)  y{(u) < ap(ku) for % > u,, where a, & are positive constants.
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We choose an ¢ > 0 such that the inequality [, < e implieg I]wllw
< 1. Let m(e) > 0. By 4.3 there exists u for which [juy.|, = &; whence
(+) p(ufe)m

But [[uyell, = ®(6)p(u(ugel,)) <1, therefore (e)w(u)
by (+) we get

(e) = ¢.

<1 and
(++) ey (u) < p(ufe).
Sinee the set of the values 7 (e) is dense in (0, 1), the set of those u
which satisfy (+) is dense in <u,, co), where u, satisfies the condition
@(Uyfe) = &, consequently (++) is satisfied for any w > u,.

5.1. If the inequality 5 (%) is satisfied, then for any @,eZ the velation
[[@Zall, = 0 as % — oo, implies the relation |[z,), 0 as n — oco.

It is enough to show that if m(zp(llmn[)) -0 as n - oo, for any
A >0, then 7 (y(|@4))) -0 as n - oo.

Let 2 > 1. For any ¢ in T for which 4|, (?)
of 5 (), the inequality ,

p(lea?)]) < p(212a (1)) < ag(kh|2,(2)]),

if o (t)] < wa™Y, then y(|z,(t)]) < w(upA™"). Consequently

| = u, we have, in virtue

v(lanl) < ap(kalal)+p(u 2™,
Ty |@nl) < oM (p (A |2a]) + v (u47"),
and from this,
litn sup T (p(|znl)) < p(ud™),

ﬁ(w(]wn|))—>0 a§ N —> oo,

5.2. Let @, be a strictly increasing g-function for n = 1,2,... The

following conditions are equivalent:

(a) lim n sup en(u) <1 for 0 <

(b) M (@p)_

For example, we shall prove (a) = (b). Let 0 < u' <1 < u”, v > 1.
Sinee g, (u') < v < go(u”) for sufficiently large n, we get u' << (pn)_1(2)
< %", whence

<u<l, hmqan( ) = oo for u>1;

() =1 for u>1.

< h'm inf(qon)_l(v)) < lim sup (gn)_1 (v) < w".

5.21. If @, are s-convem g-functions, then condition 5. 2 (a) ‘mplies

m(pn)_1 (1) = 1.

Let be 0 <u<l, u<@<1, then g, (u)=g,@Wu") < (Wi ")’
L u(@), hmsup () <1 M0 < <1<u' then g, (v) <1 < g, ()

for sufticiently large n, hence < (pa)-1(1) < ", lim(gn)_s(1) = 1.
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5.3. Let ¢, be p-functions such that:

(®)  ga(w) >0 a8 1> oo, for 0 <u <1, go(u) 00 a8 m—> oo, for

uw>1.
For each A > 0 and e<E, with positive Ti-~measure, there exists the limit

(%) Aelle, 4 a8 m—oo.

Conversely, if for some e with positive m-measure the limit ( **) ewists,
then (*) holds.

Define ¢, in such a manner that le, = [[Ax.ll,, or equivalently 7 (e)
= en[gn'(e]")]7"A Let & > 1. Then for # > n, the inequality & [pa(s5 )]~
> mi(e) holds, and since s{p,(s7)1"! is strictly increasing with &, it must
be &, < &, whence

limsupe, <1
fn—o0

Similarly, it can be shown that
liminfe, >1
N—>00
so that
lime, = 1.
o0

In order to prove the second part of the theorem lef us assume g,1
= [|A%ellg,, — 4 a8 n — oo, where m(¢) > 0, for any 1 > 0. Let ' <1 < u".
Since &, —~>1 as n — oo, we get u' < e, <’ for n > n,, hence

u' [‘Pn(ul_l)]‘ll < (e) = enlpalen )] n<a” [971!(""" 1)]—12-

But, because of m(e) > 0, the last inequalities can be satisfied for an
arbitrary positive 1, only if the condition (#) is satisfied.

