

On the convergence of superpositions of a sequence of operators*

by

M. REICHAW (Haifa)

Introduction. Let $T_i \colon X \to X$, $i=1,2,\ldots$, be continuous linear mappings of a Banach space X into itself and write $T^n = T_n T_{n-1} \ldots T_1$. The problem of finding conditions under which the sequences

$$\{T^n\}_{n=1,2,\dots}$$
 and $\left\{\frac{1}{n}\sum_{j=1}^n T^j\right\}_{n=1,2,\dots}$

converge for $n \to \infty$ has been investigated by several authors. For example if $T_i = T$ are all equal, then the following well-known mean ergodic theorem ([9] or [1], p. 662, corollaries 2 and 3) holds.

Let $T\colon X\to X$ be a linear continuous mapping of a Banach space X into itself. If the sequence of averages

$$\frac{1}{n}\sum_{i=1}^n T^i$$

is bounded, $T^n x/n^n \to 0$ as $n \to \infty$, and the sequence

$$x_n = \frac{1}{n} \sum_{i=1}^n T^i x$$

contains a weakly convergent subsequence $\{x_{n_p}\}$ for x in a fundamental set, then

$$\frac{1}{n}\sum_{i=1}^n T^ix$$

^{*} This research was supported by the Air Office of Scientific Research.

I would like to thank Professor J. Wolfowitz for his kind help in writing this paper. I am also indebted to Dr. S. Rolewicz for several useful remarks.

converges strongly to a linear continuous operator $P\colon X\to X$ mapping X onto the manifold $\{x;\,Tx=x\}$ of fixed points of T. Strong results in the case of a semigroup of operators $T_a\colon X\to X$ have been obtained in [2]. The general case of different operators $T_i,\ i=1,2,\ldots,$ without the assumptions of any algebraic structure has been considered in [3], [4], [7] and [8] in the terminology of stochastic processes. In these works T_i is a *finite* stochastic matrix and can be regarded as a linear operator mapping a finite-dimensional space into itself.

In section 1 of the present paper simple and easily applicable sufficient conditions for the convergence of sequences $\{T^n\}_{n=1,2,...}$ and $\{n^{-1}\sum_{j=1}^n T^j\}_{n=1,2}^j$ are given. In the case where T_i commute (i. e. $T_iT_j=T_jT^i$ for all i, j=1,2,...) these conditions turn out to be also necessary for the convergence of $\{T^n\}_{n=1,2,...}$. In section 2 the notion of a stable operator, generalizing the notion of a stable matrix, is introduced and the results of section 1 are applied to the theory of stochastic matrices.

Notation. We denote by $\|x\|$ (by $\|T\|$) the norm of the point x (of the operator T), $x_n \to x$ denotes $\|x_n - x\| \to 0$ and $T_n \to T$ denotes either the strong convergence of T_n to T (i. e. for every x, $\|T_n x - Tx\| \to 0$) or the norm convergence $\|T_n - T\| \to 0$.

A matrix $S=(s_{ij})$ (finite or not) will be called *stable* if all the rows of S are identical, i. e., if $s_{i,j}=s_{k,j}$ for all $i,\ k$ and j. A *stochastic matrix* $T=(t_{i,j})$ is such that $t_{ij}\geqslant 0$ and $\sum\limits_{i=1}^{\infty}t_{ij}=1$ for every i. It is easily seen that

- (a_0) if S is a stable matrix and T any matrix such that ST exists, then ST is a stable matrix,
 - (a_1) if T is stochastic and S stable, then TS = S,
 - (a₂) if T is stochastic and S is stable and stochastic, then $TS = S = S^2$.

We shall consider a linear operator $A: X \to X$ and sequences $\{T_i\}_{i=1,2,...}$ and $\{S_j\}_{j=1,2,...}$ of linear operators mapping a Banach space X into itself and we shall consider also the following properties:

- (a) $T_i S_j = S_j = S_i S_j$ and $A S_j = S_j$ for all i, j = 1, 2, ... (1),
- (b) $\prod_{i=1}^{n} (T_i S_i) \to 0$ as $n \to \infty$, where convergence means either strong convergence or norm-convergence (2).

