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On the convergence of superpositions of
a sequence of operators*

by

M. REICHAW (Haifa)

Introduction. Let T;: X — X, i =1,2,..., be continuous linear
mappings of a Banach space X into itself and write T" = T, T, ,...T,.
The problem of finding conditions under which the sequences

1 n
g - !
{1 }n=1,2.... and {n 2 T }n=l,2,‘..

T=1

converge for n — oo has been investigated by several authors. For examyple
if T; =T are all equal, then the following well-known mean ergodic
theorem ([9] or [1], p. 662, corollaries 2 and 3) holds.

Let T': X — X be a linear continuous mapping of a Banach space X
into itself. If the sequence of averages

%

1

1
7=1

is bounded, T™z/n" - 0 a8 n —> oo, and the sequence

1 n
T, = E b
n 4

contains a weakly convergent subsequence {z,} for » in a fundamental

set, then
1 n
- i
n 2 T'a

=1

* Thig research was supported by the Air Office of Scientific Research.
I would like to thank Professor J. Wolfowitz for his kind help in writing this
paper. I am also indebted to Dr. 8. Rolewicz for several useful remarks.
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converges strongly to a linear continnous operator P: X -» X mapping X
onto the manifold {w; To = x} of fixed points of 7. Strong results in the
case of a semigroup of operators T, : X — X have been obtained in [2].
The general case of different operators Ty, ¢ =1, 2...., without the
assumptions of any algebraic structure has been considered in [3], [4],
[7] and [8] in the terminology of stochastic processes. In these works
T; is a finite stochastic matrix and can be regarded as a linear operator
mapping a finite-dimensional space into itself.

In section 1 of the present paper simple and eagily applicable suf-
ficient conditions for the convergence of sequences {I™},.,, = and

n
w~t ST, _ .,  are given. In the case where Ty commute (i, e. TT; = T,7*
e n=12 ... £ 7 7

for all 4, j=1,2,...) these conditions turn out to be also neces-
sary for the convergence of {T"},_,,  .In section 2 the notion of a stable
operator, generalizing the notion of a stable matrix, is introduced and
the results of section 1 are applied to the theory of stochastic matrices.

Notation. We denote by o] (by |T[) the norm of the point @ (of
the operator T), x, — « denotes |[@,—a|| — 0 and T, — T denotes either
the strong convergence of T, to 7' (i.e. for every s, |Tp—Tz|| - 0) or
the norm convergence |7, —T|| — 0.

A matrix 8 = (s;;) (finite or not) will be called stable if all the rows
of 8 are identical, i. e., if 8;; = sy for all 4, k and j. A stochastic matriz

T = (ti;) is such that ;; > 0 and Y't;; =1 for every . It is easily seen that
=1

(ap) it 8 is a stable matrix and T any matrix such that ST exists,
then ST is a stable matrix,

(a;) if T is stochastic and § stable, then 7.8 = §,

() if T'is stochastic and 8 is stable and stochastic, then 7S = § == 82

‘We shall consider a linear operator 4: X -» X and sequences {T};.1.,...
and {8;};_y,,.. of linear operators mapping a Banach space X into itself
and we shall consider also the following properties:

(a) T,;Sj = Sj == S.,;lgj and .A.Sj = Sy for all 1:,‘7 = 1,2, e (1),

n
(b) ﬂl (T:i—8;) >0 as m->oco, where convergence means either

SﬁI‘OIlg convergence or norm-convergence (2>.

In the sequel I™ always stands for Ty Ty y-o.oTy. Thus, if ;=T
are all equal, T" = T-T-...-T iy simply the n-th iterate of T

n

(1) One may illustrate condition (a)
tions” of X onto the space ¥ = 83 (X)
that Tio = o and Az = x for all we¥.

n

geometrically by regarding §; as “projec-
= 8;(X) (common to all operators S;) such

® i]]l(_'l’,;—ﬂi) denotes (T —8p)(Th—1 — Sn— 1) (T —81) .
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1. We begin with the following
THEOREM 1. Let A: X > X, T;: X - X and 8;:X — X be linear
mappings of a linear space X into itself satisfying property (a).
Then

n—1
(@) I"— AT = (To—A4) [ [ (T:—85).
T=1
Proof. We will firgt show by induction that

