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Two examples in the theory of topological linear spaces
by
V. KLEE (Seattle) *

Singer [7] recently had occasion to consider the following three pro-
perties of a topological linear space (*):

(B) Bach closed linear subspace can be strictly separated from each
point of its complement by means of a closed hyperplane.

(0) Bach symmetric closed convex subset can be strictly separated
from each point of its complement by means of a closed byperplane.

(D) Each closed convex subset can be strictly separated from each
point of its complement by means of a closed hyperplane.

Obviously (D) = (C) = (B), and Singer asked whether the reverse
implications are also valid. We show here that they are not. The example
showing that (0) does not imply (D) is very simple, but the one showing
that (B) does not imply (C) is more complicated and depends on the con-
tinuum hypothesis. Both constructions are based on the following situa-
tion.

(1) Suppose that L is the space 8 of all measurable functions on [0, 1],
topologized by means of the metric
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or, equivalently, by means o” convergence in measure. Alternatively,

suppose that L is the space L”[0, 1] with 0 < p < 1, topologized by means
of the quasinorm
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* Research supported by the National Science Foundation, U.§.A. (NSF-
-GP-378).

(*) All of the linear spaces in this note are over the real number field R. A linear
topology for a linear space is one for which both vector addition and scalar multiplic-
ation are jointly continuous. A topological linear space is a linear space with an associat-
ed linear topology which satisties the T, separation axiom.

(?) Actually, the elements of L are equivalence. classes of. fungtions,
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In each cagse, let P be the positive cone consisting of all weL guch
that #(f) > 0 for almost all ¢¢[0, 1], and let K be the symmetric set con-
sisting of all zeL such that |#(f)] <1 for almost all fe[0,1]. Let M be
the linear hull of K. Then L is a separable complete metrizable topolo-
gical linear space, P and K are closed convex subsets of L, and M is a dense
linear subspace of L. If a linear form on L is continuous or is non-negative
everywhere on P, then the form ig identically zero.

All of the facts stated in (1) are well known or follow readily from
the relevant definitions. See [1] and [5] for discussion of continuous linear
forms on I, and [3] for non-negative linear forms.

In showing that (O) does not imply (D), we employ also the following
consequence of the Hahn-Banach theorem.:

(2) If a topological linear space is such that every linear form is
continuous, then the space has property (C).

THEOREM. There ewists o topological linear space B which has property
(C) and yet contains & proper closed conver cone P which cannot be separated
Jrom any point of B ~ P by means of a hyperplane.

Proof. Let L and P be as in (1) and let 7' be the original topol-
ogy for L. Let 7'* be a linear topology for I such that every linear form
on L iy t"-continuous. Finally, let B = (L, ), where v is the supre-
mum of the topologies 7' and 7”. Use (2) to show that & has the prop-
erty (O).

In showing that (B) does not imply (C), we employ the continuum
hypothesis in conjunction with the following three facts.

(3) In an arbitrary topological linear space, each closed linear subspace
of finite deficiency can be strictly separated from each point of its com-
plement by means of a closed hyperplane.

(4) Suppose that 7, and 7, are two linear topologies for a linear space
L, that the space (L, 7,) is of the second category and admits no non-zero
continuous linear form, and that the space (Ly vy) is locally convex.
Let v be the supremum of the topologies 7, and 7.+ Then every z-open
convex subset of L i3 also 7 _-open.

(5) If Z is a linear subspace of infinite deficiency in a separable me-
trizable topological linear space M. , then there are a linear subspace Z’
of M and a linearly independent countable dense subset B of M such that
Z = Z' and each point of M admits a unique expression as the sum of
& point of Z’ and a linear combination of B.

Remark (3) follows at once from consideration of the canonical map-
ping onto the finite-dimensional quotient space. The proposition (4) is
proved in [4], and (5) follows from reagoning in [6].

TaEOREM. There egists a topological linear space E which has prop-
erty (B) and yet contains a symmetric closed conven proper subset K which
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camnot be separated from any point of B~ K by means of a closed hyper-
plane.