In the sequel T^n always stands for $T_n \cdot T_{n-1} \cdot \dots \cdot T_1$. Thus, if $T_i = T$ are all equal, $T^n = \underbrace{T \cdot T \cdot \dots \cdot T}_{i}$ is simply the *n*-th iterate of T.

(2)
$$\prod_{i=1}^n (T_i - S_i)$$
 denotes $(T_n - S_n)(T_{n-1} - S_{n-1}) \dots (T_1 - S_1)$.

1. We begin with the following

THEOREM 1. Let $A: X \to X$, $T_i: X \to X$ and $S_j: X \to X$ be linear mappings of a linear space X into itself satisfying property (a). Then

$$(\overline{a}) \hspace{3cm} T^n - A T^{n-1} = (T_n - A) \prod_{i=1}^{n-1} (T_i - S_i).$$

Proof. We will first show by induction that

$$(\bar{\bar{\mathbf{a}}}) \hspace{3cm} T^n - S_n T^{n-1} = \prod_{i=1}^n \left(T_i - S_i \right).$$

Indeed, denoting by T^0 the identity operator, we see that (\bar{a}) holds for n=1. Now suppose that (\bar{a}) holds for n. Then

$$\begin{split} \prod_{i=1}^{n+1} (T_i - S_i) &= (T_{n+1} - S_{n+1}) (T^n - S_n T^{n-1}) \\ &= T^{n+1} - S_{n+1} T^n - T_{n+1} S_n T^{n-1} + S_{n+1} S_n T^{n-1} \,. \end{split}$$

By (a) we have $T_{n+1}S_n = S_n = S_{n+1}S_n$ and thus $-T_{n+1}S_nT^{n-1} + S_{n+1}S_nT^{n-1} = 0$. Therefore

$$\prod_{i=1}^{n+1} (T_i - S_i) = T^{n+1} - S_{n+1} T^n$$

and $(\overline{\overline{a}})$ is proved.

To prove $(\overline{\mathbf{a}})$ let us denote by T^0 the identity operator and by $S_0=0$ the null operator.

Then (\overline{a}) is trivially satisfied for n=1. Using (\overline{a}) with n replaced by n-1 we obtain

$$\begin{split} (T_n - A) \prod_{i=1}^{n-1} (T_i - S_i) &= (T_n - A)(T^{n-1} - S_{n-1}T^{n-2}) \\ &= T^n - AT^{n-1} - T_n S_{n-1}T^{n-2} + AS_{n-1}T^{n-2}. \end{split}$$

But by (a) we have $-T_nS_{n-1}T^{n-2} + AS_{n-1}T^{n-2} = -S_{n-1}T^{n-2} + +S_{n-1}T^{n-2} = 0$. Thus (a) holds. Theorem 1 is proved.

Theorem 1 is the main theorem of this paper. The following theorems are simple consequences of Theorem 1 and are obtained by applying $(\overline{\mathbf{a}})$ to some particular operators A and sequences $\{T_i\}_{i=1,2}$ and $\{S_j\}_{j=1,2,\ldots}$. In the sequel "linear operator" stands for "linear and continuous operator".

THEOREM 2. Let $T_i: X \to X$ be linear operators of a Banach space X into itself satisfying

⁽¹⁾ One may illustrate condition (a) geometrically by regarding S_i as "projections" of X onto the space $Y = S_i(X) = S_j(X)$ (common to all operators S_i) such that $T_i x = x$ and Ax = x for all $x \in Y$.

(c) there exists a constant C such that $\|T_{n+k} \cdot T_{n+k-1} \cdot \ldots \cdot T_n\| \leqslant C$ for all n and k.

