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w*Dbases and bw*-bases in Banach spaces
by
Jo R RETHERFORD (Tullahasses, Flovida)*

1. Introduction. Tt X be a linear space endowed with a locally
convex topology 7. A sequence {M,} of non-trivial subspaces in X is
a 7-basts of subspaces for X if and only if corresponding to each zeX
there is a unique sequence {x;}, @;eM;, such that

"
= limei,
o fe=l
convergence in the topology v. Corresponding to a basis of subspaces
{M,} is a sequence of orthogonal projections {H;} (Bi =F; and EE;

= 0 if i + j) defined by (o) =, if 2 =£Z’ @y, wyeMy. If each H;is con-
wa

tinuous the basis is called a r-Schauder basis of subspaces (v-Sbos). This
concept wag first systematically studied (independently) by Mazur and
McArthur, although the notion essentially dates back to Grinblyum [8].
‘We remark that a r-Schauder basis of one-dimensional subspaces coincides
with the notion of v-Schauder basis of vectors (z-Sbov). (A very good
discussion of basis of vectors in linear topological spaces can be found
in [1].

[I:Ll) this paper we study 7-Schauder bases of subspaces where v is the
norm topology on a Banach space X or the w* or bounded w*-topology
on X* or X*. In speaking of the “z-Sbos {M;, B;}” we shall mean the
basis {M,} and the associated projections. If the norm topology is under
consideration, we drop the prefix and speak of Schauder bases of subspaces
(Sbos) and Schauder bagey of vectors (Sbov).

A Sbos {My, I} is shrinking if {R(Z})} where R (B} del.lotes the
rango of the adjoint of Hy, is a Sbos for X*. In the one-dimengional case

* This paper is from Chaplex III of the author’s dissertation, Basic Sequences,
Bases and Wealk*-Bases in Banach Spaces, Florida State University, 1963. It was
partially supported by the National Science Toundation Grant No. NSE-GP-2179.
The author wighes to thank Professor C. W. McArthur for helpful suggestions regar-
ding this paper.
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this notion of shrinking coincides with that usually given (191, p. 5ue,
Thm. 3, [5], p. 70, Lemma 1).

After a few elementary considerations concerning w*-continuoug
linear operators of a conjugate Banach space X* into itwelf, it is shown,
generalizing a result of Singer ([12], p. 80, Thm. 3), that & Banach space X
has a Sbos if and only if X* has a w*-Sbos. This theorem (3.1), actually
shows how to construct a Sbos for X (a w*-Sbos for X™) if one iz given
a w*-Sbos for X* (a Shos for X). It is also shown that if A™ has & w*-Sbos
which ig also a Shos, then X must have a shrinking Sbos.

The final part of the paper is devoted to showing that the notiong
of w*- and bounded w*-Shos are oquivalont.

2. Notation and remarks. In the sequel X will denote an infinite
dimengional Banach space, T will denote a w*-continuous operator from
X* into itgelf, 7* the,adjoint of 7 and J the canonical map of X into JX*,
Also, R(E) denotes the range of a linear operator X and if {#;} is a so-

00

quence of linear operators on X into X then [|JR(H;)] denotes the closed.
0 feal
linear span of (JR(HE,).
1=1
The following readily established remarks are of fundamental im-
portance to our work.
(2.1) The set T*J(X) is contained in J(X) ().
(2.2) The w*-continuous linear operator T is morm-continuous on X*
and hence T is norm-continuous on X**,
(2.3) If P is a w*-continuous projection on X* then M = J~'P*J is
a_morm-continuous projection on X.
The following lemma will be used. without proof. It is a generalization
of a theorem of Banach ([2], p. 107, Thms. 2 and 3).
Levma 2.4. If {Bi} is a sequence of continuous, non-trivial, orthogonal
projections of a Banach space X into dtself and if

{f lfh(.',(,')}::ml

11
is bounded for each weX then {R(B)}L, is o Sbos for [ CJR(EU] and
© (2%
{R(E})} is a Sbos for [\UR(H!)].
in1

3. w*.Schauder bases of subspaces in X*. We prove now

'_[:HEOREM 3.1.If { My, By} is a Sbos for X then {R(B}), 1!} is & w*-Sbos
for X*. Conversely, if (N, P;} is a w*-Sbos for X* then {R(By), By}, where
B, = J7'PYJ, is a Sbos for X.