”

T”—'SWT"'—I = ” (T,'—'S,’)

qe=1

(&)

Indeed, denoting by T° the identity operator, we see that (a) holds

for n = 1. Now suppose that (a) holds for n. Then

1

[ (Ti=8) = (T =B ) (T8I
fe=l

= Tn+1’“S71+1Tn—Tn+1SnTnﬂl+Sn+1SnTn_1-

By (a) we have Tn.18, = 8 = Spy18, and thus —T,,,8,0" '+

+8p18,T" " = 0. Therefore
1
[[(zi—8) = I — 8,
=1
and (a) is proved. .
To prove (a) let us denote by T° the identity operator and by §, = 0
the null operator. ) .
Then (&) is trivially satistied for » = 1. Using (a) with n replaced
by n—1 we obtain
n-1

(Tn"A)n

Al

(T —8;) = (T —A) (T =8y T7)
= T AT TSy T2+ A8y T2

But by (a) we have —ZTn8, ,I" 4+ A8, I" "= —8, T
+8,_,T" %= 0. Thus (&) holds. Theorem 1 is proved. -

Theorem 1 is the main theorem of this paper. Th.e following the'soren_a_s
are simple consequences of Theorem 1 and are obtained by applying (a)
to gome particular operators A and sequences {Tq;}id,_z and {Sj},‘ﬁl,zi.‘,_’.
In the sequel “linear operator” stands for “linear and continuous operator”.

TumoreM 2. Let T;: X — X be linear operators of a Banach space X
into itself satisfying
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(c) there exists a constant O such that Wit Loyt oo L)) <2 O for
all n and k.

A sufficient condition for the ewistence of a linear operalor P: X - X
such that

(d,) T" - P as n— oo,
and

(dy) P = TWP = P2 for every k =1,2,...,
is the ewistence of a sequence {8;};..,. . of linear operators 8 X » X
satisfying (b) and

(@) Tl = 8i8; = 8 for all 4,5 =1,3,...

Moreover, the operator P maps X onto the sct

F=F,

Fe=1
where Fy = {w; Tyw = x} is the set of fived points of Ty and F = {z;
Pr = w}.
Proof. By (a*) we have Toie Togtoer - 108 = 8; and therefore

property (a) is satisfied for 4 =T, 48 Lyspey... Iy, By Theorem 1 it
follows that

B

b1
I" =T = (T =T 3o Ty ) [ [ (L= 83

3

[
—

Hence by (c) we have
(@) |7 —1+) < 20 T] (Ti—8) |
and thus for every zeX -
(@) 1a—1s] < 20| TT (7=,

T-he space of linear operators mapping X into itself being complete
both in the norm-topology and in the strong topology (see [6], p. 140
and p. 142), it follows by (b), (d;) and (ds) that

(d,) there exists a linear operator P: X —» X such that 1™ — P ag
N —> 00, .

Thus (d,) holds.

o To show (d,) let us apply Theorem 1 to the operator 4 = T where &
Is fixed, and to the sequences {Ti);.,, = and {8}jer2... Then by (a)
we obtain

n—1
=T = (T, —T) [ ] (20— 85).

Tl
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By letting n — oo, we infer from (e), (b) and (d,) that
(ds) P = T,P.
Thus TP =P, T, T'\P =P and by induction T"P = P for every

n =1,2,... Therefore, by (d;), P? =P and by (d;) we infer that (d,)
holds.
It remaing to show that P maps X onto
F=MNF, and F={z;Pr=a}.
LESY

But this is quite trivial. Indeed, if

ze (Fy=F,
=1

then Txa = o for every k =1,2,...

Consequently, ™z = = and, by (d,), Pz = #. Conversely, if # = Pz
for some x ¢ X, then, by (d,), Ty = TwP» = Pxr = x. Thus z<F. Theorem 2
is proved.

THEOREM 3. Let T;: X -~ X be linear continuous operators mapping
a Banach space X into itself satisfying assumption (¢) of Theorem 2 and
such that

(e) T; and T; commute for all 4,5 =1,2,... (i.e. Ty = T;T:).

