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Smoothness and differentiability in L,
by

C.J. NEUGEBAUER (Lafayette, Ind.)*

1. A measurable function f:I,— R, I, =[0,1], R reals, will be
called Ly,-symmetric, Ly-smooth, if for each meId, I3 = (0,1),

13 /
(1) {%f[Azf(w,t)!@dt}lp=o(1),0(h), as h—>0,
]

respectively, where 42f(x,1) = f(w-+1t)+f(z—1)— 2f(x). Throughout this
paper p will be > 1. The well-known notions of symmetry and smoothness
given by

(2) Af(z,1) =o0(1),0(h), as h—0,

respectively, can be viewed as the p = oo versions of (1). The question
arises whether certain of the results for (2) are also true for (1) with
perhaps estimating some of the inequalities in the metric of L,.

In particular, it is known that a measurable smooth function has
a derivative on a set which is of the power of the continuum in each in-
terval [4,10]. In [2], A.P. Calderon and A. Zygmund introduced the
notion of L,-differentiability. We say that f has at x, a first L,-deriva-
tive provided there iy @ linear polynomial a,- @, such that

h )
(3) {«-zl—iwi ]f(wo—}-t)——ao——altl”dt} ” =o(h), as h-0.

The polynomial a,- a4t is unique, and we write a; = fip(mo). One
of the results that we obtain shows that L, smoothness implies L,-differ-
entiability on a set which is of the power of the continuum in each in-
terval. That this may be the case was noted by A. Zygmund as the author
learned in a conversation with B. M. Stein. We will first prove that the
theorem is true for continuous functions, and then we will show that
a measurable L,-smooth function iy continuous on a dense open set. We
will show that this is the best possible continuity property for an L,-smooth
function and that in the case p = oo a substantial improvement is possible;
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in fact, the set of points of discontinuity of a measurable smooth funetion
is nowhere dense and countable. Finally, we will include some results
on the Darboux property of f}m analogous to those in [4, 10], and we will
conclude this paper with the Baire classification of an L,-symmetric function.

2. In thiz paragraph we will collect some definitions and results
which will be needed in the sequel. We say that a function f: I, -> R has L
a8 an approwimate imit at @y < L, if for each ¢ > 0, the sot H, = {w: |f(x)—1)|
> ¢} has @, as a poinb of dispersion, i e., |[H, ~I| == o(|I]) a8 I - m,,
@,el. Approximate continuity and approximate differentiation are defined
in an evident manner. We denote the approximate derivative of f at w,
by fop(®,). For all this and more information we refer the reader to [5].

We have occasion to use the following results.

LemwmA 1. Let f: I, — B be measurable and let p > 1. Assume that for
each wel) there is h = h, >0 such that

a
[ 1fe+0+f@—oPa < o.
[
Then |f|” is integrable in a neighborhood of almost every point of I,.
For p = 2, this is lemma 13 in [8], and the proof given there needs
only obvious changes.
 Lemma 2. Let Ya, < oo, 4,30, n=1,2,..., and let f,: I, —~ R,
n=1,2,..., be a sequence of continuous functions with the property that
for each wel, there is N (1) >0 such that fu(x) < an, n > N(x). Then
each interval contains a subinterval on which 3f, () converges uniformly.
For the proof see [1]. The following lemma is easy to verify:
LemMA 3. Let J:: I, — R be non-decreasing and let B be a measurable

subset of I,. Then [f giff, where ¢ = | B|.
0 7

3. We say that a function f: I, — B is approvimately smooth on I,
it for each wely the set B, = {h:|4%f(w, k)| > e|h|} has 0 as a point of
dispersion for each ¢>0. We let M (f) denote the set of points myel}
such that for some meR, f(x)—ma has a local extremum ab .

Levma 4. Let f: I, >R be continuous and approvimately smooth

on Iy. Then f,, emists on M = M (f) and M is of the power of the continuum
@ each interval. .