(') See [4], IV.1, section 2, Proposition 1.
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Proof. Lot feX* and xeX. Then

n

DB () @) = D) f(Bie) — f(@),
fer i=1

n

3 N
whence | B} (f)] converges to f in the w*-topology. Suppose szi}’
Fesl

q=

f,,-,eR(E;“), is w*-convergent to f. Then, for fixed jew and zeX,

o
(B ) (@) = f(By(2) = D'l Bs(e)) = fy(o),
dea)
sinee H{H} = 0 and fyeR(Hf). Thus the expression is unique. It is well
known that the adjoints of norm-continuous linear operators are w*-con-
tinnous and thus {R(E}), B} is a w*Sbos for X* .
Now suppose {N;, P;} is a w*-Sbos for X*. By (2.3), B; = J PJ
is a norm-continuous projection on X, for each 4. Since {P;}, a.nd. hence
{P}}, iz a sequence of orthogonal projections, it follows that {Ei} is a se-
quence of continuous orthogonal projections. By hypothesis, for each
zeX and feX*, we have
fl@) = Y (Bl (@)
im
By (2.1) there is a Y;eX such that P} () = J(X;). Thus Ei(x)
= J7'P}J (w) = ¥;. Hence

f@) = P = Y P @)0N = DB,
qeal 4=1 i=1

for every feX* and weX. Thus

sgp”é,‘m(m)“ < 4oo forall xeX.

(]
Hence by Lemma 2.4, {E(H)} is a Sbos for X, = [iUIR(Ei)]. Suppose

there is an we X\ X,. Then there is an f eX* guch that f(z) =1 and
F(X,) = 0. Thus

1 = f(@) = lim D f(Bi(a)) = 0

7 f=l

since H;(w) ¢ X, for each icw. Hence X = X, and this completes the proof.
PemormM 3.2. If (N, Pi} 48 a w*-Sbos for X*, then {N;P;} is a Sbos

for IOR(E)]



GUEST


68 J. R. Retherford

Proof. By Theorem 3.1, {R(J™'P}J)} ix u Sbos for X and hece,
by Lemma 2.4, {R([J™'PIJT*) is & Sbos for [(JR([J LEI )] Wo show
Lol

that (J7'P{J)* = Py, for each tew. Lot zeX and feX*. By (2.1) there
is a ¥;eX such that PfJ(w) = J(Y,). Thas ([J "“l’{‘Jj]*(f)) (@)
=fIIPHT (@) = f(Xy) = (P} (@))(f) = (P(f) (w) and it follows that
(J'P}J)* = P;, completing the proof of the theorem.

As a special case of Theorem 3.2 we see that a w*-Hhov, {fi}, for X* is,
in the terminology of Bessaga and Peleaynski [3], a basic sequenco of vectors,

That a Sbos for X* need not be a w*Sbos for X* is ousily seon by
letting {2, B;} bo the Sbos formed from Gelbawn’s non-retro hasis for
It (see [12], p. 76). On. the other hand, there are spaces which have Schauder
bages of subspaces which are also w*-Schauder buses of subspaces, Tor
example, the Sbos formed by the unit vectors in I is also a w*-Sbos for
. Indeed, it follows from Theorem 3.1 that if X has a shrinking Shos
{M;, B;}, then {R(B}), Bf} is both a Sbos and a w*Shos for X*. Con-
versely, if {N:, P;} is both a Sbos and a w*-Sbos for X*, then {R(J~'P}J)}
is a shrinking Sbos for X; for, by Theorem 3.1, {R(J~'P}J)} is a Shos
for X and in the proof of Theorem 3.2 it was shown that (J7P}J)* == P,.
Thus, by Lemma 2.4, {R(J'P{J)} is shrinking.

