

- [4] Einige Absohützungen der Greenschen Funktion des Operators $Au + q(x_1, x_2, x_3)u$, Ann. Pol. Math. 13 (1963), p. 295-302.
- [5] Über partielle Differentialgleichungen vom elliptischen Typus mit singulären Koeffizienten, Studia Math. 18 (1959), S. 137-159.
- [6] G. Hamel, Über die lineare Differentialgleichungen zweiter Ordnung mit periodischen Koeffizienten, Math. Zeitschrift 27 (1913), S. 269-311.
- [7] O. Haupt, Über lineare homogene Differentialgleichungen zweiter Ordnung mit periodischen Koeffizienten, Math. Annalen 79 (1919), S. 278-285.
- [8] K. Kodaira, The eigenvalue problem for ordinary differential equations of the second order, and Heisenberg's theory of S-matrices, Amer. J. Math. 71 (1949), S. 921-945.
- [9] A. A. Kramers, Das Eigenwertproblem in eindimensionalen periodischen Kraftfelde, Physica 2 (1935), S. 483-490.
- [10] R. Kronig and W. G. Penney, Quantum mechanics of electrons in crystal lattices, Proc. Royal. Soc. (A) 130 (1930), S. 499-513.
 - [11] E. M. Lewitan Fastperiodische Funktionen, Moskva 1953 (Russisch).
 - [12] W. Maak, Fastperiodische Funktionen, Berlin 1952.
- [13] C. R. Putman, On the least eigenvalue of Hill's equation, Quart. Appl. Math. 9 (1951), S. 310-314.
- [14] On the gaps in the spectrum of the Hill equation, ibidem 11 (1953), S. 496-498.
- [15] S. Saxon, and R. A. Huntner, Electronic properties of a one-dimensional crystal model, Philips Research Reports 4 (1949).
- [16] A. Sommerfeld und H. Bethe, Elektronen im periodischen Potentialfeld.
 A. Eigenwerte und Eigenfunktionen, Handbuch der Physik 24 (1933), S. 368-427.
- [17] E. S. Titchmarsh, Eigenfunctions problems with periodic potentials, Proc. Royal Soc. (A) 203 (1950), S. 501-514.
- [18] Eigenfunctions expansions associated with second-order differential equations, Part II, Oxford 1958.
- [19] S. Wallach, On the location of spectra of differential equations, Amer. J. Math. 70 (1948), S. 833-841.
 - [20] The spectra of periodic potentials, ibidem, S. 842-848.
 - [21] D. Wintmer, On the location of continuous spectra, ibidem, S. 22-30.
- [22] Stability and spectrum in the wave mechanics of lattices, Physical Rev. 72 (1947), S. 81-82.

Reçu par la Rédaction le 7. 2. 1964

w*-bases and bw*-bases in Banach spaces

by

J. R. RETHERFORD (Tallahassee, Florida)*

1. Introduction. Let X be a linear space endowed with a locally convex topology τ . A sequence $\{M_i\}$ of non-trivial subspaces in X is a τ -basis of subspaces for X if and only if corresponding to each $x \in X$ there is a unique sequence $\{x_i\}$, $x_i \in M_i$, such that

$$x = \lim_{n} \sum_{i=1}^{n} x_{i},$$

convergence in the topology τ . Corresponding to a basis of subspaces $\{M_i\}$ is a sequence of orthogonal projections $\{E_i\}$ $(E_i^2=E_i$ and $E_iE_j=0$ if $i\neq j$) defined by $E_i(x)=x_i$ if $x=\sum_{i=1}^\infty x_j, x_j\in M_j$. If each E_i is continuous the basis is called a τ -Schauder basis of subspaces (τ -Sbos). This concept was first systematically studied (independently) by Mazur and McArthur, although the notion essentially dates back to Grinblyum [8]. We remark that a τ -Schauder basis of one-dimensional subspaces coincides with the notion of τ -Schauder basis of vectors (τ -Sbov). (A very good discussion of basis of vectors in linear topological spaces can be found in [1].)