Proof. Let L, K and M be as in (1), and let 7, denote the original
topology for L. Let £ denote the set of all countable ordinal numbers
= 1. In a manner which will be described below, we are going to define
a transfinite sequence

fl?fZ)"')fﬁ!"‘ (/SE-Q)

of linear forms on L. When g and fa has been selected for 1 < « < 8,
we define v; as the coarsest topology for I which is finer than 7, and which
renders continuous each of the linear forms Jo 1 < a << B). Clearly there
is a countable basis for the class of all T5-0pen subsets of L, and hence
the space (L, v;) is a separable metrizable topological linear space.

Having defined v;, we shall denote by & the set of all ordered pairs
(Y, ) such that Y is a 7g-closed linear subspace of infinite deficiency
in L and 2 is a point of L~Y. Since the space (L, 75) is separable and me-
trizable, the cardinality of &, must be that of the continuum, and thug
the continuum hypothesis guarantees the existence of a biunigue mapping
o(B,-) of 2 onto . Defining Y (4, y) and z(8, y) by the condition that
o(8,7) = (¥(B,7), #(B, 7)), we have

Fy =Y (B, 7),0(8,7): ve}.

Now let the product 2x Q be well-ordered in such a way that (0, 0)
is the first element of 2 x 2 and each element of Q X £ has only countably
many predecessors. Let (0, 0) = 1, and having defined ¢ for all the pre-
decessors of a certain element (x, %) of 2x 0, let £ (u,») be the smallest
oef2 such that o > p and o > {(u’, »') whenever (u',v") is & predecessor
of (4, 7). Then ¢ is a biunique mapping of £ x Q into Q such that ¢ is
isotone with respect to the given well-ordering of 2 x £2 and the natural
well-ordering of £, and in addition ¢(u,») > u for all (4, +)c2X 2. The
function ¢ will be used in defining the linear forms fj.

The forms f; are to be selected so that the following three conditions
are satisfied for all fe{0} v Q:

(i) fK = R whenever f is a non-zero linear combination of {fa:
1<a<p)

(ii) the linear subspace M is v5-dense in I;

(iii) if ¥ is a v;-closed linear subspace of infinite deficiency in L,
then the intersection ¥ ~ M is of infinite deficiency in M.

Note that when g = 0, (i) is vacuously satistied and (ii) is part of (1).
Note also that for all 8, (ii) implies (iii) and hence it will suffice to check (1)
and (ii). Indeed, suppose that ¥ ~ M is of finite deficiency in I, whence
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there i3 a finite-dimensional linear subspace I of L such that M < Y4 7.

With Y closed and ¥ finite-dimensional, it follows that Y--F is closed,

whence (by (ii)) Y+ F = L and Y is of finite deficiency. The contradic-
" tion shows that (ii) implies (iii).

Now we are ready, at last, to select the linear forms f,. We shall
begin with f,, recalling that (0, 0) = 1. The set Y (0, 0) is a r,-closed
linear subspace of infinite deficiency in I, and x(0, 0) is a point of L ~
~ Y (0, 0). Let £ denote the set of all rational numbers, With the aid of
(ifi) and () we can verify the existence of a linear subspace Y, of L and
an indexed family {Bf: gefQ} of pairwise digjoint v,-dense subsets of If
such that ¥ (0, 0) < ¥,, each gset B? intersects K, and each point of L
admits a unique expression as the sum of a point of V,, a multiple of
2(0,0), and a linear combination of |J Bf. (Thus the set {x} v | B! is

e ey
a Hamel basis for a linear subspace supplementary to Y, in I). The linear

form f, is defined by the requirements that f; = 0 on ¥, f; (2(0, 0)) =1,
and f; = ¢ on BY. Since each set B intersects K, we have fK = 2 and hence
fE = R because K is convex. Thus condition (i) is satisfied when f=1.
To establish condition (ii), we mote that a Dasis for the non-empty
Ti-open subsets of L is the family of all sets of the form @ ~ f~'la, b[,
where ¢ < b and @ is a non-empty 7,-open subset of L. Consider an ar-
bitrary set of this sort, and choose gela, b[ ~ Q. Since M is z,-dense
in L, the intersection & ~ M is a v,-open subset of M, and then since
B{ is a 7,-dense subset of M there iy a point of G ~ I at which fi has the
value gela, b[. It follows that M is 7,-dense in I, and condition (ii) is
satisfied when 8 = 1.