The unit vectors {e;} form a w*-Sbos for (m) and thus there are con-
jugate spaces with w*-Sbov which cannot have Sbov. Consider the con-
verse question:

() If X* hag a Sbov, does X* have a w*-Sbov!

‘We observe that a negative angwer to (x) (which is unlikely) would
yield a negative answer to the Schauder basis problem. On the other hand,
an affirmative answer to (x), together with Theorem 3.1, would yield
an affirmative answer to a question of Karlin ([10], p. 984).

4. w*-Schauder bases of subspaces in X**, In view of Theorem 3.2,
the following question is of interest:

If X* has & w*-Sbos {¥;, P;}, under what conditions will [U ¥
(2
= J(X)?
A partial answer is given in the following theorom :
TeEoREM 4.1. Suppose X™* has a w*-Shos {M;, By} and let 1; be the

vestriction of By to J(X). If {R(H})} is o Sbos Jor J(X), then {R(J W)}
8 @ shrinking Sbos for X.

Conversely, if X has a shrinking Sbos {Ne, D}y then {R(DI™)} is
a w*-8bos for X* and if P, is the restristion of DI to J(X), {R(P)} s
a Sbos for J(X) ().

(?) Day [5], p. 71, proved the second assertion of the theorem in tho ease where
each N; is one-dimengional.
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Proof. Let J, be the canonical map of X* into X***, If {M;, B}
is a w"-Sbos for X** and {R(F;)} is a Sbos for J (X) then, by Theorem 3.1,
{B(J B} J,)} is & Sbos for X*, Clearly, {R(J™EJ)} is a Shos for X.
Thus, it suffices to show that (J7'BiJ)* = J;'BiJ,. Since {R(E))} is
o basiy of subspaces for J(X), BiJ (X) = J(X) for each tew; thus given
weX, there is & Y;eX such that K J(z) = J(¥;). By (2.1), BT, (X*)
< J,(X*); thus, for each feX* there is a g;eX* such that B (f)
= J4 (). Hence ((J = 1T )*(f)) () = FT- "B (&) = F(Ts) = (7, () (B ()
= (BT (AN (@) = gi(@) = (JS BT, () (@) Tt follows that (J— HJ)*
= J Ty, and so {R(J'EJ)} is a shrinking Shos for X.

Now if {¥;, D;} is a shrinking Sbos for X then {R(D})} is a Sbos
for X* and hence, by Theorem 3.1, {B(D}*)} is a w*-Shos for X**, Clearly,
{R(JDJ ")} is & Sbos for J (X). Thus we need only show that JD,J~* = P,
for each icw. Let weX and feX*. Then (P (w))(f) = (DI (x))(f)
=f(Di(@) = ((JDITH T @) (f), i ey Py = TDT .

In particular, if {w;} is a w*-8bov for X** such that each @ eJ (X),
then. {J™'»;} is a ghrinking Sbov for X.

‘We remark that the second conjugate space of a space with a Sbov
need not have a w*-Sbov. For example I* has a Sbov but since (m) has
no Shov, (m)* has no w*-Sbov. On the other hand, an affirmative answer
to (*) together with Theorem 3.1 would imply that if X** has a w*-Sbov,
then X must have a Sbov.

5. Bounded w*-Schauder bases of subspaces. Recall that the
bounded w*-topology (bw*-topology) for X* is the strongest topology
which coincides with the w*-topology on each set a8* = {feX* | |fll < a}.

In infinite dimensional spaces, the bw*-topology is different from
the w*-topology ([5], p.43). However, as we show in this section, the
notions of w*- and bw*-Schauder bases of subspaces are equivalent.

Dieudonnd [5] has shown that a basic system of neighborhoods
of the origin in the bw*-topology of X* consists of the sets {f eX*. || f(o;)]
< 1} where {;} is a sequence of elements of X converging to zero in norm.
Thus X*, with its bw*-topology, is alocally convex linear topolo‘glcajl'spa.ce.