In this paper we study τ -Schauder bases of subspaces where τ is the norm topology on a Banach space X or the w* or bounded w*-topology on X^* or X^{**} . In speaking of the " τ -Sbos $\{M_i, E_i\}$ " we shall mean the basis $\{M_i\}$ and the associated projections. If the norm topology is under consideration we drop the prefix and speak of Schauder bases of subspaces (Sbos) and Schauder bases of vectors (Sbov).

A Sbos $\{M_i, E_i\}$ is shrinking if $\{R(E_i^*)\}$ where $R(E_i^*)$ denotes the range of the adjoint of E_i , is a Sbos for X^* . In the one-dimensional case

^{*} This paper is from Chapter III of the author's dissertation, Basic Sequences, Bases and Weak*-Bases in Banach Spaces, Florida State University, 1963. It was partially supported by the National Science Foundation Grant No. NSF-GP-2179. The author wishes to thank Professor C. W. McArthur for helpful suggestions regarding this paper.

this notion of shrinking coincides with that usually given ([9], p. 522, Thm. 3, [5], p. 70, Lemma 1).

After a few elementary considerations concerning w*-continuous linear operators of a conjugate Banach space X^* into itself, it is shown, generalizing a result of Singer ([12], p. 80, Thm. 3), that a Banach space X has a Sbos if and only if X^* has a w*-Sbos. This theorem (3.1), actually shows how to construct a Sbos for X (a w*-Sbos for X^*) if one is given a w*-Sbos for X^* (a Sbos for X). It is also shown that if X^* has a w*-Sbos which is also a Sbos, then X must have a shrinking Sbos.

The final part of the paper is devoted to showing that the notions of w*- and bounded w*-Sbos are equivalent.

2. Notation and remarks. In the sequel X will denote an infinite dimensional Banach space, T will denote a w*-continuous operator from X^* into itself, T^* the adjoint of T and J the canonical map of X into X^{**} . Also, R(E) denotes the range of a linear operator E and if $\{E_i\}$ is a sequence of linear operators on X into X then $[\bigcup_{i=1}^{\infty} R(E_i)]$ denotes the closed linear span of $\bigcup_{i=1}^{\infty} R(E_i)$.

The following readily established remarks are of fundamental importance to our work.

- (2.1) The set $T^*J(X)$ is contained in J(X) (1).
- (2.2) The w^* -continuous linear operator T is norm-continuous on X^* and hence T^* is norm-continuous on X^{**} .
- (2.3) If P is a w*-continuous projection on X^* then $E = J^{-1}P^*J$ is a norm-continuous projection on X.

The following lemma will be used without proof. It is a generalization of a theorem of Banach ([2], p. 107, Thms. 2 and 3).

LEMMA 2.4. If $\{E_i\}$ is a sequence of continuous, non-trivial, orthogonal projections of a Banach space X into itself and if

$$\left\{\sum_{i=1}^n E_i(x)\right\}_{n=1}^{\infty}$$

is bounded for each $x \in X$ then $\{R(E_i)\}_{i=1}^{\infty}$ is a Sbos for $[\bigcup_{i=1}^{\infty} R(E_i)]$ and $\{R(E_i^*)\}$ is a Sbos for $[\bigcup_{i=1}^{\infty} R(E_i^*)]$.

3. w*-Schauder bases of subspaces in X*. We prove now

THEOREM 3.1. If $\{M_i, E_i\}$ is a Sbos for X then $\{R(E_i^*), E_i^*\}$ is a w^* -Sbos for X^* . Conversely, if $\{N_i, P_i\}$ is a w^* -Sbos for X^* then $\{R(E_i), E_i\}$, where $E_i = J^{-1}P_i^*J$, is a Sbos for X.