A sufficient condition for the existence of a linear operator $P\colon X\to X$ such that

$$(d_1)$$
 $T^n \to P$ as $n \to \infty$,

and

(d₂)
$$P = T_k P = P^2$$
 for every $k = 1, 2, ...,$

is the existence of a sequence $\{S_j\}_{j=1,2,...}$ of linear operators $S_j\colon X\to X$ satisfying (b) and

(a*)
$$T_i S_j = S_i S_j = S_j$$
 for all $i, j = 1, 2, ...$

Moreover, the operator P maps X onto the set

$$F = \bigcap_{k=1}^{\infty} F_k$$

where $F_k = \{x; T_k x = x\}$ is the set of fixed points of T_k and $F = \{x; Px = x\}$.

Proof. By (a*) we have $T_{n+k}\cdot T_{n+k-1}\dots T_nS_j=S_j$ and therefore property (a) is satisfied for $A=T_{n+k}\cdot T_{n+k-1}\dots T_n$. By Theorem 1 it follows that

$$T^{n}-T^{n+k}=(T_{n}-T_{n+k}\cdot T_{n+k-1}\dots T_{n})\prod_{i=1}^{n-1}(T_{i}-S_{i}).$$

Hence by (c) we have

$$\|(\mathbf{d}_3)\| \|T^n - T^{n+k}\| \leqslant 2C \| \prod_{i=1}^{n-1} (T_i - S_i) \|$$

and thus for every $x \in X$

$$\|(\mathbf{d}_3')\| \|T^n x - T^{n+k} x\| \leqslant 2C \|\prod_{i=1}^{n-1} (T_i - S_i) x\|.$$

The space of linear operators mapping X into itself being complete both in the norm-topology and in the strong topology (see [6], p. 140 and p. 142), it follows by (b), (d₃) and (d'₃) that

 (\mathtt{d}_4) there exists a linear operator $P\colon X \to X$ such that $T^n \to P$ as $n \to \infty$.

Thus (d₁) holds.

To show (d_2) let us apply Theorem 1 to the operator $A=T_k$ where k is fixed, and to the sequences $\{T_i\}_{i=1,2,...}$ and $\{S_j\}_{j=1,2,...}$. Then by $(\bar{\mathbf{a}})$ we obtain

$$T^n - T_k T^{n-1} = (T_n - T_k) \prod_{i=1}^{n-1} (T_i - S_i).$$

By letting $n \to \infty$, we infer from (e), (b) and (d₁) that (d₂) $P = T_k P$.

Thus $T_1P = P$, $T_2T_1P = P$ and by induction $T^nP = P$ for every n = 1, 2, ... Therefore, by (d_1) , $P^2 = P$ and by (d_5) we infer that (d_2) holds.

It remains to show that P maps X onto

$$F = \bigcap_{k=1}^{\infty} F_k$$
 and $F = \{x; Px = x\}.$

But this is quite trivial. Indeed, if

$$x \in \bigcap_{k=1}^{\infty} F_k = F,$$

then $T_k x = x$ for every k = 1, 2, ...

Consequently, $T^n x = x$ and, by (d₁), Px = x. Conversely, if x = Px for some $x \in X$, then, by (d₂), $T_k x = T_k Px = Px = x$. Thus $x \in F$. Theorem 2 is proved.

THEOREM 3. Let $T_i \colon X \to X$ be linear continuous operators mapping a Banach space X into itself satisfying assumption (c) of Theorem 2 and such that

(e) T_i and T_j commute for all i, j = 1, 2, ... (i. e. $T_iT_j = T_jT_i$).

A necessary and sufficient condition for the existence of a linear operator $P \colon X \to X$ such that

 $(\mathbf{d}_1') \ T^n \to P \ as \ n \to \infty$

and

$$(d'_2)$$
 $P = T_k P = P^2 = PT_k$ for every $k = 1, 2, ...,$

is the existence of a sequence $\{S_j\}_{j=1,2,...}$ of linear operators $S_j \colon X \to X$ such that (a^*) and (b) hold.