Proof. The proof is egsentially the same as the one in [12], p. 43,
for 3.3, and we include it for completeness. Let ®oeM and choose meR
such that g() = f(x)—ma has a local extremum, say, maximum at @,.
We will show that g;,(z,) = 0. Let &> 0 be given, and let I, = {h:
149 (@, W] > elnl}, A, = {h: lg(20+h)—g (@) > ¢ |h]}. Sinee 0 is a point
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of dispersion of Ji,, it suffices to show that 4, ~ [—0,6] = B, for some
6 > 0. Since g(®,) is a local maximum, there iy § > 0 such that g{@o+h)
—g(m) <0, |h| < 6. It follows that

g @o-t+-1)— g (@)

h

< <4,

2
<|frean)

establishing the desired inclusion and also fy,(w,) = m. Thus, it 0 < a
<f 1 and m(a, p) = [f(B)—f(a)]/(—a), there is a point wye(a, B)
at which fy, (@) == m(a, f). Unless f is linear, in which case the lemma is
obvious, the collection of distinet m(a, B), and hence M, is of the power
of the continuum.

Romark. Under the hypothesis of lemma 4, if B = {x: fap() exists}s
then fy, has the Darboux property on E. The proof is not difficult, and
we shall treat this in connection with L,-derivatives in a later section.

Lnvya B, Let f:I, - R be measurable and Ly-smooth on I,. Then f
is approximately smooth on I,.

Proof. Let @,ely, and let ¢ > 0 be given. We have to show that the
set J, = {¢: |4 (o, %) > ]t} has 0 as a point of dispersion. Let Xy
= J,~ [0, h]. By lemma 3,

I yp 1, w
{i f |A"f(mo,t)1"’dt} ,>,{- fef’z”dt‘
N by f

1 & 1 ped | By 1P
,--——aE”+‘} ={_— } B
,>{hp+1u\ e S

and, by hypothesis, this is o(h). Hence |Hj| = o(h), and the proof is
complete.

TawoReM 1. Let f: Iy — R be continuous and Ly-smooth on I,. Then
the set 8 of points x at which fin(w) cwisls containg M= M(f), and hence
8 of the power of the continuum in each interval.

Proof. We will ghow that for w,eM,

. T yp
{21;; f If (6o -1~ 1) mf(wo)_f,LI,(wo)-t]”dt} =o(h).
~h

Since @,eM, there is meR guch that g(x) = f(m)—«m:? .has a local
extromum at @,. By lemma 4, fo,(%,) = m, and f(;r ¢ sufﬁmentaly small
f (@~ £) — F (100) — foup (o) 1] =19 (@04 1) — g (@0)| < |49 (0, 1)] = |4°f (@0, 1)]-
Hence

1 13 } e
Lo [ et 0—flo=fuepra = oo

it
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4. We remove now the continuity hypothesis of theorem 1. For
this purpose we establish the following lemma:

LeMMA 6. Let f: Iy — R be integrable. If f is Ly-smooth on Iy, then f
is continuous om a denmse open set in I.

Proof. If we let

() = [ )i,
0

we obtain
L

"
~fla) = o f A (w, 1) dt.
;

F (a4 h)—F(x-—h)
2h
Since p > 1, we have the inequality

I3 h
1 2 P 1, ¥ \1/1)
Rf |4 (s, )]t < {%« bf 21w, o7t

from which

Pt =
I T

)»wf(m)’:-o(h), s b0,

Hence there is &, > 0 such that

Flath)—F(@—h)
o @

<h, O0<h-<d,.

From now on the proof parallels the one in [1]. Let I be a closed
interval in Ij, and let h, — 0, h, >0, such that 3 h, < 00, hy > hnpy
and x = hy, eIy for every wel. For x eI, lot gn (@) = [F (@ hy) — I (00— h)]/2hn
and observe that there is N (#) > 0 such that |, (@) — f(@)] < by, and hence
100 (#) — @ur1(®)| < 2hn, 0 2= N(x). Application of lemma 2 to ¢ (@)
+ 2 [Pn4a (@) —@n(2)] = f(w) completes the proot.

. TI-H?OREM 2. Let f: Iy — R be measurable and Ly-smooth on 1y, Then (i)
fis com.muous on a dense open set on Iy, and (i) the set of points at which f
has a first Ly-derivative is of the power of the continuum in each interval.