Proof. Let $f \in X^*$ and $x \in X$. Then

$$\sum_{i=1}^{n} \left(E_{i}^{*}(f)\right)(x) = \sum_{i=1}^{n} f\left(E_{i}(x)\right) \rightarrow f(x),$$

whence $\{\sum_{i=1}^{n} E_i^*(f)\}$ converges to f in the w*-topology. Suppose $\{\sum_{i=1}^{n} f_i\}$, $f_i \in R(E_i^*)$, is w*-convergent to f. Then, for fixed $j \in \omega$ and $x \in X$,

$$(E_j^*(f))(x) = f(E_j(x)) = \sum_{i=1}^{\infty} f_i(E_j(x)) = f_j(x),$$

since $E_i^* E_j^* = 0$ and $f_j \in R(E_j^*)$. Thus the expression is unique. It is well known that the adjoints of norm-continuous linear operators are w*-continuous and thus $\{R(E_i^*), E_i^*\}$ is a w*-Sbos for X^* .

Now suppose $\{N_i, P_i\}$ is a w*-Sbos for X^* . By (2.3), $E_i = J^{-1}P_i^*J$ is a norm-continuous projection on X, for each i. Since $\{P_i\}$, and hence $\{P_i^*\}$, is a sequence of orthogonal projections, it follows that $\{E_i\}$ is a sequence of continuous orthogonal projections. By hypothesis, for each $x \in X$ and $f \in X^*$, we have

$$f(x) = \sum_{i=1}^{\infty} (P_i(f))(x).$$

By (2.1) there is a $Y_i \in X$ such that $P_i^*J(x) = J(Y_i)$. Thus $E_i(x) = J^{-1}P_i^*J(x) = Y_i$. Hence

$$f(x) = \sum_{i=1}^{\infty} (P_i(f))(x) = \sum_{i=1}^{\infty} (P_i^*J(x))(f) = \sum_{i=1}^{\infty} f(E_i(x)),$$

for every $f \in X^*$ and $x \in X$. Thus

$$\sup_n \Bigl\| \sum_{i=1}^n E_i(x) \Bigr\| < +\infty \quad ext{ for all } \quad x \, \epsilon X.$$

Hence by Lemma 2.4, $\{R(E_i)\}$ is a Sbos for $X_0 = \bigcup_{i=1}^{\infty} R(E_i)$]. Suppose there is an $x \in X \setminus X_0$. Then there is an $f \in X^*$ such that f(x) = 1 and $f(X_0) = 0$. Thus

$$1 = f(x) = \lim_{n} \sum_{i=1}^{n} f(E_{i}(x)) = 0$$

since $E_i(x) \in X_0$ for each $i \in \omega$. Hence $X = X_0$ and this completes the proof.

THEOREM 3.2. If $\{N_i, P_i\}$ is a w^* -Sbos for X^* , then $\{N_i P_i\}$ is a Sbos for $[\bigcup_{i=1}^{\infty} R(P_i)]$.

⁽¹⁾ See [4], IV.1, section 2, Proposition 1.

Proof. By Theorem 3.1, $\{R(J^{-1}P_i^*J)\}$ is a Sbos for X and hence, by Lemma 2.4, $\{R([J^{-1}P_i^*J]^*) \text{ is a Sbos for } [\bigcup_{i=1}^{\infty} R([J^{-1}P_i^*J]^*)]$. We show that $(J^{-1}P_i^*J)^* = P_i$, for each $i \in \omega$. Let $x \in X$ and $f \in X^*$. By (2.1) there is a $Y_i \in X$ such that $P_i^*J(x) = J(Y_i)$. Thus $([J^{-1}P_i^*J]^*(f))(x) = f(J^{-1}P_i^*J(x)) = f(Y_i) = (P_i^*J(x))(f) = (P_i(f))(x)$ and it follows that $(J^{-1}P_i^*J)^* = P_i$, completing the proof of the theorem.

As a special case of Theorem 3.2 we see that a w*-Sbov, $\{f_i\}$, for X^* is, in the terminology of Bessaga and Pelczyński [3], a basic sequence of vectors.