54. (a) If for s-comvex @-functions the condition 5.2 (a) is satisfied,
then for any e with positive W-measure, there exisis the limit

n —> 0o,

() lxelle, 1 as
(b) If for a mean value m(-) the corresponding class B fulfils the pro-
perty (D) and (%) i8 satisfied for any e in B with positive measure, then the
condition 5.2 (a) 18 salisfied.
Ad (a). If 0 < 7(e) <1, then by 5.2(b) and 5.2.1

(Pu)a(W(e)™Y) >1 a8 n-—> oo

Ad (b). Since the values u = m(e)~* are dense in {1, oo), the relation
[(@s)-1(#)]™* =1 for n — oo holds in a set which is dense in (1, co), and
by the monotony of (¢,).,, the limit (p,)_,(%) -1 as n —> oo exists for
any % > 1. It is enough to apply 5.2.

Studia Mathematica XXVI z, 2 12
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55. If ¢ s a convex g-function satisfying conditions (0,), (ooy), then
for any v > 0 there ewists Ay > 0 such that

1 v
wta(2) =+ et =it (7 + S 0).

Indeed, for v, = g_,(»™") we can find 4, > 0 for which the equality
2yhy = ¢(4)+¢" (1) holds.

5.5.1. (a) For sirictly increasing @-functions @, the conditions ¢, (u)
—u as n — oo, for u >1, and (py)_1(u) =>4 as n — oo, for u > 1, are
equivalent.

(b) For an s-conves g, from @,(u) — w for w > 1 it follows (g,)_,(1)
— 1.

Ad (D). ¢, are strictly increasing, as follows from the s-convexity.
By (a) we have

limsup (pn)-1(1) <w for w>1,
Nn—00 ’

hence
Himsup (@a)_1 (1) < 1.
N—00

Let 0 < a < 1;since g, (au) < agy(u) for = 0, we get o' (p,)_,(w)
< (@n)-1(eu) for w > 0. For » > 1, a = 1/u it follows
W (@n)_1 () < (Pn)-1(1), 4w < liminf(p,)_1(1), 1 <Uminf(p,)_s(1)
Tp 0 7> 00
and consequently (@,)_;(1) =1 as n — oco.

5.5.2. Let g, be a convex g-function satisfying conditions (04), (oo;)
formn=1,2,...
(2) If limgy(u) = co for w>1, then limsupon(v) <v for v 0,
N—p00 N0

and conversely.
(b) If limg,(u) = 0 for 0 <u <1, then liminfey(v) = v for v 20,
N—00 N0
and conversely. :
(¢) If iminfep(v) = » for v > 1, then imsupep,(u) < u for 0 <u < 1.
00 N 00
(Some analogous lemmata can be found in [13]).
Ad (a). Let lime,(4) = oo for « > 1. Suppose v > 0 is given. We
N0
choose u, such that
(+) VUy, = q’n(un)+‘P:(”)-
Let u, > 1. It must be limsupu, < %, for if not so it would be

TN->00

Png(n;)
ni\Bng)
Un, Uy

?’n.,;(“o_)_

v >

e ©
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for an increasing sequence of indices n;, but this is contradictory to
@ny (%) = oo a8 i — oo. It follows that

limsupu, <1,
N—-00

and by (+) we obtain

» = v imsupwu, > limsup @, (v).
00 N—00

It
limsup pi(v) <v for o3>0,
7n—-00

then for a given 0 < A <1, % > 1, such that iu>1, we have ¢j(v)
< Auv for n > n,y, and since g, (u) > wv—gn(v) We get @n(u) > uv(l—2)
for any v > 0, whence

lim @, (u) = oo.
N—»00
Ad (b) and (c). Applying the inequality v < gn(%)+gn(v) for
0<u<1, we get
v <lminf ¢}(v) for v>0
00
if @n(u) - 0 for 0 < w << 1. If for a v, the equation uv, = @, (%) -+ gn(v,)

holds, where 0 < % < 1, we have u > ¢} (v,) v;". Tt follows from the last
inequality and by the convexity of ¢} that

limsupe, <1,
00
and g0
% = ulimsup v, > limsup g, (#)
N0 n—>00
holds. If
liminfey(v) > v for any » > 0,
N—»00
then, analogously as above, we can prove v, — 0 as # - oo, which implies
limg,(#) =0 for O0<u<l.
00
5.5.3. It follows from 5.5.2 that conditions
(«) img,(u) =0 for 0 <u<1,
N—>00
(B) limg,(v) = oo for u > 1,
. Nep00
imply
(y) limgp(v) = » for v >1 (for v > 0).
00


GUEST


180 W. Orlicz

If (y) is satisfied, then
limsup gn(v) <v for any v >0
n—00

and consequently (B) is satisfied, and besides
limsup go(%) <u for O<u<1.
N0

a) Let @, be a convex @-function, satisfying conditions (0,), (oco,),

5.6. (a)
=1,2,... If the condition

for n
(%) on(v) —>v for w>1

is satisfied, then for any eeE with positive Mm-measure there exists the limit
(%) lellg, ~1 a8 m—oo.