Proof. We only need to verify (i), sinee (i) follows from (i) in view

of theorem 1. To prove (i), we first observe that for each x eI} there is
h = hy > 0 guch that

h
[ 1@, )@t < oo

e ©
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ITence
I
[ Ifl@+t)+fle—1)Pds < co.
0

By lemma 1, f is integrable in a neighborhood of almost every point
of I,. If we invoke lemma 6 to any such neighborhood, we obtain the
desired dense open set.

The set of L,-differentiability in theorem 2 can be a set of measure
zero, Let f: I, -» I be continmous and smooth such that f exists only
on & get of measure zero ([12], p. 206). It is well-known that the set of
points at which. f,, exists is also of measure zero [3]. Thus the function f
will provide the desired example for L,-differentiability if we can show
that the tirst I,-derivative is equal to the approximate derivative a. e.

Lgmma. 7. Let f: Iy - B be measurable. Then at almost oll poinis z
at which fr,,(x) evists, fz,,(w) = fun (@).

Proof. Let @ be a point of L,-differentiability of f. Then

W

1 1
e [rero-a@-a@ra] —om,
M

where a,(#) = f-'LI,(m). Using an argument as in lemma 5, we see that, for
each &> 0, the sot H, = {: [f(#+1)—ap(®)—ay(x)?t] > ¢lf|} has 0 as
o point of dispersion. If @ also belongs to the Lebesgue set of f, then ay(w)
= f(z), and hence a,(®) = fo, ().

Remark. If in lemma 7 measurability is replaced by continuity,
then, as i geen from the proof, at every point x at which f,';p (x) exists,
fip(m) =fﬂ’\1)(w)'

5. In thiy section we will show that the first L,-derivative of an
L,-smooth function behaves with regard to the Darboux property as
the first derivative of a smooth function (see [4,11]). Leb us recall that
a function f defined on a set F has the Darboux property on Biffora <b
in B, f asswmes all values between f(a), f(b) on (a,b) ~ H.

Timoruy 3. Let f: I, — R be continuous and Ly-smooth, and let 8 =
= {n: fr, (@) exists}. Then fr, has the Darboux property on S.

Proof. Let us set g(@) = fl’;p(w), sel, and let us note that in view
of the continuity of f, g(®) = fap (), @<8. We only need to show that,
if @< b, a,bes, and g(a) <0 < g(b) then there is a point £e¢(a, b) such
that g(&) == 0. We may assume that £(0) = f(a). It f(b) =f(a,),, we infer
from lemma 4 that there is a point &e(a, d) ~ M at which f,;(£) = 0.
By theorem 1, M < § and fy(§) = g(€). If f(b) > f(a), we have in view
of fon (b) > 0, fop(6) < 0, & point ¢e(a, b) such that f(c) = f(a). As be-
fore, there is a point £e(a,¢) such thab fop(8) = g(&) = 0.
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We remark that continuily cannot be replaced by measurability in
theorem 3. The example of a measurable smooth function whose deriv-
ative assumes only the values 0 and 1 (see [4]) also provides the de-
sired example for Ly-smoothness. However, the same situation as in [4]
prevails.

THEOREM 4. Let f:I,->R be measurable and L,-smooth, and let
8 = {w: fr, (@) exists}, B = {w:f(v) exists}). If B~ I <|I| for every
interval I < I,, then fr, » has the Darbouw property on 8.

Proof. Using theorem 1, it is seen from the proof of lemma 4 (mean
value theorem) that, if fz,(#) >0, ®el ~ 8, then f is non-decreasing
on I and hence f’ exists a. e. on I. The proof is now the same as the one
given for theorem 7 in [4].

6. We will show that (i) of theorem 2 cannot be improved for p < oo
and that in the case p = co an improvement is possible. We denote the
closure of 4 by 4.

LevvA 8. Let a < b and let p > 1. Then there ewisis A < (a,b) such
that (i) A is @ union of disjoint closed intervals, (i) {a} = A—A (iii) |4 ~ J|
=o(|JP) as J —>a, aed.

The proof iy clear.

Leywa 9. Let C be a closed nowhere dense subset of Ly, let Gy = (ay, by),
t=1,2,..., be its complementary intervals, and let p = 1. Then there
emistshA < U G such that (i) A is o union of disjoint closed intervals, (il)
Ccd—A, (i) [An~nJl =o(J), as J =0, ced, for any ceC.