A necessary and sufficient condition for the existence of a linear oper-
ator P: X — X such that

(d) T" - P a8 n — oo
and

(dy) P = TyP = P? = PT;, for every s = 1,2, ...,
is the ewistence of a sequence {S;}..,, .. of linear operators 8;: X —~ X such
that (a*) and (b) hold.

Proof of sufficiency. By Theorem 2 there exists a linear operator
P: X — F mapping X onto the set

=]
F =\ F, = {2; Po = a},
Fsex 1

where Fy = {w; Tp® = x} such that (d,) and (d,) are satisfied. Th}ls
(dy) holds and it remains to ghow that PT, = P for all k =1, 2, ... This,
however, is a simple consequence of (e), (d;) and (d,). Indeed, ’by (e) we
have T™T;, = T,T" for all % and n. Letting # - co we infer by (d;) and (d,)
that .P.Tk == _T],;P = P.

Proof of necessity. To prove the necessity of (a*) and (b) let us
put 8 =P for all j =1,2,... Then by (d;) we infer that (a%) is
satisfied and it remains to show that (b) holds. Indeed, by (ds) we have
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(T,—P)(T,—P) = T,T,—PT,—T,P+P* = T,7,~P and by induction

N

[[ (@i—P) = 1"—P.

t=1

Thus by (d;) we obtain

n
[] @—P) >0 as n-—oo.
i=1
Theorem 3 is proved.

Using the fact that in the proof of the necessity in Theorem 3 it is
possible to put §; =P for all j = 1,2, ... and pubting, in Theorem 3,
T; =T and §; = 8, where T: X > X and §: X -» X are linear operators
of X into itself, we obtain as a consequence of Theorem 3 the
following

TEEOREM 4. Let T: X — X be a linear operator of a Banach space X
into itself satisfying

(¢') there emists a constant O such that |17 < C for all n = 1,2, ...,
where T" = T-T...T is the n-th iterate of T.

n
A mecessary and sufficient condition for the existence of a linear oper-
ator P: X — X such that

(dy I™ =P as n— oo
and

(") P =TP = P?* = PT
is the existence of a linear operator 8 : X — X such that

(a') TS = 8 = 82
and

() (I'—8)* -0 as n — oo.

Remark 1. Let us note that by Theorem 2 the limit P of 7" maps
thcf, space X onto the subspace {;T# = a} == {w; Po = 2} of all fixed
points of 7. By property (d,) we obtain also the following inequality :

HT"—*P“ % 20“(11“51)71 l”-

Let us conclude this section by the following

’ EPEEOREM 5. If T': X — X is a lnear operator of & Banach space X
into m]t(self such that there ewists a linear operator § : X - X satisfying (a')
and i ’

1%
"k‘HT -0 as %—oo
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I )
and || 3 (T—8Y|| is bounded, then
=1

k 2
1,y 1 O
= A[’/,_.,‘ 7
\1 k Z k .Z T
i1 f=k+1

‘——:»0 as k- co.

Pro oi. Applying Theorem 1 to A = Tk'”, T;=1T and 8 =8 we
infer by (a) that

T — I+ = (P Ty (T — g) L,

Summation over j and divigsion by & yields

k ok k

11, 1 N I ;
S N =L @) Ty

1 el eyl =1

Since by the assumptions of the theorem the right-hand side of this
equality tends to zero as k — oo, Theorem 5 is proved.
Remark 2. Theorem 5 may be interpreted in the following manner.
Let T denote the transition probability matrix from one state of a given
system to another state during a time unit. Then 7™ denotes the transi-
tion probability matrix after » units of time. Suppose that we know the
I

average k' 21’7. Then, if the assumptions of Theorem 5 hold, we find
Jeal

2k B
that the average k~* ' 77 for k sufficiently large will be close to k™' 3'1".
' k1 j=1
k