(b) If for a mean value () the corresponding class E fulfils the pro-
perty (D) and (x+) is satisfied for any e in H with positive m-measure, then
condition (+) holds.

Ad (a). By 5.5 and the definition of |-|l;, we get

L.
Il = int (5 + 2 1) =m0

1
w(e))
In virtue of (x) and 5.5.1 it follows i (e)(gn)_,(M(e)™}) > 1 as n — oo,
Ad (b). The set of values v = 7 (e)~" is dense in (1, oo) and for any
such value v~'(g!)_;(v) > 1 a8 n - co. But by the monotony of (@)
thig relation holds for any v > 1, and so, by 5.5.1, gn(u) — % a8 n — oo,
for any » > 1.

5. If ¢n, ¢ are g-funciions, then the following conditions are equi-
valent:

(@) limllol,, = lol, for z<2.
(b) limg,(u) = g(u) for w > 0.
N—>00 .
() = (a). Let &, = m(pa(lz|es?), & =7Tz(«p(|w|e"1)). The continuity
and monotony of ¢,,¢ ensure g,(u)=-@(u) in any interval <0, %.).
Suppose &,, <& where n; > co. Then e, > m(pn,(l2|e™")), and owing

to the uniform convergence of @,(lz(?)|e™!) to g(le()e™’) we get
7 (pu(l2|2™Y) — 7 (p(lw|e™")), Whenee

liminfe,, > &,
00
and consequently
lime,, = e.
1poo
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Assume nOW &,, > & a8 n, — co. Then
Tilpn,(|2len))) =T (p(l2|es))) ~0 a8 m— oo

that is to say,
en,—M(p(|ltlen;)) >0 a8 my— oo,

The sequence e,, is bounded, for 7 (p(|z|s,)) < & For any accumulation
point of the sequence &,; the equation e, = 7 (p (o] ")) holds, and since,
by 4.4, the equation & = @ (p(jw|z™")) is satisfied only for & = ||z[l,, we get
&g = |ollgs en, — & = |[zll,. ~

(a) = (b). Suppose &> 0 and e¢cH, m(e) > 0 given. Choose 1 >0
such that ed = ||Ag.ll,, that is to say, m(e) = e[p(s~")1"'A. Choose s, such
that e,A = [Agell,,, Or equivalently #(e) = &,[pn(en’)] "4 (a) implies
& —> & @nlent) = @(e™!) a8 m — co. In other words, for any % > 0 there
exists a sequence u, such that wu, — u, @,(u,) - @(u). If % belongs to
(u', "), where 0 < %’ < u”, are arbitrarily given, we get ' < u, < %'
Pn(t'y < @ (Uy) < g (u’’) for sufficiently large n, and it follows

(+) p(u) < liminfo,(u”), lmsup . (w) < p(w).
N0 Np00
Letting w —> w''—0 or u — 4’ 10, we obtain
liminf g, (%”) > p(w”), limsup g, (u') < p(u’)
-0 N—00

and consequently
limg,(u) =gp(u) for u=0.
N0

58. (a) If @-functions ¢, satisfy condition 5.3 (), then the relation
(*) lwllp, — sup*|s] as n—> oo, B,
holds.

(b) If (%) is satisfied, then ¢, fulfils condition 5.3 (*).

We can assume sup*lo| > 0, for sup*|a] = 0 implies (llly,, = 0 for
n=1,2,... Suppose 0 < i < sup*|#|. By 2.7.3 we have

12%elle,, < llellp,, < lIsuD* |21 llg,, >

where ecE, 7i(e) > 0. Hence, by 5.3, the relation (*) holds.

(b) immediately follows by 5.3 and in virtue of the fact that
sup*Ay, = 4, when 1> 0, m(e) > 0.