Proof of sufficiency. By Theorem 2 there exists a linear operator $P\colon X\to F$ mapping X onto the set

$$F = \bigcap_{k=1}^{\infty} F_k = \{x; Px = x\},\,$$

where $F_k = \{x; T_k x = x\}$ such that (\mathbf{d}_1) and (\mathbf{d}_2) are satisfied. Thus (\mathbf{d}_1') holds and it remains to show that $PT_k = P$ for all $k = 1, 2, \ldots$ This, however, is a simple consequence of (e), (\mathbf{d}_1') and (\mathbf{d}_2) . Indeed, by (e) we have $T^nT_k = T_kT^n$ for all k and n. Letting $n \to \infty$ we infer by (\mathbf{d}_1') and (\mathbf{d}_2) that $PT_k = T_kP = P$.

Proof of necessity. To prove the necessity of (a^*) and (b) let us put $S_j = P$ for all j = 1, 2, ... Then by (d'_2) we infer that (a^*) is satisfied and it remains to show that (b) holds. Indeed, by (d'_2) we have

 $(T_2-P)(T_1-P) = T_2T_1-PT_1-T_2P+P^2 = T_2T_1-P$ and by induction

$$\prod_{i=1}^{n} (T_i - P) = T^n - P.$$

Thus by (d'_1) we obtain

$$\prod_{i=1}^{n} (T_i - P) \to 0 \quad \text{as} \quad n \to \infty.$$

Theorem 3 is proved.

Using the fact that in the proof of the necessity in Theorem 3 it is possible to put $S_j = P$ for all j = 1, 2, ... and putting, in Theorem 3, $T_i = T$ and $S_j = S$, where $T: X \to X$ and $S: X \to X$ are linear operators of X into itself, we obtain as a consequence of Theorem 3 the following

Theorem 4. Let $T: X \to X$ be a linear operator of a Banach space X into itself satisfying

(c') there exists a constant C such that $||T^n|| \leq C$ for all n = 1, 2, ..., where $T^n = \underbrace{T \cdot T ... T}$ is the n-th iterate of T.

A necessary and sufficient condition for the existence of a linear operator $P\colon X\to X$ such that

(d')
$$T^n \to P$$
 as $n \to \infty$

and

(d'')
$$P = TP = P^2 = PT$$

is the existence of a linear operator $S: X \to X$ such that

(a')
$$TS = S = S^2$$

and

(b')
$$(T-S)^n \to 0$$
 as $n \to \infty$.

Remark 1. Let us note that by Theorem 2 the limit P of T^n maps the space X onto the subspace $\{x; Tx = x\} = \{x; Px = x\}$ of all fixed points of T. By property (d_a) we obtain also the following inequality:

$$||T^n-P|| \leqslant 2C||(T-S)^{n-1}||.$$

Let us conclude this section by the following

THEOREM 5. If $T:X\to X$ is a linear operator of a Banach space X into itself such that there exists a linear operator $S:X\to X$ satisfying (a') and if

$$\frac{1}{k} \|T^k\| \to 0 \quad as \quad k \to \infty$$

and $\left\|\sum_{j=1}^{k} (T-S)^{j}\right\|$ is bounded, then

$$\left\|\frac{1}{k}\sum_{j=1}^k T^j - \frac{1}{k}\sum_{j=k+1}^{2k} T^j\right\| \to 0 \quad as \quad k \to \infty.$$

Proof. Applying Theorem 1 to $A=T^{k+1},\ T_j=T$ and $S_j=S$ we infer by (\overline{a}) that

$$T^{j}-T^{j+k}=(T-T^{k+1})(T-S)^{j-1}.$$

Summation over j and division by k yields

$$\frac{1}{k} \sum_{j=1}^{k} T^{j} - \frac{1}{k} \sum_{j=k+1}^{2k} T^{j} = \frac{1}{k} (T - T^{k+1}) \sum_{j=1}^{k} (T - S)^{j}.$$

Since by the assumptions of the theorem the right-hand side of this equality tends to zero as $k \to \infty$, Theorem 5 is proved.

