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Concerning function algebras*
by

Richard M. CROWNOVER (Baton Rouge, La.)

1. Introduction. According to Morera’s theorvem, the collection of
functions which are continuous on the closure of the open unit disk T,
and such that g fdr = 0 for each f in the collection and for each simple

closed rectifiable curve C contained in U, is the same as the set of functions
that are continuous on U, and analytic at each point of U. This collection
forms a Banach algebra under supremum norm and the usual pointwise
operations.

Suppose now that instead of taking the usual line integral, that we
integrate with respect to a continuous function of bounded variation.
Specifically, let g be continuous on U, and of bounded variation on each
simple closed- rectifiable curve ¢ contained in U. We denote by A(g),
the collection of all funetions which are continuous on U, and such that

[fdg = 0 for each simple closed rectifiable curve contained in U. The
a

collection A (g) will always be a Banach space under supremum norm,
and the usual pointwise operations. It is not known, however, whether
or not A(g)is always an algebra. The study of sufficient conditions for A (g)
to be an algebra, will be one of our main concerns in this paper.

Our first result characterizes the integrator g as being a continuous
function on U that satisfies a uniform Lipschitz condition on each compact
subset of U. The characterization plays an important role in the results
that follow.

An important subset of 4 (g), denoted by L(g), is the collection of
those functions in A (g) which satisfy a uniform Lipschitz condition on
each compact subset of U. It is shown in Section 3, that the product
A(g)-L(g) is contained in A (g). In particular, L(g) is an algebra contained
in A(g). In some cases L(g) is all of 4 (g), or at least is a dense subset of
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A (g). For these cases it follows that A(g) is an algebra. An example i
given to show that L(g) need not always be dense in 4 (g).

Special attention is given in Section 4 to the case in which ¢ is locally
one-to-one at a point in U. In a neighborhood in which g is one-to-one,
each function in 4 (g) can be represented as an analytic function of g
by a formula analogous to the Cauchy integral formula. The proof of this
theorem is somewhat involved and depends on theorems on boundary
values of amnalytic functions.

If the restriction of g to U is a light open map, then ¢ is locally one-
to-one in U, except at isolated points. In this case, the collection A(g)
is an algebra, and, moreover, it can be identified with some analytic
funection algebra.

It is not always the case that 4 (g) will have a structure regembling
that of an analytic function algebra. If we let g(2) = Rz, then 4(g)
can be identified with the algebra of all continuous functions on the
interval [—1, +1].

2. Characterization of the integrator. We now prove

THEOREM 2.1. Suppose g is continuous on U. Then a necessary and
sufficient condition that g be of bounded variation on each simple closed
rectifiable curve in U, is that g satisfy a uniform Lipschitz condition on
each compact subset of U, i.e., that for each compact subset B contained
in U, there exisis a constant Kg, depending only on H and g, such thai
19(2)—g(2')| < Egle—2'| for all 2 and 2 in B.

Proof. That the condition is sufficient is immediately clear. It is
also clear, that in order to prove the converse it will suffice to show that
the condition holds for each closed digk in U,

Accordingly, suppose F is a closed disk in T, , for which the condition
fails to hold. Then for each positive integer n there exists points 2, and 2,
in B for which

(2.1) 19(en) — g (2)] > n |2, —2p,).

We note at this time that if {n}72.1 is a subsequence of the sequence
of positive integers, and if s = #n; and s; =z, , then

19(8)~g ()| > jls;—sj|.

That is, inequality (2.1) is breserved under the taking of subsequences.
Let 2, be a cluster point of {#,}2,. There exists a subsequence {8,372,
of’ {#n}n=1 that converges to 2. Let 2, be an arbitrary cluster point of
{8121 Then #, = #; for if not, then there exists subsequences {f}iu
and {f}7.; of {8}, and {8}721, Tespectively, such that
]imtk=z0, ﬁmt,i:z(;,
koo

ko0
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and
19 (te) — 9 (G| > Toft— 1z}

It is easy to see that this contradicts the continuity of g.

Thus, in view of the note already made, we can agsume Withoqt loss
of generality that the sequences {z,}%_; and {2}, each have limit 2,
for some g, in B. We can also agsume for each n = 1,2, 3, ... that

sl <5l gl <po.

We now observe for each n =1,2,3,... that there exists open
sets W,, and W,, containing #, and z, respectively, such that if &, is in W"
and &, is in W,,, then |g(&,)— g(&n)| > n|é,— &,|- This fact follows easily
from the continuity of g. It therefore follows that we can assume for each
n=1,2,3,... that the paints #,, z,, and 2, are not on the same straight

line.