5.9. Let g, be an s-convew p-function for n =1,2,...

(a) Under the assumption of 5.2 (a) the relation

(%) lolly, — (sup*|#])®  as  n— oo, wek,
holds.
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(b) If (%) is satisfied, and B fulfils the property (D), then 5.2 (a) holds.
To prove (a) we apply 5.4 (a) and the inequality
Flgellz, < llollp,, < Naplls, (sup*le))’;
here 4, ¢ have the same meaning as in the proof of 5.8 (a).
(b) follows immediately from 5.4 (b).
5.10. Let ¢, be a convew p-function, satisfying (0,), (o0y), for n =1,

2,...

(a) Under the asswmption of 5.6 (%) the relation
(%) lzllg, — sup*|z| a8 n > oo, e,
holds.

} (b) If B possesses the property (D) and (%) holds, then ¢, satisfy con-
_ dition 5.6 ().
The proof of (a) follows by 5.6 and by the application of the in-
equality
Higellp, < liwlle, < Nxplle,5up* |2];

here 1, ¢ have the same meaning as in the proof of 5.8 (a); (b) follows
immediately from 5.6 (b).

6.1. In this section we are concerned, in the first place, with the
following question:

On what conditions on ¢-functions ¢, y does the following inequality

lelly < llalle

hold. If for a pair ¢, y the last written inequality is satisfied, then it will
be said they possess the property (C, v, ). Assuming ¢, p to be convex
p-functions, and E (for a given m(+)) to fulfil the property (2), we obtain
for (0, v, ¢), by 4.6 (b), and by setting x = y,, the following necessary
condition:

for any xe¢%,

plu) <op(u) for w>yp,(1).

On the other hand, the inequality

p(u) <epu) for =0

is obviously sufficient to have the property (C,w,¢) for any mean
value. But the last mentioned inequality certainly does not give a neces-
sary condition for the property (C, v, ), for if w(u) = uf, p(u) = u°,
1< p < q then (C, y,p) is fulfilled.

Let us introduce the following notation: w(u) = g(y_y(%)).

6.2. Let us assume that w satisfies the following condition:

For any &> 0 there exisis a 3, 0 < A <1, such that

(») % <lo(u)+(1—24) for u=e.
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Under this assumption the property (C, v, @) ts fulfilled for any upper
mean value.

Tt is enough to prove that ||}, = 1 implies |wfl, <1. .

Denote by A, the number i for which the inequality (*) is satisfied
when ¢ = y(1/n), and set z, = [2| v1/n—1/n. By (*) we have

P(@n]) < dng(l2al) + (1—2n),

hence

7 (p (1)) < A (@ (J2al)) + (L — An) s
and
(+) m(p(lea))) <1,

for m(p(loal)) < 7 (p(la))) = lolly = L. But o~ lal, 7 (w(l2al)) — m(p(|])
as n — 0o, 80, by (+), we get 7 (y(|z])) <1 and consequently [lzll, < 1.

6.2.1. Under the same assumption on o as in 6.2 there holds the
inequality

el < el for weZ.

6.3. Each of the following conditions is sufficient for convex p-functions
@,y to fulfil the property (C, v, p).

A.p(1) = p(1) = 1; there exists a A, 0 < A <1, such that »'(u) > 1/A
for almost every w =1, o' (u) <1/ for almost every 0 < u <1.

B. w is @ convex function in (0, 00), w(1) >1, and w satisfies condi-
tion (04).

C. w satisfies condition (0,), if @ denotes the greatest convex function
such that o(u) > o(w) for © >0, then w(l) > 1.

A sufficient condition for s-convex g-functions @,y to satisfy the in-
equality

ol < ol for any we%,

i¢ A, and under the assumption of local absolute continuity of ¢, B or C,
as well.

Ad A. Since p(1) = p(1) = 1, we get w(1l) = 1. Evidently the follow-
ing conditions are equivalent:

(2) For a 4, 0 < 4 < 1, the inequality « < Aw(u)+(1—1) for » = 0,
holds;

() there hold the inequalities

1 .
(+) —wmglll for 0<u<1;
1—u
—1
(++) eb)—=1 >1/4 for w>1,
w1

‘where 0 < 1 <1.
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Since ¢'(u), y'(u) exist almost everywhere and ¢'(u) > 0 if 4 >0,
the derivative «'(u) exist almost everywhere as well. Moreover Py v
satisfy the Lipschitz condition in any finite interval so does w in any
interval <{a, %,>, where 0 < a. From A and w(1) = 1 the inequalities (8)
follow and this implies 6.2 (%), where A is independent of e.