That a Sbos for X^* need not be a w*-Sbos for X^* is easily seen by letting $\{M_i, E_i\}$ be the Sbos formed from Gelbaum's non-retro basis for l^i (see [12], p. 76). On the other hand, there are spaces which have Schauder bases of subspaces which are also w*-Schauder bases of subspaces. For example, the Sbos formed by the unit vectors in l^i is also a w*-Sbos for l^i . Indeed, it follows from Theorem 3.1 that if X has a shrinking Sbos $\{M_i, E_i\}$, then $\{R(E_i^*), E_i^*\}$ is both a Sbos and a w*-Sbos for X^* . Conversely, if $\{N_i, P_i\}$ is both a Sbos and a w*-Sbos for X^* , then $\{R(J^{-1}P_i^*J)\}$ is a shrinking Sbos for X; for, by Theorem 3.1, $\{R(J^{-1}P_i^*J)\}$ is a Sbos for X and in the proof of Theorem 3.2 it was shown that $(J^{-1}P_i^*J)^* = P_i$. Thus, by Lemma 2.4, $\{R(J^{-1}P_i^*J)\}$ is shrinking.

The unit vectors $\{e_i\}$ form a w*-Sbos for (m) and thus there are conjugate spaces with w*-Sbov which cannot have Sbov. Consider the converse question:

(*) If X* has a Sbov, does X* have a w*-Sbov!

We observe that a negative answer to (*) (which is unlikely) would yield a negative answer to the Schauder basis problem. On the other hand, an affirmative answer to (*), together with Theorem 3.1, would yield an affirmative answer to a question of Karlin ([10], p. 984).

4. w*-Schauder bases of subspaces in X^{**} . In view of Theorem 3.2, the following question is of interest:

If X^{**} has a w^* -Sbos $\{N_i, P_i\}$, under what conditions will $[\bigcup_{i=1}^{\infty} N_i]$ = J(X)?

A partial answer is given in the following theorem:

THEOREM 4.1. Suppose X^{**} has a w^* -Sbos $\{M_i, E_i\}$ and let E_i' be the restriction of E_i to J(X). If $\{R(E_i')\}$ is a Sbos for J(X), then $\{R(J^{-1}E_i'J)\}$ is a shrinking Sbos for X.

Conversely, if X has a shrinking Sbos $\{N_i, D_i\}$, then $\{R(D_i^{**})\}$ is a w^* -Sbos for X^{**} and if P_i is the restriction of D_i^{**} to J(X), $\{R(P_i)\}$ is a Sbos for J(X) (2).

Proof. Let J_* be the canonical map of X^* into X^{***} . If $\{M_i, E_i\}$ is a w*-Sbos for X^{**} and $\{R(E_i')\}$ is a Sbos for J(X) then, by Theorem 3.1, $\{R(J_*^{-1}E_i^*J_*)\}$ is a Sbos for X^* . Clearly, $\{R(J^{-1}E_i'J)\}$ is a Sbos for X. Thus, it suffices to show that $(J^{-1}E_i'J)^* = J_*^{-1}E_i^*J_*$. Since $\{R(E_i')\}$ is a basis of subspaces for J(X), $E_{i'}J(X) \in J(X)$ for each $i \in \omega$; thus given $x \in X$, there is a $Y_i \in X$ such that $E_i'J(x) = J(Y_i)$. By (2.1), $E_i^*J_*(X^*) \in J_*(X^*)$; thus, for each $f \in X^*$ there is a $g_i \in X^*$ such that $E_i'J_*(f) = J_*(g_i)$. Hence $(J^{-1}E_i'J)^*(f)(\alpha) = f(J^{-1}E_i'J(\alpha)) = f(Y_i) = (J_*(f))[E_{i'}J(\alpha)] = (E_i^*J_*(f))(J(\alpha)) = g_i(\alpha) = (J_*^{-1}E_i^*J_*(f))(\alpha)$. It follows that $(J^{-1}E_i'J)^* = J_*^{-1}E_i^*J_*$, and so $\{R(J^{-1}E_i'J)\}$ is a shrinking Sbos for X.