Again by taking subsequences if necessary, we can assume that
the straight line segment z,%, lies inside a circular neighborhood N,
centered at z,, whose closure ¥, misses the straight line segment 2,,_; 2,1,

for n =2,3,... o

For each n =1,2,3,... let k, be the positive mtfsger sucﬁh that
by l2n—2n] < 1/n* and (%, 1) |2, 2| > 1/n”. Since |z,—2,] < 1/n’, then
n2lz,—2,| < 1/n, and

, 1
1—n2lz,—2,] > l~~,’;.

On the other hand, 1 > n%k,|e,—2, > 1—n’|¢,—2,|. Therefore,
1> n*ky, |2, —4n| >1—1/n and

lim 7%k, |2, — 2| = 1.
N—>00

From this we conclude that

o0
’
2 kn |zw—z1|| < oo,

na=l

but that

Z nk,, 2 — z;bi = co.

=1

Since the straight line segment E;—z“; lies in the open set Nn—?\_fﬂ‘\_l,
we can find points 2,,, » = 1, ..., k,, on the line through #, perpendicular
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Fig. 1

to 2,2, and points #n,» Such that the line se ,

b n SU ! L gment 2,,2,,, 0 =1,...,k
is parallel to #n?y, contained in ¥, —XN,,,, and such that 19 () — g(z7;, :)’[
> ”]zn,p_znm!- ' .
We now let I’ be the arc obtained by connecting the line segments

Znpinp 88 shown in Figure 1. I" will be rectifiable: in f ‘ A
less than rectifiable; in fact, of length

gkn!zn-fumzz; »Fgf”.

'’
~ 7

This is seen as ofollowxs: The sum of the lengths of the line segment
Pnpthp 18 equal to D2 — 2.
n=1

icm
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The sum of the lengths of the line segments connecting the %, line seg-

ments ;;;z";;, for a fixed #, is less than g’ 1/n®. The sum of the lengths

of the connecting line segments that ar?ilirected toward the origin is

less than fl /n?; and, finally, the sum of the connecting arcs that are

on the bg:tlndaries -of the neighborhoods {N,}n-,, is less than 2 2 [nd.
=

However, the variation of g over I' is unbounded. It is at least as
large as the sum of the variations of g over the line segments ZnpPnpi
p=1,...,k, and n =1,2,8,..., and the variation of g over each
of these is at least as large as

[9(#Zn,p)— ¢ (Z;j,p)l > Ny — z;'b.ﬂl .

Thus the variation of g over I' is at least as large as

©
D) iyl —2,] = oo.

k=1

Since we have found one rectifiable arcI” contained in B over which
the variation of ¢ is unbounded, it follows that there exists a simple closed
rectifiable curve in E for which the variation of g is unbounded. Thus we
have a contradiction, and the theorem is proved.

3. The algebra L(g). We recall from Section 1, that the collection
of functions in A(g) which satisty & uniform Lipschitz condition on each
compact subset of U, will be denoted by L(g). It follows from a classical
Stieltjes integration formula that the functions 1,g,4%,... are also in
A(g), and from Theorem 2.1 that these functions are in L(g).

LeMMA 3.1. Suppose f is continuous on U. Then feA(g) if and only
if [fdg = 0, for each triangle T contained in U.

T

Proof. Certainly if fed(g), thenjffdg = 0 for each triangle T' con-

tained in U. We now show that the converse is true.

Let ¢ be a simple closed rectifiable eurve in U. There is a closed disk &
contained in U, and containing ¢ in its interior. By Theorem 2.1, there
is a K > 0 such that for z and 2’ in B, we have |g(2)—g(2")| < K[z—2'|.

Let & > 0 be given. There exists a partition {&}4~o of ¢ such that
if {4}, is a refinement of {&:}F-,, With t; being any point in the are
from #_, to i; on C, then

£

| [ fig— > FElatt) (01 < 5-
[} 7=1


GUEST


358 R.M. Crownover
Since f is uniformly continuous on F, then there exists a 6 > 0 such
that whenever z and 2 are in F, and |2—2'| < 9, then
€
2)—f(2')] < =——
&) ~F 6 < 57
where |C| is the length of curve C.
For two arbitrary points z and 2’ in the plane we let 22’ denote the
straight line segment joining z and 2'. Since € is a simple closed curve,

then there exists a refinement {t;}j—, of {&}f.., such that

m

is a simple closed polygonal curve and |t;_,—| < 8, for j = 1,2, ..., m.
Then . [ fdg =0 sinceTf fdg = 0 for each triangle 7' contained in 7, and
hence

léf fdg| <| J 1~ gf(tj)[g(m-g(tf_ln\ +

+| Y le)—gw1- 3 [ fagl.