Proof. Let 4; < @; be as in lemma 8. There exists §; > 0 such that
191 < 8y ased, implies [4; ~ J| < 27¢|JP.

Let A} = A4; ~ [, a;+ 6;], and let 4 = |JA}.

Let ¢<O and let Jy —¢, J, = [ay, f,]. Then, if a; < f; and J¥
= [as; a;i+ 8] ~ I,

i ol Al P 1
!Jnlp [J;[p |Jn|p 2i7

and, if a; = f,, [A] ~Ju] = 0. Let ¢> 0 be given, and choose n, 50
that 27" < ¢/2. For » > N,

* ¢ .
|45~y <§;11_0‘Jn|p7 t=1y.00y M.

Thus, for n > N,

ny—1

|4 ~ Jy A} ~ T, 1 [AF A T
Il ; EA 2 B

@
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TurorEM B. Let C be a nowhere dense and closed subset of I,, and let
p = 1. Then there ewists a bounded measurable f: I, —~ R such that (i) f s
Ly-smooth, (i) C = {#: f not continuous at w}.

Proof. Let A be the set constructed in lemma 9 with » replaced
by p+1. Define f(x) = 0, #eI,—A4, and on each component [a, b] of 4
let f be differentiable on 4 with f'(a) = f'(b) = 0, flk(a+Db)) = 1, and
Ifl <1. We only need to show that f is L,-smooth, and this is clear at #¢C.
If weC, then, letting 4, = {s—u:acd},

{2 f |4 (@, t)l”dt}w <l 0 f paroral + 5 D f7 L sa—opa}”

0

(1o [0, B [ [Ag [—B, 0
*{ h } +{ P } = o).

7. We have already observed that the set D(f) of points of disconti-
nuity of a measurable smooth (p = oo) function is nowhere dense. We
will show that D(f) is also countable. The main idea of the proof is taken
from Sierpifski [6] which contains a similar theorem concerning first
symmetric differences.

Let f: I, — R, and for el let

Ay f (@, by 7) = Af(z, i+ 7)—Af (@, 1).
Tn the notation of [12], p. B0, this is 2[p,(t47)— (8], al. eXpres-
sion which also appears in Lebesgue’s convergence test for Fourier series.
TamoreM 6. Let f: I, — R and let D = D(f). If

limsup |4.f(#, 1, 7)| = o(f) a8 t—>0
-0

for each wely, then esther D = I, or else D is countable.

Proof. Let us assume that D 5= I, and that D is uncountable. Let
ael,—D. Then either.D ~ [0, aJor D~ [, 1]is uncountable, say D ~ [a, 1]
= I i§ uncountable. )

We let o(w) = limsup |f()—f(2)| as # — . There exists o > 0 such
that

B(o) = {m: veB and o(®) > o(l+z—a)}

is uncountable. Let ¢ = sup{y:y >a and B(o) [a,7] i8 countable}.
Then it follows that (i) ¢ > a, (ii) H = {&: o () > c(l+ao—a), a <o <}
is countable, and (iii) for every &> 0, Ay = {z: 0(®) > oc(l+2—0a),
¢ <@ < ¢-+d} is uncountable.
Let
p@, 1) = hfnosuP\A*f(w: t, 7)l-
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There is 0 < 8 <¢—a such that 0 < ¢o,?) < 2041, 0<t<s.
Since f(e+t+1)—f(e+1) = Auf(e, b, 1)—[fle—2t—7)~Ff(¢—1)] we have
o(e+1) <201+ w(c—1). For ¢--teds, we obbain w(c-+1) > o(1 04t q)
which, with the inequality just established, gives .

w(e—1t) > o(l+e+t—a)—20t = o(L-c—1t—a).

This implies that ¢—i¢e<H. Since there are uncountably many ¢ for
which ¢+ted,;, we have that H is uncountable, a contradiction.

CoroLLARY 1. If fi: Iy R is measurable and smooth, then D(f) is
countable.