A similar reasoning holds when we interchange the roles of k™ 37, and

2k j=1
k' 3 T7. Let us also note that knowing the function [T(/k and the
Jemlet-1

k 3
upper bound of || ¥ (T'—8)~"| one can estimate
7=21

2k

k
HiZT’—i D 1*’”
k Forl b J=l 1 '
2. To give some applications of the results obtained in section 1
we will introduce the notion of a stable operator §: X — X mapping
a Banach space X into itself. This notion is a generalization of the notion
of a stable matrix. Let us denote by X* the conjugate of X (i.e. X*is
the space of all linear continuous functionals on X).
Definition. Lot 6 = {ti}ims,.. 804 f = {fi}j=1,,.. be biorthogonal
sequences (finite or not), where ¢;¢X and f; eX*. We say that § : X - X
is stable relatively to the pair (¢, f) if and only if for all 4, j, & we have (f;, Se;)
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= (fx, S¢;), where (@, 2) = @(x) is the value of the funetional peX™ at
the point xzeX.
For example, let X = m be the Banach space of all bounded ge-
quences @ = (£, &, ...) of real numbers & with norm |z = s[up &
1o
Let ¢, =(0,0,...,0,1,0,...) and let fi(x) =&, i=1,2,...
i-th place
each stable and stochastic matrix § = (s;;) is a stable operator §: X » X
relatively to the pair (e, f) and, as can easily be seen, we have 18] == 1.
Similarly, if X" is a »-dimensional Banach space and ¢; = (0,0, ..., 0
1,0,...,0) = {8;}.1,,., Where
i

Then

H

0 for i#£j

&y =
Y 1 for

T and fi(@) =&  for @ == Z’ Ee,
=] i1

we infer that a stable matrix 8 = (8y);;..,. , i8 a stable operator map-
ping X into itself. A trivial consequence of the definition of a stable
operator is:

(e) It 8, — 8 and §,: X - X is a stable operator relatively to (e, f),
n=1,2,..., then 8: X - X is a stable operator relatively to (e, f).

Let us prove the following

TuporEM 6. If T : X — X is a Unear operator of o Banach space X
into itself such that

) 1T <O for all n =1,2,...
and if there exisis a continuous linear operator 8: X — X satisfying

(a') T8 =8 = 82,

() (T—8)" >0
and

(b") 8T™ s o stable operator relatively to (e, 5,
then there exists o linear continuous operator P: X —» X such that T" - P,
P = TP = P* = PT and P i3 a stable operator relatively to (e, f). Moreover,
P maps X onto the set {&; Te = o} = {v; Pr = @} of fimed points of T and
in the ease where X is o Hilbert space and T = T* is selfadjoint, the operator P
is also selfadjoint.

Proof. By assumptions (¢'), (a') and (b') we infer from Theorem 4
that " - P: X > X and P = TP = P? — PT. Moreover, by Remark 1,
P maps X onto the set {2; Tw = &} = {w; Py = 2}. Further, in the case
where X is a Hilbert space and T is selfadjoint, P ig also selfadjoint as
& limit of selfadjoint operators 7™. It remaing to show that P is stable

relatively to (e, f). For this purpose let us apply Theorem. 1 to the operators
4 =48, Ti=T and 8 = 8. Then by (a) we obtain

Tn___sznb«l —_ (T-—-S)%.
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Thus by (b') and by I™ - P it follows that ST" - P as 7 — oo.
But, by (b"), 81" is stable relatively to (e, f) and therefore, by (e), P is
stable relatively to (e, f). The theorem is proved.

Before the next Remark 3 let us recall the well-known fact that
for a finite dimensional Banach space all norms are equivalent. In par-
ticular, for the space [X] of linear operators 7: X — X mapping a finite
dimensional Banach space X into itself all norms are equivalent. (Each
operator belonging to [X] is represented by a finite matrix; thus if X
is »-dimengional, [X] is »?-dimensional.) Therefore

(f) it I - P in one norm, then 7™ — P in any other norm provided
that I' maps a finite dimensional Banach space into itself.

Remark 3. A finite stochastic matrix 7T is called indecomposable
and aperiodic (SIA) if P = HmT™ exigts and P is stable (see for instance

N=r00
[8], p. 733). It is a trivial consequence of (f), (a,), (a,) and Theorem 4
that T is STA if and only if for some norm || || there exists a stable stochastic
matrix 8 such that |77 < C for all » =1,2,... and (T—8)" = 0 as
n > oo, This gives a simple characterization of SIA matrices.
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