=1 T=1 30
Therefore, 7-im

| Jitg| <5+ 3| | tr=rtna]
=1 5T

< % + sup {fO)—FHIE D) ll—tiy] < e

ety 1l j=1
From this, the lemma now follows.
TueorEM 3.1. The product A(g)-L(g) is contained in A(g).

Proof. The proof of this theorem is based on the technique used

by E. Goursat to prove the Cauchy integral theorem.
4 Lojsft feA(g) and heL(y). By Lemma 3.1, the function fh will be in
(9), £ fhdg = 0 for each triangle 7' contained in . Let 7, be one

such triangle: By joining the midpoints of the sides of Ty, we obtain four
congruent triangles Ty, T,,, Ty, and T,,, such that

fhdg+ | fhd, vdot [ fhin —
T{ T}{fl 9+T1faf dg-1 1~£fhdg 1f_fhdg.

o '0
For one of the triangles, which we now denote by 7'y,

’j{fhdg’ >%|;j[fhdg\.

icm°®
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This provides the first step in an easy induction argument to geb
that there is a nested sequence of triangles {T',};-, with the following
properties:

. 1 .
1) |7 <2—% |Ty|, where |T',| is the length of the perimeter of T,.

1
< —d(T,), where d(T,) is the length of the diameter of T\,.

TS on

(ii) d(Ty)

(iid) 1Tffhdg1 b 7;—1 7[ fhdg]|.
A “0

There will be one point, which we denote by 2,, which is interior
to each of the triangles. Since f and h are in A4 (g), then

[fhdg = [[f—Fe)1lh—n(zo)ldg-
TH Tﬂ/
Since b and ¢ are in L(g), and the triangles are all contained in a com-
pact subset of U, there is a constant K < 0 such that

() —g ()l < Kle—zl, and  [h(z)—h(zo)| < Kle—z

for zel,, n=0,1,2,...

Let & > 0 be given. There is a 8 > 0 such that if [z2—z2g| < 6, then
If(2)—f(20)| < & Let n be large enough so that T, is contained in the
§-neighborhood of z,. Then

T{ fh,dg{ <

where V(g;T,) is the variation of g over T,. Thus

- [ = feDh— hlan)dg < o - sup{it—=d}- V(g5 T2)
1.'1» tel'y,

1

1
- ffhdg\ < o K a(T) K- (Tl < o K25 d(L) [Tl

Ty

Hence

| [ fhag| < e E*a(To)-IT
Ty

and the theorem follows.

CororLARY 3.1. L(g) is an algebra.

Proof. This follows immediately from Theorem 3.1, and the fact
that the produet of two Lipschitzian functions is again a Lipschitzian
funetion.

Remark 3.1. In the classical case, where g(2) = #, then IL(g) is
actually the same as A4 (g). In the case where g(#) = = Reg, it is not
difficult to show that each feA(g) is constant on the lines parallel to the
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Y-axis, and that 4(g) can be identified with the algebra O([—1, +17)
of all continuous functions on the interval [—1, --1]. In this case, L(g)
is cerbainly not all of A (g). However, L(g) is dense in A(g), since L(g)
confaing the polynomials in #, and these are dense in C([—1, +-1]). This
might lead one to suspect that L (g) is always dense in 4 (g). The following
example shows, however, that this is not the case. Weo let h(z) == 2y [z—|7
and let g(2) = h*(2) = 22/J2]. It is not difficult to show that A (g) consists
of all functions F (%), such that I is continuous on U and analytic at
each point of 7. Now h is not in L(g), but h"eL(g) for n = 2,3, ... The
function % cannot be uniformly approximated on U by funetions in L(g).

4. The analytic nature of 4(g). We now consider the hehavior of
functions in 4 (g) near points at which g is locally one-to-one. The proofs
of the theorems given here would be simpler if we were to assume that
¢™* (the inverse of ¢ in a region where g is one-to-one) as well as g, is of
bounded variation on simple closed rectifiable curves. We do not, however,
make this assumption.