Now if $\{N_i, D_i\}$ is a shrinking Sbos for X then $\{R(D_i^*)\}$ is a Sbos for X^* and hence, by Theorem 3.1, $\{R(D_i^{**})\}$ is a w*-Sbos for X^{**} . Clearly, $\{R(JD_iJ^{-1})\}$ is a Sbos for J(X). Thus we need only show that $JD_iJ^{-1} = P_i$ for each $i \in \omega$. Let $x \in X$ and $f \in X^*$. Then $(P_iJ(x))(f) = (D_i^{**}J(x))(f) = f(D_i(x)) = ((JD_iJ^{-1})(J(x)))(f)$, i. e., $P_i = JD_iJ^{-1}$.

In particular, if $\{x_i\}$ is a w*-Sbov for X^{**} such that each $x_i \in J(X)$, then $\{J^{-1}x_i\}$ is a shrinking Sbov for X.

We remark that the second conjugate space of a space with a Sbov need not have a w*-Sbov. For example l^1 has a Sbov but since (m) has no Sbov, $(m)^*$ has no w*-Sbov. On the other hand, an affirmative answer to (*) together with Theorem 3.1 would imply that if X^{**} has a w*-Sbov, then X must have a Sbov.

5. Bounded w*-Schauder bases of subspaces. Recall that the bounded w*-topology (bw*-topology) for X^* is the strongest topology which coincides with the w*-topology on each set $aS^* = \{f \in X^* \mid ||f|| \leq a\}$.

In infinite dimensional spaces, the bw*-topology is different from the w*-topology ([5], p. 43). However, as we show in this section, the notions of w*- and bw*-Schauder bases of subspaces are equivalent.

Dieudonné [5] has shown that a basic system of neighborhoods of the origin in the bw*-topology of X^* consists of the sets $\{f \in X^* \mid |f(x_i)| < 1\}$ where $\{x_i\}$ is a sequence of elements of X converging to zero in norm. Thus X^* , with its bw*-topology, is a locally convex linear topological space.

It is known ([7], p. 428) that a linear functional F on X^* is continuous in the w^* -topology if and only if it is continuous in the bw*-topology. From these facts we derive the following lemma:

LEMMA 5.1. Let T be a linear operator from X^* into itself. Then, T is w^* -continuous if and only if T is bw^* -continuous.

Proof. Suppose T is w*-continuous. Let $\{x_i\}$ be an arbitrary sequence in X converging to zero in norm and let

$$U = \{g \in X^* \mid |g(x_i)| < 1\}.$$

By (2.1), $T^*J(X) \subset J(X)$ and it follows that $J^{-1}T^*J$ is a norm-con-

⁽²⁾ Day [5], p. 71, proved the second assertion of the theorem in the case where each N_i is one-dimensional.

tinuous linear operator on X into X. Let $V = \{f \in X^* \mid |f(J^{-1}T^*J(x_i))| < 1\}$ where $\{x_i\}$ is the sequence in X defining U. Again by (2.1), there is a $Y_i \in X$ such that $T^*J(x_i) = J(Y_i)$. Thus if $f \in V$, then $|T(f)(x_i)| = |(T^*J(x_i))(f)| = |f(J^{-1}T^*J(x_i))| < 1$, i. e., $T(f) \in U$ and so T is bw*-continuous.

Conversely, suppose T is bw*-continuous. Let $U=U(0;x_1,\ldots,x_n;s)$ be an arbitrary basic w*-neighborhood of 0. Since T is bw*-continuous, $J(x_i)T$ is a bw*-continuous linear functional on X^* for $i=1,\ldots,n$, and hence a w*-continuous linear functional on X^* .

Thus for the $\varepsilon > 0$ defining U and for fixed j, $1 \le j \le n$, there is a w*-neighborhood of 0, U_j , such that $f \in U_j$ implies $|T(f)(x_j)| < \varepsilon$. Let $U_0 = \bigcap_{j=1}^n U_j$. Then, $f \in U_0$ implies $T(f) \in U$ and so T is w*-continuous on X^* .

The next lemma was communicated to the author by Professor R. D. McWilliams.