Remark 2. Theorem 5 may be interpreted in the following manner. Let T denote the transition probability matrix from one state of a given system to another state during a time unit. Then T^n denotes the transition probability matrix after n units of time. Suppose that we know the average $k^{-1} \sum_{j=1}^{k} T^j$. Then, if the assumptions of Theorem 5 hold, we find

that the average $k^{-1} \sum_{k+1}^{2k} T^j$ for k sufficiently large will be close to $k^{-1} \sum_{j=1}^{k} T^j$. A similar reasoning holds when we interchange the roles of $k^{-1} \sum_{j=1}^{k} T^j$ and

A similar reasoning holds when we interchange the roles of $k = \sum_{j=1}^{2} T_j$ and $k^{-1} \sum_{j=k+1}^{2k} T^j$. Let us also note that knowing the function $||T^k||/k$ and the

upper bound of $\left\|\sum_{j=1}^{k} (T-S)^{j-1}\right\|$ one can estimate

$$\left\| \frac{1}{k} \sum_{j=1}^k T^j - \frac{1}{k} \sum_{j=k+1}^{2k} T^j \right\|.$$

2. To give some applications of the results obtained in section 1 we will introduce the notion of a stable operator $S: X \to X$ mapping a Banach space X into itself. This notion is a generalization of the notion of a stable matrix. Let us denote by X^* the *conjugate* of X (i. e. X^* is the space of all linear continuous functionals on X).

Definition. Let $e = \{e_i\}_{i=1,2,...}$ and $f = \{f_j\}_{j=1,2,...}$ be bierthogonal sequences (finite or not), where $e_i \in X$ and $f_i \in X^*$. We say that $S: X \to X$ is stable relatively to the pair (e, f) if and only if for all i, j, k we have (f_i, Se_j)

= (f_k, Se_l) , where $(\varphi, x) = \varphi(x)$ is the value of the functional $\varphi \in X^*$ at the point $x \in X$.

For example, let X=m be the Banach space of all bounded sequences $x=(\xi_1,\,\xi_2,\,\ldots)$ of real numbers ξ_i with norm $\|x\|=\sup_{1\le i<\infty}|\xi_i|$. Let $e_i=(0,0,\ldots,0,1,0,\ldots)$ and let $f_i(x)=\xi_i,\ i=1,2,\ldots$ Then each stable and stochastic matrix $S=(s_{i,j})$ is a stable operator $S\colon X\to X$ relatively to the pair (e,f) and, as can easily be seen, we have $\|S\|=1$.

Similarly, if X is a v-dimensional Banach space and $e_i=(0,0,...,0,1,0,...,0)=\{\delta_{ij}\}_{j=1,2,...,\nu}$ where

$$\delta_{ij} = egin{cases} 0 & ext{for} & i
eq j \ 1 & ext{for} & i = j \end{cases} \quad ext{and} \quad f_j(x) = \xi_j \quad ext{for} \quad x = \sum_{i=1}^r \xi_i e_i,$$

we infer that a stable matrix $S=(s_{ij})_{i,j=1,\ldots,r}$ is a stable operator mapping X into itself. A trivial consequence of the definition of a stable operator is:

(ē) If $S_n \to S$ and $S_n \colon X \to X$ is a stable operator relatively to (e,f), $n=1,2,\ldots$, then $S\colon X\to X$ is a stable operator relatively to (e,f). Let us prove the following

THEOREM 6. If $T:X\to X$ is a linear operator of a Banach space X into itself such that