TemorEM 4.1. Suppose B is o closed disk contained in U, and that
the restriction of g to B, g | B, is homeomorphism. Suppose O ds any simple
closed rectifiable curve in B, and that 2, is a point inside C. Then Sor any
Jed(g),

1 fdy

2mi P g—9(20)’

the sign being taken as plus or minus depending on whether ¢ | B is o po-
sitive or megative homeomorphism.

Proof. Let D be an arbitrary simple closed rectifiable curve in E
such that 2 is not in D. If g | ¥ is a positive homeomorphism, then

f dw
w—awy '

(D)

[
3 9—9(%)

where w, = g(2,). The Brouwer invariance of domain theorem ([2], p. 95)
gives us that g(s,) is inside g(D) if and only if ¢, is inside . Therefore,
dy

== Ol or 0
o 9—9(=) !

depending on whether or not 2,

is inside . If g | B is a negative homeo-
morphism, then

dy
fy_g(zo)

—2mi or 0.
o]
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Tet D' denote the union of D and the inside of D. If 2z e E—D’, then

it follows from a polynomial approximation of Walsh ([5],. p. 430), that
there exists a sequence of polynomials in ¢, {P,(g)}n-;, Which converges
uniformly on D’ to 1/(g—g(2,)).

By Theorem 3.1, fg"<A(g) for n =1, 2,3, ... Therefore
[#Pu(g)dg =0,
D

and hence
1 fdg

2m’D g—g(2)

= 0.

As in the proof of the classical Cauchy integral. formula, we conclude
for any circle O, centered at 2, and contained inside O, that

_ 1 it

1 rf—f(=)
o Y= 5mi ) =g

2§ g—g(#)
The remainder of the proof is devoted to showing that

R (O
2miy —9(0)

?

from which we get the formula

1 fdg
Flao) = i%c g—g (@)
Let
f—f(=)
0 = y
g—9(20)

and let {Cy,}w., be a nested sequence of circles centered at 2, contained
inside C, aj;dmha,ving radii tending to zero. Since fg" <A (g) for n = 1,2,...
then 6-[¢"— g™ (#o)]1e A (g) for m =1,2,..., and hence

1 ]
1 m 13 od .
[ gy = g (%) s— f g
Omi (.f geg g (R 27t &,

i the ingide of C,. There exists
Tet O denote the union of ¢, and th : :
2 one-i?o-o;be mapping, by, taking g(Cy,) onto U and 2, onto 0,‘ t]:\.a,t is a.nal_lyt;e
on the interior of ¢(Cy) ([6], p. 290). Moreover, the restriction of h,~ to
the unit cirlee is absolutely continuous ({6], p.293).
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Since k,(g) can be uniformly approximated on ¢ by -
) ‘n by polynomial
in g ([5], p.430), it follows that i Y ;

1

2n

f@h;‘:(h)dg=0 for p=1,2,3,..
071

.Let w =hy(g). The functions 0 and ¥(g) are continuous on Uy, and
h, is one-to-one on g(C,). Therefore

1
i | Ol o)eran ) = o,
jurf=1
and
(4.1) 1 -~ —1(p =1 0\ iy —17 it il
- ?;f o(g (h'”’ (¢ )))6 [hy (e”)] edt = 0.
b

Let a(t) = o(g"l(hgl(e"‘)))[h,;l(e“)]'e”. It follows from equation
(4.1) that @, is the almost everywhere (with respect to Lebesgue measure)

radial limit of a function say A,, in the cl ; . !
lags HY, articular
(111, p. 51) ’ n § H'. In particular

. lim 4, (re") = (1) ae.,
rosl
1 2
(i) lim — iy _
ri?Zﬂ:E[ [ (re") ~a, (1) dt = 0.

From (i), we get that

. i U1, 3 h»;,,_l LAY 12
ot = 1 4 1] L0
n 0
For each p =1, 2, 3, ...,

%fﬂfwwm—mmﬁm

|w|=1

1
=1 . , 1 ‘
2mip ff(g l(lbm(w))) du? = énzp (ffdh,g,”(g) = 0,

¢

.It .fo.llows that f(g“(h.; 1(e“))) —f(2) is the almost everywhere
radial limit of an H* function, say ¥,.

We now show that [ (697'¢* iy the almost everywhere radial

a ©®
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limit of an H* function. For p =1,2,3,...,

am i

. . . 1 N )
l ev.z)t [h,,,fl(e”)]’e"tdt — __f thdh;,fl(elt)
2wy pa J

om gby, it ¢ = —p,

[

P21 .