Ad B. From the integral representation
» ’
- w{u) :nfw+(t)dt,

where wﬁr is non-decreasing in (0, co) and by w(1) > 1 we get w(u)—1
2 o) (1)(u—1) for >1, 1—w(w) < o} (1)(1—u) for 0 < u < 1. It is
enough to prove that A™' = w/ (1) > 1. Clearly

1
1<o(d)=[o (t)d < wly(1).
0
Assuming ', (1) = 1' we must have
1
Jlw, = ot )at = o,

0y (t) =1for 0 <t <1, w(u) =u for 0 <u <1, which is contradictory
to the fact that w fulfils the condition (o0,). Hence (B) is satisfied.

Assuming additionally that o fulfils the condition (o0,) another proof
can be given. It is instructive, becanse of using the notion of the comple-
mentary function, and it runs the following lines.

There exists %, > 0 such that %, = w(1)+ 0*(4,). By the Young’s
inequality wuy < w(u)+ w*(u), u < Uy w(w)+u5 0* (4,). But w(l) >1,
hence 1> u;'+u;’o*(u,) and it suffices to set A = ;. Evidently
0 <A<, for u,>1. ‘

Ad C. In virtue of w(u) > w(u), @ satisfies the condition (o,).

We have u <Aw(u)+ (1—2) < Aw(u)+(1—2), where A~ = . (1),
Sinece w(1) > 1, by A, 0 < A < 1 follows.

It follows from 6.3 O that if w(u) satisties (o,) and w(u) = v, where
¥ >1, then the property (0, v, ¢) is satisfied. If ¢, ¢ are s-convex, then
the analogous inequality (2|} < llwll, for weZ iy satisfied too. Let us set
p(u) = ¥, p(u) = %%, where 1 < f < a. The well-known theorem of the
monotonic increase-of the mean value 7 (||*)Y* in the interval (1, oo)
of a is a direct consequence of the above remark. To obtain the monotony
of m(|z|*)"* for the interval ae(0, 1) let us remark that if 0 < f < a <1,
then @ is f-convex, [o|f = (||*)". For the function w(u) = u’/* the
condition 6.3 can be applied and by 6.2.1 we get mi(jo|f) < m(|a|*),
or equivalently #(|x|?)"* < 7 (|w|)"e, :
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6.4. The following property remains closely related to the property
(C, v, ¢): A pair of convex g-functions ¢, p is said to possess the property
(H, p, ) if the inequality

(+) may) < leloliyl, for a,yed
is satisfied for any upper mean value. The inequality (+) presents one of
the possible types of Holder's inequality. The other types of Holder’s
inequality are known in the theory of Orlicz spaces [1] and they readily
can be generalized to an arbitrary upper mean value; namely we have
the following theorem:

6.4.1. For an arbitrary mean value () there holds the following
inequality :
(+) m(wy) < llollelylon

for any x,yeX.

Indeed, for any A > 0 we get, by the Young’s inequality,

loyl < A p (1)) +2"0* (Aly1),
m(oy) < A7'@(p(lal)+ 2% (p*(21y])).

COIE el = Fn‘(cp(lml)) =1, then, owing to the definition of [y|%, we
obtain 7 (2y) < [|ylles, Whence 7 (zy) < [[lf3]ly[s-

In spite of inequality 6.4.1 (+), which is generally valid, the pro-
perty (H, ¢, ¢*) is only true under a special assumption on @, and it is
not directly deducible from 6.4.1 (+). The reason for this is that only
the inequality |lylos < [[¥lle« oceurs. But, setting o(u) =% a>1, we
get (H, ¢, ¢*) (the classical Holder’s inequality), for in this case

llzlle = (11" liyliee = llyllze = m(ly]* )"

6.4.2. If a convew @-function ¢ satisfies the conditions (01)y (o0y),
#(1) =1, p(u) = ¢*(v,u)[p*(2)17", where v, = p’, (1), then the Functions
@, possess the property (H, ¢, ).