(c') $||T^n|| \leq C \text{ for all } n = 1, 2, ...$

and if there exists a continuous linear operator $S: X \to X$ satisfying

(a')
$$TS = S = S^2$$
,

(b')
$$(T-S)^n \rightarrow 0$$

and

(b") ST^n is a stable operator relatively to (e, f),

then there exists a linear continuous operator $P\colon X\to X$ such that $T^n\to P$, $P=TP=P^2=PT$ and P is a stable operator relatively to (e,f). Moreover, P maps X onto the set $\{x;Tx=x\}=\{x;Px=x\}$ of fixed points of T and in the case where X is a Hilbert space and $T=T^*$ is selfadjoint, the operator P is also selfadjoint.

Proof. By assumptions (c'), (a') and (b') we infer from Theorem 4 that $T^n \to P \colon X \to X$ and $P = TP = P^2 = PT$. Moreover, by Remark 1, P maps X onto the set $\{x; Tx = x\} = \{x; Px = x\}$. Further, in the case where X is a Hilbert space and T is selfadjoint, P is also selfadjoint as a limit of selfadjoint operators T^n . It remains to show that P is stable relatively to (e, f). For this purpose let us apply Theorem 1 to the operators A = S, C = T and C = S. Then by C = T we obtain

$$T^n - ST^{n-1} = (T - S)^n.$$

Thus by (b') and by $T^n \to P$ it follows that $ST^n \to P$ as $n \to \infty$. But, by (b''), ST^n is stable relatively to (e, f) and therefore, by (\bar{e}) , P is stable relatively to (e, f). The theorem is proved.

Before the next Remark 3 let us recall the well-known fact that for a finite dimensional Banach space all norms are equivalent. In particular, for the space [X] of linear operators $T\colon X\to X$ mapping a finite dimensional Banach space X into itself all norms are equivalent. (Each operator belonging to [X] is represented by a finite matrix; thus if X is r-dimensional, [X] is r^2 -dimensional.) Therefore

(f) if $T^n \to P$ in one norm, then $T^n \to P$ in any other norm provided that T maps a *finite* dimensional Banach space into itself.

Remark 3. A finite stochastic matrix T is called indecomposable and aperiodic (SIA) if $P = \lim_{n \to \infty} T^n$ exists and P is stable (see for instance

[8], p. 733). It is a trivial consequence of (f), (a₁), (a₂) and Theorem 4 that T is SIA if and only if for some norm $\| \|$ there exists a stable stochastic matrix S such that $\|T^n\| \leq C$ for all $n=1,2,\ldots$ and $(T-S)^n \to 0$ as $n \to \infty$. This gives a simple characterization of SIA matrices.

References

- [1] N. Dunford and J. T. Schwartz, Linear operators, Part I, I. N. C., New York 1958.
- [2] W. F. E berlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), p. 217-240.
- [3] J. Hajnal, The ergodic properties of non-homogeneous finite Markov chains, Proc. Cambridge Phil. Soc. 52 (1956), p. 67-77.
- [4] Weak ergodicity in non-homogeneous Markov chains, ibidem 54 (1958),
 p. 233-246.
- [5] Л. В. Канторович и Г. П. Акилов, Функциональный аналив в нормированных пространствах, Москва 1959.
- [6] Л. А. Люстерник и В. И. Соболев, Элементы функционального анализа, Москва 1951.
- [7] J. L. Mott and H. Scheider, Matrix norms applied to weakly ergodic Markov chains, Archiv der Mathematik 8 (1957), p. 331-333.
- [8] J. Wolfowitz, Products of indecomposable aperiodic stochastic matrices, Proc. Amer. Math. Soc. 14 (1963), p. 733-737.
- [9] K. Yosida and S. Kakutani, Operator theoretical treatment of Markov process and mean ergodic theorem, Ann. Math. 42 (1941), p. 188-228.

TECHNION - I.I.T. HAIFA CORNELL UNIVERSITY, ITHACA, NEW YORK

Reçu par la Rédaction le 3.8.1964