96 W. Kierat et J. Mikusingki

D'aprés [1], p. 234, lopérateur o = = est un logarithme droit

Ry

dans Pintervalle 0 <t <27 avec le nombre caractéristique a.
D’aprés de théoréme cité au commencement de cette note, il s’ensuit,

pour T' =T, que w = w,— as.
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The norm of a discrete singular transform
by
B. MUCKENHOUPT (South Hadley, Mass.)

1. Introduction. In [3], Calderon and Zygmund proved that certain
discrete singular transforms bear a striking resemblance to the better
known continuous ones. The theorems concerning the I* or L* norm were
similar, and in the one-dimensional case the discrete and continuous ana-
logues have the same norm. It was natural to conjecture that this was
true in higher dimensions. Thig paper shows that this is not the case and
presents the first serious divergence between the discrete and continuous
theory. Incidentally, it produces an amusing summation formula.

The discrete transforms congidered in [3] are of the type

o r Q(k
) o= S
k

The points j and & are of the form m, e, 4 mye,4...+ mye,, the mi
being integers and the e; a fixed basis for n-dimensional Euclidean space.
The summation is over all such points except the origin. The a; and Q(k)
are real or complex valued, 2(h) = Q(k/|k|), the integral of 2 on the unit
sphere is zero, and £2’s modulus of continuity satisfies the Dini condition.
The principal result ([3], p. 268) was that the I norm of (1) is the essen-
tial least upper bound of the modulus of the function with Fourier series

I‘Q(k) ari(kx)
@) Z,CWWG ()

The continuous version of this theorem concerns the singular integral
in n dimensions of the form

®) im [ W sy ay,

n
&0 W>e I:‘/‘

where {2 has the properties given above ([2], p. 88-91). This transform
has I* norm equal to the essential least npper bound of the modulus of

(4) Tim * f ﬂyl AR gy
Tol<1/e
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The one-dimensional transforms -

. fle—y) Y G
o [Ty 37
wi>s k

both have norm = and the functions obtained from them by use of (2)
and (4) resemble each other. Both have a jump discontinuity at the origin

with one-gided limits of = and —m.
Analogous two-dimensional transforms are

f(w:y)d
Yy

(5) lim Y

g0 |7/|‘> .
where z and y are complex and the integration extends over the complex
plane and the transform

(6)

where j and % are complex integers. The corresponding functions given
by (2) and (4) again both have discontinuities at the origin and in both
cases the modulus of the functions approaches = at the origin. Like the
one-dimengional case the function corresponding to the integral trans-
form has constant modulus while the other does not. The modulus of
the latter function, however, takes on values larger than = so that (5)
and (6) do not have the same norm. The proof of this and the determing-
tion of the 7* norm of (6) are the main part of this paper.
The funetion ¢(s,y) with Fourier series

27l (MX-H 1Y)

ZI ?M—Hn)—z—

m,mn

(M

is the function corresponding to (6). In a slightly more general form it
oceurs in the work of Kronecker on elliptic functions. It was the subject
of considerable investigation by Maier in [4], [5], and [6]. There, again
in a slightly more general form, it was known ag (@, y). It is expressible
in terms of elliptic theta functions.

2. The value of ¢(}, 0). We get now

TEEOREM 1. We have

/o
di 2
P}, 0) = — (of —ﬁ—j;"—ﬁ) = —3.437604.,.

where o(z,y) 4s the function with the Fourier series (7).
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. To obtain this expression, use can be made of g formula proved by
Maier ([6], p. 766) for (=, y), or in his terminology 4,(x, y) with periods 1
and 4. His formula shows that

® oh,0) = — 2%

where
’ 1
g = 60 —_—
g %‘ (m4in)*

ig the usual congtant for the Weierstrass » function with periods 1 and 3.
Appell ([1], p. 70) states that if a Weierstrass p function has one real
period, 2w, and one purely imaginary period, 2w’, then

> a
(9) 2(u=2f . —
o Vaad — g g,
where

g, = 60 \!

m,n

1 : 1
e = 140 ——
2wm L 2am)y’ 5 E (@om+20'n)°

mn

and ¢, is the largest real root of 4a*—g,2—g, = 0. Since 20 =1 and
20" =14, gy = 0 and ¢, = }//y,. Using these facts, (9) reduces to

0

” 2dw
(10) 1= — .
H‘!_ Var® — g,z
2

With the substitution @ = Vg,/2cost, (10) becomes
s 2dt
— 3 '; .
¢ VgV1—isin%t

Solving for g, and substituting in (8) gives the desired result.

1

3. The norm of the transform. We prove now
TonorEM 2. The expression
("jlg at )2
¢ V1—isin’t
is the mawimum value of [4;5((» , )| and the ¥ norm of the tramsform (6).

Becauge of theorem 1 and the Calderon-Zygmund result stated
previously, it is sufficient to prove the first part of this theorem.
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The Fourier series (7) for p(@, y) may be written forma,lly a8

" 6vn1(7’/?a+nﬂ) ' ezni(mm-t-ny) Y’ eff“”,
b S-SRI
) Lt (m«\—m) - Ld (- in) Ld

2TENE 2
2

Finding the Fourier series for =, ot e and e on 0 < <l,
and combining the results shows that Zeﬁ"“"”/(m--% in)? is the TFourier

series for
2 2mn

e Lo
e (=14 226" " sinhnw)
ginh*nr

and that 3'e™™m?® is the Fourier sevies for 2r*(a"—w ). Applying
n
these to (11) and setting z+iy = 2 indicates that

—2co8h2nne 4mq1n]m-fr(l Zz)
(12) ¢(@,9) == (Zw —2ty +Z[ sinh’nm sinhar )

That (12) actually holds for 0 < @ < 1 follows easily by computing
the Fourier coefficients’ of the expression on the right.