As it is known the equation v, = (1)4-g*(v,) is satistied for
% = (1) and since uv,» < p(u)+p*(v,v), We obtain

w0 < 05 g (u)+ 07 9* (vgv).
Let
lelp = m(p(le)) =1, Iyl = m{p(yl) = 1;

substituting in the last inequality u = lz(f)], v = ly(@)] we get

_ M(y) < o5 p(le])) 05 p* (0o} (w(Iy]) < 1,
which implies inequality 6.4 (+).
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7. A get UeZ is called s-convew, 0 < 8 <1, if for any o, § which
satisfy the conditions o, >0, o'+ p° =1, ,yeU implies aw-+fyeT.
A linear topological Hausdorff space is called locally s-convex, if there is
a bage of s-convex neighbourhoods of 0 in it.

2.1. Let us assume B fulfils the following property:

For a given natural n and a positive u, for which nn < 1, there exist
in B n digjoint sels ey, eqy ..., €, 8uch that

(*) me) <n, 0= m(kljei)-

If the topology gemerated by the norm |||, in & is locally s-conves,
then there is a g-function x(u) = y(u®), where v is a convew p-function,
for which .

(**) z(ku) < p(u) < x(kau),

Choose in & an s-convex neighbourhood U of zero and a 6 > 0 in
such a manner that |z||, < 6 implies #¢U, and xeT implies lloll, < 1.
Given an o, 0 < a <1, let us denote by = a non-negative integer for
which
(+) P <nd® <1,

byy by >0, for w>=u,.

Let us choose a w satisfying the conditions
p(u[8) >4, dp(ufd) =8,

and set 5 = S[p(u/8)]~". Since 7 < of, ny <1, there exist n disjoint
sets in B for which the condition (x) holds. From the inequality

leqllo [p (wlluage lls 1™ = T(es) < n = o[ (u/8)]™

(++)

it follows [[uge,ll, < 6, for up(u~")"" is strictly increasing. The elements
uy,, belong to U and by the s-convexity of U, x = oaUye +. ..+ auy, U,
for we have na® < 1. This implies

() = o -+ 1) = (a7 < 1.
In view of (*) it follows
nyg(aw) < 1,
whence, and by (+), we get
né[p(%/8)] p(au) < 2na’.
We have proved the inequality
) (au) < 267a°p(u/8)

for all a,  for which 0 < a <1 and (++) hold. From (**) it follows
that ¢(u/6) > cu’ for u > u,, where ¢ is a -positive constant, and:‘ u,
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sufficiently large. If this is not so, then one can find numbers %,, such
that %, > oo, @(U,/8)/un - 0 a8 n — co. Let us define a, by the requi-
rement dnp(u,/d) = 6.
Since for sufficiently large », a, <1, @(u,/8) > 8, so substituting
in () @ = a,, 4 = u,, we obtain the inequality
(8" U (4a[8)™1) < 26716 = 2,

which is contradictory to g(u) - oo as % — co. Let u, be such that
¢(Ue/8) > 6, and w, > uy > %y = sup(uy, (8/0)'"). I @ = u,/u,, then
O p(us)0) = uig(us[S)uz® =8,  (us/8) > 8,

and by ()

8
sv:tx) < 25_1¢(1:;/ ) for vy >y > Ty
1 2

By a theorem in [4], 2.6.2, 2.7, the last inequality implies the exis-
tence of a g-function y with the required properties.

22. If for a p-function @ there ewists a p-function y satisfying the in-
equalities 7.1 (xx), and of the form x(u) = yp(u®), where v is a convew p-func-
tion, then the topology in %, which is generated by the norm Ilzy 48 locally
8-convez.

By 5.1 the convergence with respect to the norm |:||, implies the con-
vergence with respect to the norm |||, and conversely. But the topology
which is generated by ||-||, is locally s-convex, for we can choose a base
of neighbourhoods of zero composed of the following s-convex neighbour-
hoods ' :

U(e) = {we Z:|lmll; < £}.

Let us conclude thig section with the following remarks. Theorems
7.1, 7.2 generalize some results of [6], [9].

In section 8 one can find some example of set-algebras which satisfy
the condition () in 7.1. The condition 7.1 (%) implies, of course, the
property (2) for a given E.