— Y 0, ifp>0
=2f h;‘(e“)e”-"dt:‘  H2=0
where

am
1 w1y ity il
b= [ B ar.
2m J
It follows that

o0
lim 2 pby e = [t (6 ave.,

resl F

and that
2 P b7, P 6iz7t
»=0

is an H! function. Moreover,

pr,,r”e“" = z%(g bpz”) = zgz— T l(z),
p=0 =

and so [h;'(¢%)]e" is the almost everywhere radial limit of
d
2— h ().
2o ()

All B! functions are in the class of beschrinkartige functions, denoted
by N in [6] (p. 272). Moreover, a function F, analytic on U, i.s in the class N
if and only if 7' is the ratio of two bounded analytic functions on U ([6],
p- 277). If two functions in N have radial limits that agree on a set of
positive Lebesgue measure, then they are identical ([6], p. 276). It there-
fore follows that

o0 Ui (2]

B () —ha (0)

A, (2) = Fo(2)

We note that 4,(0) = F (0), since

0]

. d -1 .
m%mwﬂ -

2—>0
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From (i), it follows for = = 1,2,3,... that

2
1
4,0) = > ayydt = f()d(]z [ odq.
dy, ¢

2 g
Thus #,(0) =af6dg forw =1,2,3,...
Let ¢ > 0 be given. We choose # large enough so that
(0 ) = Ftz0)
Since F, ¢H, then

<e for 0t 2m.

1

F,(0)] = P Df (o) — ez dzl <e,

1 2
Ei—l)lllg—n— B, (ré") dt( =
0

and we conclude that [6dg = 0.
¢

This completes the proof of Theorem 4.1.

: AGOROLLARY 41. If 9 1§ locally one-to-one al 2y, then each Sfunction
n A (g) com be represented in a neighborhood of 2, by & power series in g— 9(%)
o net ) ¢ o)
. ‘P.roof. The power series is obtained readily by the termwise in-
egration of the power series for the integrand in the formula |

1 )
fle, = + — [ fdg .
Int o g—y(2)
4 T.HEOREM 4.2. If the restriction of g o U is a light open. map, then
(%) s an algebra. Moreover, there exists a homeomorphism h of U onto U
such that for each fe A (g), there is a Sfunction F that is analytic on U, such
that f(z) = F(h(z)) for ze U, . ,
. gi’trgﬁai fﬁ;l:i:eiu]its of Sto'l'l(})lw ({31, p-121) and Titus ([4], p. 46)
; omeomorphism % of U onto U a funeti
b . : and & function @
Onzftzs. ;111:.1637;100 o;l U, such that 9(2) = G(h(z)) for ze U ’ Sinee @ is locally
oone © (?]p1 at a discrete set in U, then ¢ also has this property.
s Eé)h © gﬁlz c;;a;llg mﬁe—to—(;lne at %. Let ¢y and €, be circles centered
) 6 Up 028 smaller radius then 0, and sueh that ¢ is -10-
on 0y, the union of ¢, and the ingide of C, .7 By Theorem 4{71 ouetone
r 4.1,

O L

—— for  ge().
Therefore, for 2, and 2, in Oy,

e —fe] = o
T

ff. _9@)—g(a)

o —g@ig—glm)] Y|
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The denominator in the integrand is bounded for z; and 2, in 0;,
and hence there exigts a constant K such that

1
If(2)—fl=a)| < é’;K - V(g; C1)- 1g(22) — g (=)},

where V{(g; C,) is the variation of g over C,. Since ¢ satisfies a Lipschitz
condition on Cj, then f also satisties a Lipschitz condition on C;.

We now use the fact that the a conclucion similar to that in Theo-
rem 3.1 holds if instead of using U as our basic domain we use the closed
disk 0. Accordingly, if f and b are in 4 (g), and C is any simple closed
rectifiable curve in O,, then df fhdg = 0.

Tt is not difficult to show that whenever A4 (g) is “locally an algebra”
(as described in the preceeding paragraph) exeept at a discrete set in U,
then A (g) is actually an algebra.

At each point z,¢ U at which g is locally one-to-one, each feA(g)
is locally an analytic function of g, and hence also locally an analytic
funetion of k. It then follows readily that for each fe A (g) there is a fune-
tion F' that is analytic on U, such that f(z) = F(h(2)) for zeU.
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