It is known ([7], p. 428) that a linear functional F on X* is continuous
in the w*-topology if and only if it iy continuous in the bw*-topology.
From these facts we derive the following lemma:

LemmA B.1. Let T be a linear operator from X* into dtself. Then, T is
w*-continuous if and only if T is bw™-continuous.

Proof. Suppose T is w*-continuous. Let {x;} be an arbitrary sequence
in X converging to zero in norm and let

U= {geX"[lg(m)| <1}.
By (2.1), T*"J(X) <= J(X) and it follows that J~'T*J is a norm-con-
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tinuous linear operator on X into X. Liet V == {fe X* | |f(/ 11" ] (@)} | < 1}
where {z;} is the sequence in X defining U. Again by (2.1), there ig
a Y;eX such that 7*J(w;) = J(¥;). Thus if feV, then |T(f)(m)| =
= |(T*T (@) (N = [FTT*T (@))] < 1, 1 0., T(fe U and 50 T is hw*-con-
tinnous.
Oonversely, suppose I' is bw*-continuous. Lot U = U(0;a,,...,
,,; &) be an arbitrary basic w*-neighborhood of 0. Since 7' ix hw*-uuubinumm,
J ()T is a bw*-continnous linear functional on X™ for ¢ 1, ..., n, and
hence a w*-continuons linear functional on ™
Thus for the & > 0 defining U and for fixed j, 174 -
a w*-neighborhood of 0, Uy, sueh that feU; implios |7'(f)(2))] << e. Tioh
n
U, = ﬂl U;. Then, fe U, implies 1'(f) ¢ U and so 1" ig w*-continuous on X*,
f=
The next lemma was communicated to the author by Professor R. D.
MeWilliams.

Lemua 5.2. Let {g,} be a sequonce in X* and lot fe X*. Then, w*-limg,
e

= f if and only if bw*-limg, = f.
Proof. If W*‘-liy{ng,L = f, then {|ig,/[} 18 bounded and so thore is an

4> 0 such that ||f] < a and ||g./| < @ for all new. Lot U be an arbitrary
bw"-neighborhood of f. Then U ~ a8* is relatively w*-open in a8*. Uence
there is a w*-neighborhood V such that feV and U ~al* = V ~ad*
Since W*-l'%ng,,, = f there iy an N ¢w such that # > N iwplies g, ¢V ~ as¥,

whence g,eU and so bw*-ﬁygn =f.

. By definition, the bw*-topology is a topology stronger than the
w*-topology. Thus if bw*-liqfn gn = f, it follows that w*-limg, = f.
n

TEEOREM 5.3. 4 sequence of non-trivial subspaces {N;} in X* is a w*
8bos for X* if and only if {Ni} is a bw*-Shos for X*.
Proof. Suppose {N;} is a w*-Sbos for X*. Lot {P;} be the associated
:{e(]lcu?fe of orthogonal projections. Then. each Py iy w*-continuons and
 feX*,
n
f=w*lm Y P(f
f m 3 Pi(f

and the expansion is unique. By Lomma B.1, each P; is bw*-continnous
and by Lemma 5.2,

n
f=bw"lim 3 Py(f).
" fml
It follows, again from Lemma 5.2,
and so {N;} is a bw*-Sbog for X*.
5.1 and 5.2 in the same manner.

that the expansion is unique
The converse follows from Lemmas

-y, thoere is
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COROLLARY B.4. If {M;, B} is a Sbos for X, then {R(E¥)} is a bw*-
8bos for X*.

In his thesis, Ruckle [11], p. 28, showed that the notions of weak-
and norm-Schauder bases of subspaces are equivalent. His result, together
with Theorem 5.3, suggests the following problem:

If X is a lnear topological space with two locally convex topologies
7, and 7, and if (X, 7)) and (X, 7,) have the same continuous linear functio-
nals, 18 @ sequence of non-trivial subspaces {N;} in X a v,-Sbos for X if
and only if it s @ 7v,-Sbos for X%
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