8. In this section some typical examples of spaces X and subadditive
mean values are given.

1. We write I == (a, ), where a and b are finite.

(a) Let X be the space of all real-valued and bounded functions
in I. Then the class ¥ is the collection of subsets in I. We may define

1) m(w) = sup [ ()5

5
2) m(a) = (b—a)”'f lw(t)| &,
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3
where f ... means the Riemann upper integral. The mean value 1) is an
a

extreme value, in this case m(¢) = 0 only for the empty set, #m(e) =1
if ¢ is non-empty.

(b) Let X be the space of real-valued bounded and measurable
functions in (@, b). We may define

1) m(x) = sgp*lw(t)], where m;p* denotes the essential supremum

with respect to the ideal of Lebesgue-measurable sets with the measure 0;
b b
2) MW(x) = (b—a)~'[ |o(t)|dt, where [... means the Lebesgue in-
a a

tegral.

The mean value 1) is evidently extreme.

II. Let (¢, r) be a non-negative integrable function for any 0 <1
<'t, where ?, < oo, and either for v belonging to I, = {0 < v < 7*}
or to I, = {v:7>7*}. Let

to
S, )t =1 where (a) vely, (B) vely.
0

For X we choose the space of real-valued, bounded and measurable
funetions in (0, ¢,). We define

to
1) m(z) = ]imsupof k(t, 7)|w(t)| dt, where T, = 0, if k(¢, 7) is defined

in (0, #)xI,, 7, = 0o if 7 is taken in I.,.

)
2) m(w) = sup [ k(t, v)|»(f)|dt, where I, is either I, or I,,.
ulﬂ 0 ‘

The particularly important cases can be obtained setting k(t, 7) = 7"
for 0 <t <7, k(t, 7) = 0 for ¢ > 7. Assuming t, = oo, 7* = 0 we obtain
the following mean values:

o) (w) = limsupz~'[|a(t)|dt,

T-500 0
2p) W (») = supv~"f|x ()| dt.
>0 [}
Agguming ¢, =1, v* =1 we get

1o) m(@) = limsupr~fla(t)|d,
70 0

26') (o) = supvfla(o)]dt

ITI. Tet X be the space of bounded sequences {f;} of reals; then E
is the class of all subsets of the collection of natural numbers. Let a,
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be non-negative and let they satisfy the condition Sty = 1 for any n.
1
We define the following mean values
n
1) 7(w) = lmsup 3 anltl,
N—r00 [ 251

n
2) m(®) = sup iZ; A [t].
n =

Setting @y =1/n if ¢ =1,2,...,n, =0 if ¢ >n, for n = 1,2,...,
we obtain the following mean values, which are of some importance, when
investigating methods of the strongly summable sequences:

: 1
1e) m(a) = limsup — >'lt,
00 =21

n
2a) M(z) = sup iz ).
LI =

8.1. The classes B which correspond to the spaces X in I-ITT, and
the mean values I(a), 2), I(b), 2), IT la), II 28), IIT 1a), ITT 2«), possess
the property (2). Let us consider, for example, the mean value IT 28).
If ¢ = (7;,7,), then 7 (e) = 1—1,/7,, which means that the values m (e)
are dense in (0, 1). In the case of ITI 2«), We obtain () — 1—p/q, when
¢ ={n:p <n < g} and consequently the property (2) is fulfilled. Let
us yet consider the mean value IT1«). Let 0 < 7, < 7, and choose the

set8 e, = {rn71, ¥,7,>, where r, are positive integers such that Fpe171
[+

>Taly TaTyftant <1fn for n=1,2,... I we define e, = Uen we
1

obtain the following inequalities
1/ n 1
“[rwd<1-242 to < <ram
Ty 2 N

T
T 1
1-3 <~fx,(t)dt Hor=ra

T2 Ty
which implies

limsup-r“lfx,(t)dt =1 -—B—,
00 H T

2

and the property (2) is fulfilled. By similar arguments we can verify
that property (2) is fulfilled for B, if the mean value is IIT 1a).

8.2. The set algebra F fulfils the property 7.1 (x), which is more
general as the property (9), if the corresponding mean value is II 1),
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I128), III1a), ITI2a«) respectively. Let us consider the mean values

II 1«), IT 2B). .
])Z;eﬁne@t);wo increasing sequences of natural numbers 1,, k. in such

a manner that:
1) lr > 27
2) leys > bt Kyy Kopyn > bk, for r=1,2,...