LEMMA 5.2. Let $\{g_n\}$ be a sequence in X^* and let $f \in X^*$. Then, $w^*-\lim_n g_n = f$ if and only if $bw^*-\lim_n g_n = f$.

Proof. If \mathbf{w}^* - $\lim_n g_n = f$, then $\{\|g_n\|\}$ is bounded and so there is an a>0 such that $\|f\|< a$ and $\|g_n\|< a$ for all $n\in\omega$. Let U be an arbitrary bw*-neighborhood of f. Then $U\cap aS^*$ is relatively w*-open in aS^* . Hence there is a w*-neighborhood V such that $f\in V$ and $U\cap aS^*=V\cap aS^*$. Since w*- $\lim_n g_n = f$ there is an $N\in\omega$ such that $n\geqslant N$ implies $g_n\in V\cap aS^*$, whence $g_n\in U$ and so bw*- $\lim_n g_n = f$.

By definition, the bw*-topology is a topology stronger than the w*-topology. Thus if bw*- $\lim_n g_n = f$, it follows that w*- $\lim_n g_n = f$.

THEOREM 5.3. A sequence of non-trivial subspaces $\{N_i\}$ in X^* is a w^* -Sbos for X^* if and only if $\{N_i\}$ is a bw^* -Sbos for X^* .

Proof. Suppose $\{N_i\}$ is a w*-Sbos for X^* . Let $\{P_i\}$ be the associated sequence of orthogonal projections. Then each P_i is w*-continuous and if $f \in X^*$,

$$f = \mathbf{w}^* - \lim_{n} \sum_{i=1}^{n} P_i(f)$$

and the expansion is unique. By Lemma 5.1, each P_i is bw*-continuous and by Lemma 5.2,

$$f = bw^*-\lim_n \sum_{i=1}^n P_i(f).$$

It follows, again from Lemma 5.2, that the expansion is unique and so $\{N_i\}$ is a bw*-Sbos for X^* . The converse follows from Lemmas 5.1 and 5.2 in the same manner.

COROLLARY 5.4. If $\{M_i, E_i\}$ is a Sbos for X, then $\{R(E_i^*)\}$ is a bw*-Sbos for X^* .

In his thesis, Ruckle [11], p. 28, showed that the notions of weakand norm-Schauder bases of subspaces are equivalent. His result, together with Theorem 5.3, suggests the following problem:

If X is a linear topological space with two locally convex topologies τ_1 and τ_2 and if (X, τ_1) and (X, τ_2) have the same continuous linear functionals, is a sequence of non-trivial subspaces $\{N_i\}$ in X a τ_1 -Sbos for X if and only if it is a τ_0 -Sbos for X?

Bibliography

- [1] M. G. Arsove and R. E. Edwards, Generalized bases in topological linear spaces, Studia Math. 17 (1958), p. 95-113.
 - [2] S. Banach, Théorie des opérations linéaires, Warszawa 1932.
- [3] C. Bessaga and A. Pelczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), p. 151-164.
 - [4] N. Bourbaki, Espaces vectoriels topologiques, Paris 1955.
 - [5] M. M. Day, Normed linear spaces, Berlin 1962.
- [6] J. Dieudonné, Natural homomorphisms in Banach spaces, Proc. Amer. Math. Soc. 1 (1950), p. 54-59.
- [7] N. Dunford and J. T. Schwartz, Linear operators, Part I, New York
- [8] M. M. Grinblyum, On the representation of a space of the type B in the form of a direct sum of subspaces, Dokl. Akad. Nauk. SSSR (N. S.) 70 (1950), p. 749-752 (in Russian).
- [9] R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), p. 518-527.
- [10] S. Karlin, Bases in Banach spaces, Duke Math. J. 15 (1948), p. 971-985.
 [11] W. H. Ruckle, Schauder decompositions and bases, Dissertation, Florida State University, 1963,
- [12] I. Singer, Weak* bases in conjugate Banach spaces, Studia Math. 21 (1961), p. 75-81.

FLORIDA STATE UNIVERSITY

Reçu par la Rédaction le 13. 2. 1964