Now suppose that 2 <y <2 and that the linear forms fp have been
defined for 1 < # < y so that conditions (i), (ii) and (iii) are satistied in
addition to the following conditions: :

(iv) if the ordinal number f is not in the range of the function ¢,
then the linear form f, is identically Zero;

(v) if L(u,v) = f (whence u < B, ¥(4,) is a 7,-closed linear sub-
space of infinite deficiency in I, and #(u, ) iy & point of L ~ Y (4, %)),
then f; =0 on ¥(u,») and fyz(u,») = 1.

We will show that a linear form f, can be selected in guch a way
that the conditions (i)-(v) are all satisfied when g =1y as well. It will
then follow by transfinite induction that the entire transtinite sequence
f3 (BeL2) can be defined so as to satisfy conditions (1) ~(v).

If » is not in the range of the function £, let the linear form 1, be
identically zero. Then the necessary verification is trivial. Suppose, on
?;he other hand, that y = {(u,») with # <. Then the selection of f,
is very similar to that of f,, with the roles of Y(0,0) and x(0, 0) being
played by ¥ (u, ) and ®(u, v) respectively. However, some additional

©
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care is Tecessary in comnection with condition (i), and a slight change
in the discussion of (ii) is required in case y is a limit ordinal.

Let v;7 denote the supremum of the topologies 7, for § < y. It follows
from the inductive hypothesis (condition (ii)) that M is 7, -dense in L.
With the aid of (i) and (5) it is possible to produce a linear subspace ¥,
of L and an indexed family {Bf: ¢eQ} of pairwise disjoint 7, -dense sub-
sets of M such that ¥ (u,») = ¥,, each set B intersects K, and each
point of I admits a unique expression as the sum of a point of ¥, & mul-
tiple of w(u,»), and a linear combination of { ) BZ. For each ¢eQ, select

[ Gal
a single point bleBf N K, whence of course Bf ~ {b%} is still a v, -dense
subset of M. Let the members of Q be arranged in a sequence ¢y, gs, - .-
and let the set of all ordinaly < y be arranged in a sequence 8, f5,... (%),
For n=1,2,..., let

7 = (—1)"n’max (1, |fy, (B3I, ..., fs, (B§)]).

Finally, let the linear form f, be defined by the requirements that
=0 o' ¥, fl@u»)=1 f,=¢ on Bj~{b}, and f,(55) = 7.
The conditions (ii)-(v) are clearly satisfied by f,, and condition (i) with
B = y follows from the fact that on suitable subsequences of the sequence
b, b, ..., the function f, converges to co or —oco more rapidly than does
any linear combination of the functions f, . Thus the transfinite sequence
fs (B Q) can be constructed as desired.

Now let 7, denote the supremum of all the topologies z, for fef,
and let B = (L, 1,). Clearly B is a topological linear space and K is a sym-
metric closed convex proper subset of . Since the space (L, 7,) is complete
metric and admits no non-zero continuous linear form, it follows from (4)
that every continuous linear form on F is a linear combination of {fs:
BeQ}. Then condition (i) implies that every continuous linear form on ¥
maps the set K onto the entire real number field R and hence K cannot
be separated from any point of B ~ K by means of a closed hyperplane.
It remains only to show that the space E has property (B); that is, that
if Y is a closed. linear subspaee of ¥ and % is a point of B ~ Y, then ¥
can be separated from x by means of a closed hyperplane. For each e,
let ¥* denote the z,closure of ¥. Then ¥ = Q} Y?, and hence there

exists fe§ such that w¢¥Y”. If Y? is of finite deficiency in L, we deduce
from (3) that ¥” (and hence Y) can be strictly separated from # by means
of a 7;-closed (and hence 7p-closed) hyperplane. If Y7 is of infinite deficiency
then (Y%, @) = o(B,y) for some ye, and then fyps, is a linear f.orm
defining a 'r;(ﬂ,y)-eldsed (and hence 7o-closed) hyperplane which strictly
separates ¥ from . This completes the proof.

(3) These are ordinary sequences, of order type w.
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It is unknown whether (B) implies (C) or (C) implies (D) under the
hypothesis that the space in question is the congugate space E* of a
locally convex space B, in the aw*-topology for B* (see [2] and [7]).
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