=-—"T— >1a8 700
K e ’
5 ML<1_E, for r = 2,3, ...
r

For ingtance, we can choose I, arbitrarily, but fuch that I, > 2,
Lo = LOr+1), L4264+ .+~ < 3147 for r =2, 38, ...
and set %, = 7l,. o

Suppcrtse 0 r< 7 and that, for a natural #, ny < 1. Define ¢, = (Z,.-}-
+k—1,lL+%) for £ =1,2,...,%. If nyp=1, we decom;_)ose any i
in # consecutive subintervals i, of the length 7, if ny <1 in n+41 sub-
intervals, where the first n consecutive are of the length "7; and t%le
(n+1)-th is of length 1—nn. Evidently distinet subintervals 4, are dis-
joint, we define

n

w Ky

6]-:Uuy1iz" for j=1,2,...,mn, e=fgle¢.
T £

If veipy for r=1,2,..., k=1,2,..., %k, then

L i< —" <t N =&
— — bril
,_flef(t) SLrr—1 TS R
T

and so this inequality is satisfied for I, < v < l,+%,. We have also for =
within I, and I+ %

1, Ltk Uy +ky Ly tkp—y
1 1 1
lfxe,,(t)dt=—f ...+—f "+"'+'{
L Tzl Tl, -1
N S

= 1

and eonseiluently

sup lfzei(t)dt <@A—e)ntean<n
he<<v<lptby, T H
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for r =1,2,...

1 T
sup — hdi < .
(+) s [ 20 <

On the other hand, we have
I]‘
% + Ry

1 1
— = t)dt < — t)dt
(+4) T kalrf w0 <mp - [ 1,000,

and, by 8), & (l+ %)~ n —n. It follows from (+), (++), that
. 10 1 .
hmsup—fxq(t)dt = sup~—fz,7.(t)dt =n for j=1,2,..,n.
500 T H >0 T 5 .
On the same way we can check that
. 1, 17
hmsup—fx,(t)dt = sup—fx,(t)dt = ny,
T->00 T ¥ >0 T bt

and it follows property 7.1 ().

Similar arguments may be applied to prove that the mean values
10T 1«), IIT 2a) satisfy also property 7.1 (%).
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Extensions of sequentially continuous linear functionals
in inductive sequences of (F)-spaces
par

W. SLOWIKOWSKI (Warszawa)

1. Introduction (1). These investigations was inspired a long time
ago by a problem communicated to the author by L. Ehrenpreis. The
problem concerned extensibility of sequentially continuous linear func-
tionals defined on subspaces of Schwartz’s spaces 2(R) of infinitely
differentiable functions with compact carriers contained in a fixed
domain Q (cf. [3]). It can be easily verified that distributions from the
domain of a partial differential operator on 2'(£2) can always be considered
as extensions of sequentially continuous functionals defined on the range
of the adjoint differential operator acting on Z(f2). Hence, it becomes
apparent that a necessary and sufficient condition for existence of such
extensions must be closely connected with any set of conditions that are
necessary and sufficient for the operator to map onto 2'(L2). For con-
volution operators, including as a particular case differential operators
with constant coefficients, such a set of conditions was given by Hérman-
der in [2].

Going one step further in generality, call (#%)-sequence any sequence
X of (#)-spaces such that every linear space from % is a subspace of the
subsequent linear space from the sequence and that the identical in-
jection of every (&)-space from X into the following one is comntinuous
(cf. [12]). :

Situation that necessitates using such a notion arises, for instance,
when we discuss factor spaces of the Schwartz’s (2, 7g) space. Such factor
spaces need not be (#F)-spaces any more though they always naturally
decompose into (FF)-sequences. .

Let X denote the union of linear spaces from an (£F)-sequence %.
A linear functional defined on a linear subspace of X is called sequentially
continuous if it is continuous in every (#)-space from X. We formulate
the general problem of extension as follows.

Given an (f%)-sequence X find a natural condition for a linear
subspace X, of X defined above which is necessary and sufficient

(1) A substantial part of the results presented here was obtained when the author
was at the Institute for.Advanced Study in Princeton on the NSF Grant G-14600.
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