8. The previous theorem has an Ly-version. For f:I; - B moasurable,
we let

h
D, = {m:melg such that f|f(m+t)——f(m)|”dt #o(h) ag b — —]—0},

—h

and we call D, the set of L,-discontinuities of f. We also set

h
. 1 ) Up
p (@) = limsup {-- f !f(m—l~t)—~f(ao)\”dt} :
[N ) 2h n
and we observe that D, = {u: w,(x) > 0}.
TurorEM 7. Let f: Iy~ R be measurable and assume that

NN i
s {7 [ 1dusto, ) = o,

Jor each wely. If wy(w) s continuous at some point, then Dy is countable,

Proof. Let acl, be a point of continuity of wy (@). Hence wy(a) < co
and [f|” is integrable in a neighborhood N of a. Congequently, w,(x) = 0
a.e. in N, and therefore, w,(a) = 0. The proof is now the game ag the
one for theorem 6 except for estimating certian inequalities in the metric
of L.

Remark. It is not known to the writer whether L,-smoothness implios
countability of D,.

9. In this section we will show that measurable Ly-symmetric fune-
tions are in the first Baire clags. This is known for the case p = oo [4].
Let f: I, — R be measurable, and let :

s

[ IfPa = oo}.

Log

A, = {w: e>0 implies

It is clear that 4, is cloged.
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LrMma 10. Let f: I, —~ R be measurable and assume that

h
[ 14% @, 0Pdt = 0(1), eI’

If wyedy, then
L
[ @+t —fl@o—t)Pdt = co, h>0.
0

Proof. The proof follows from the inequality

211 (@0) —fl@o+ )| < |f (@y+ 1) — flamo — £)| -+ | 4% (o, 1)]
and.

h
fh (@t 8)— f (@) Pt = oo

LmmmA 11. Let f: I,—> R be measurable and assume that
h
[ 128 (@,t)FPdt = 0(1), weI.
[

Then A, is countable.

Proof. By lemma 1 we know that A, is nowhere dense. If we suppose
that 4, is uncountable, we can write 4, = P U N, where P is perfect,
N is countable, and P ~ ¥ = 0. Let (a, b) be a complementary interval
of P with beP ~ Ij. Then there exists 0 < 26 < b— a such that, if 0 < |«
<4, 0 <h <4, then '

ath

[ 14, 0ra < M,
for some constant M >0. Let yeP ~ (b,b-+ ) and let y, =2b—y.
Since |f(y+8)—f(y—] < [flyo+8)+fly—0)—2f @)+ [f(ro— 1) +fly+1)
= 2f(B)| +If (yo+1)—Ff(yo—1)l, we have

3 . yo-b+h v
{[i+o—so—ora)™ <{ [ 1450, opaf” +

[o b
=Dl

A
1 yp
1 1, wral” +{ | ot ) —Flzo— It} -
p=b 0
If 0 < b < 6 we see from lemma 10 that yoed,. Sin.ce‘P ~ (b, b+ )
is wneonntable, the set 4, ~ (, b) is uncountable, contradicting 4, ~ (a, b)

< N.
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Remark. Lemma 11 implies that the exceptional set in lemma 1
is countable.
TeEOREM 8. Let f: I, - R be measurable, and assume that

h »
{%f;amm,m”dt}” =o(l), well.

Then fﬂ is in the first Baire class.
&
Proof. We first assume that feL,. If we let (@) = [ f(t)dt, it follows
¢
readily that (note p = 1)

Floth)—To=h

h
DR A - ;
-h)—F f(@)| < -;Eof | 4% (w, 1)] At

h
11 o, R
<3{5 [ 1@, 0ra” = o).

0

Since F' ig continuous, the proof for the case fel, is complete.

Next, we assume that f is integrable in a neighborhood of every
point of Ij. Let {I,} be a sequence of closed intervals such that I, < Tnir
and |J I, = Ij. Since fely(I,), we infer that f|I, is in the first Baire
clags on I,. It readily follows that f is in the first Baire class on I,.

Since 4, is closed and countable, the general case is an immediate
consequence of what has already been established.

Remark. There exists a bounded approximately continuous function
f:I,~ B for which {:f(2) = 0} is dense and of measure zero [10]. This
function is IL,-symmetric and discontinuous a. e., even though, as seen
from theorem 8, it is continuous on a dense Gy-set. It iy known that in
the case p = oo one obtains continuity a.e. [8].
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