Using the identity (sinha)(sinhb)==4{cosh(a+-b)-cosh(a-~b)], for-
mula (12) may be expressed as

1 (2 —2@) cosh 2rnz + 20 cosh 2mn (1 —2)
(13) ¢(w,y)=ﬁ2(2m2—2m+g—2( Ml Mot

sinh®nr
n=1
for 0 <o <1.
" Now ¢(x,y) has period one in both variables. By inspection of the
original Fourier series it is also clear that ¢(2,y) = —¢(—y,»). From

(18) it follows that ¢(z,y) = ¢(x, —y). Because of these facts it wil
be sufficient to show that —gp(%,0) is the maximum value of |p(z, y)
in the triangle with vertices (0, 0), (4, %) and (4,0
Since cosh2mn (@ 4y) = cosh 2mnwcos 2rny -+ t8inh 2nnwsin 2nny, it
. follows that |cosh2mnnez| < cogh2nne. Similarly, we have |cosh2mn(z—1)|
< cosh2zxn (z—1). Then using (13) it is clear that |p(w,y)| < —¢(2,0)
for §(3—V§) <o <§. Taking a partial derivative of (13) and putting
(@, 9) = (%, 0) shows that —gp(z, 0) has a vanishing derivative at @ = }.
That the second derivative is negative can be shown by some simple
estimations since the series in question converges very rapidly. Therefore,
—¢($,0) is a local maximum of —g(2,0). Again by simple but tedious
estimating the second derivative of —g@(x, 0) may be shown. to be negative
for 4 < < .5. For3(3—V3) <o < .4 estimates of the value of qo(n:, 0)
using (18) are’ sufﬁélent to show that |p(x, )| is less than —g(},0)
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Tol the rest of the triangle under consideration, that is, for 0 < y
<z <y 23—V3 3), the consideration is complicated by the fact that
o (@, y)| is not necessarily less than |p(z, 0)]. To obtain the necessary
inequality the expression may be split into three parts with each to be
treated separately. The first part consists of the polynomial part of (13)
with 4an® /(6™ —1) subtracted. The second part is the first half of the
summation. The third part is the second half of the summation plus
dor?[(6™™ —1). Again by straightforward but tedious estimating the
desired inequality is obtained.

4. A summation formula. A great many summation formulas could
be produced by equating the expression produced by (13) for various
points to the known values of p. The most peculiar and least obvious
one is obtained by attempting to evaluate Y'1/(m-in)* directly. Sum-
ming on m by methods resembling those used in the derivation of (12)
produces

4 64 4sinh’nr
(14) Z (m—f—m + Z 3sinh*nr

2 1/sinh*nr can be computed by considereing h.mqo(m 0). Maier ([4],

N=1

p. 103) showed that this limit is —n. Using (13) a.nd observing that

.
Lim B ——— lim
Z>0+ A simh™ 204 =

> 2gcosh2nn(l—x) 2 g g
Ty g T
¢ b

leads to the fact that

o
S
ginh*nr ~ 6r
=1
Using this result in (14) and the value obtained in theorem 1 produces

/2

Ty NP
“~ ginh*nm Vi %smzt 3= 90
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Total and partial differentiability in L*
by
MARY WEISS (Chicago, IIL)

1. A function f(z) = f(x, my, ..., x,) defined in the neighborhood
of a point #° = (a2, ..., &%) and of the class L7 there, 1 < p < oo, is said
to have a k-th differential in I” at a° if there is a polynomial P(f) =
P(ty, ..., ;) of degree % (or less) such that

1 1p
{—;r flf(w°+t)—1’(t)l”dt} =o0(") (¢—~0).
e 1ti<e
Ifp= oo, the expression on the left is to be interpreted, of course,
a8 esssup |f(a°+¢)—P(#)| for |t| < o. The definition has been introduced
in [1]. The domain of integration [{| < ¢ can clearly be replaced by a cube
containing the origin and of side tending to 0.
The main result of the present paper is the following
TrEOREM 1. Let f(%) = f(2y, ..., %) belong to IP, 1 <p <
the unit cube

{Qo)

and suppose that ai each point © of a set B < Q, the function f has a k-th
differential in L®. Let m be o fiwed integer satisfying 1 < m < n. Then at
almost all poinis weE the function f has a k-th dszermtml in IP with
respect to the variable ' = (1, Ty, ..., Tp).

The sets and functions that oceur in the proof below are all Lebesgue
measurable, even if it is not stated explicitly (the proofs of measura-
bility, when needed, are routine). The cubes will be always closed cubes.
‘We may restrict our argument to the case 1 < p < oo, sinee if p = oo
it is not difficult to see that the function f* which coincides with f at the
points of set Z where f(x) is the derivative of its indefinite integral
and elsewhere is defined by the condition f(#,) = limsupf(x) for = tend-
ing to @, through Z, satisties the relation f*(z,+1)—P(#) = o(|t[*), and
it is enough to observe that the m-dimensional measure of the intersec-
tion of the complement of 7' with almost all subspaces @, = const, ...,
&, = const, is 0.

o0, over

0<% <1l (j=1,2,...,n),
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