

On w^* -sequential convergence, type P^* bases, and reflexivity *

by

R. J. FLEMING, R. D. MCWILLIAMS and J. R. RETHERFORD (Florida)

1. If X is a Banach space and S a subspace of X^* , let $K_X(S)$ denote the w^* -sequential closure of S in X^* . McWilliams ([6], Thm. 1) has recently shown that if $f \in K_X(S)$ and

(1.1)
$$\varphi(f) = \inf \{ \sup_{n} \|f_n\| \colon \{f_n\} \subset S \text{ and } w^* \cdot \lim_{n} f_n = f \},$$

then $K_X(S)$ is closed in the norm topology of X^* if and only if there is a number $C \ge 1$ such that $\varphi(f) \le C ||f||$ for all $f \in K_X(S)$. In accordance with this, for a subspace S of X^* let

$$(1.2) C_S = \inf\{C \colon \varphi(f) \leqslant C \|f\| \text{ for all } f \in K_X(S)\},$$

$$(1.3) Q_X = \sup\{C_S: S \text{ is a subspace of } X^*\}.$$

It is clear that $Q_X = \infty$ if and only if either

1.4) there exists a sequence $\{S_N\}$ of subspaces of X^* such that $C_{S_N} \to \infty$ as $N \to \infty$,

 \mathbf{or}

(1.5) there is a subspace S in X^* such that $C_S = \infty$.

If X is reflexive, then $K_X(S)=S$ for every closed subspace S of X^* , and hence trivially $Q_X=1$. Similarly, since w-sequential and w*-sequential convergence coincide in $(m)^*$ ([4], Theorem 9, p. 168), where (m) is the (non-reflexive) space of bounded sequences, it follows that $Q_{(m)}=1$.

In Section 2 it is proved that if X has a type P^* basis ([8], p. 354) then $Q_X = \infty$. It then follows that for X to be reflexive it is necessary and sufficient that $Q_Y < \infty$ for every closed subspace Y of X. Further, it is shown that if X has an unconditional basis and $Q_X < \infty$, then X is reflexive.

^{*} Supported in part by National Science Foundation Grant GP-2179 and Florida State University Research Council Grant 036 (42).

In Section 3 it is shown that (1.5) is satisfied for (l^1) and for (c_0) . For a quasi-reflexive space [2], (1.5) can never be satisfied, but (1.4) is satisfied for the quasi-reflexive space of James ([5], p. 523). Further, it is shown for a quasi-reflexive space X that $K_{X^*}(J_X(X)) = X^{**}$, where J_X is the canonical mapping from X into X^{**} , and that if S is a subspace of X^* , then $K_X(K_X(S)) = K_X(S)$.

Finally, in Section 4 some unsolved problems are mentioned.

2. If $\{x_n\}$ is a basis for a Banach space X, then $\{x_n\}$ is said to be of type P^* if

$$\sup_n \|x_n\| < \infty \quad \text{ and } \quad \sup_n \left\| \sum_{i=1}^n h_i \right\| < \infty,$$

where $\{h_i\}$ is the sequence of functionals in X^* biorthogonal to $\{x_i\}$.

THEOREM 1. If X is a Banach space with a basis $\{x_i\}$ of type P^* , then $Q_X = \infty$.

Proof. We may assume that $\sup_i \|x_i\| \le 1$. Let $\{h_i\}$ be the sequence in X^* biorthogonal to $\{x_i\}$ and let

$$T = \sup_{n} \left\| \sum_{i=1}^{n} h_{i} \right\|.$$

From [8] (Prop. 3, p. 356) there is a $g_0 \in X^*$ such that $g_0(x_n) = 1$ for each n. Let N be a positive number greater than 1. Define $\{f^{Nj}\}_{j=1}^{\infty}$ as follows: for each j,

$$f^{Nj} = N \|g_0\|g_0 - (N\|g_0\| - 1) \sum_{i=1}^j h_i.$$

Then $||f^{Nj}|| \leq N ||g_0||^2 + (\tilde{N} ||g_0|| - 1)T$ for each j. On the other hand, since $||x_n|| \leq 1$ for each n, $||f^{Nj}|| \geq |f^{Nj}(x_{j+1})| = N ||g_0||$. It is clear that

$$\lim_{j\to\infty}f^{Nj}(x_k)=g_0(x_k)=1\quad \text{ for each } k.$$

Thus, since $\{f^{Nj}\}$ is bounded in norm, w^* - $\lim_j f^{Nj} = g_0$. Suppose

$$g = \sum_{i=1}^m a_i f^{Ni},$$

where a_1, \ldots, a_m are scalars. Then

(2.1)
$$||g|| \ge |g(x_{m+1})| = N ||g_0|| \Big| \sum_{i=1}^m a_i \Big|.$$

Let S_N be the (not necessarily closed) subspace of X^* spanned by $\{f^{N'}\}$. Suppose $\{g^n\}$ is a sequence in S_N converging to g_0 in the w^* -topology. For each n,

$$g^n = \sum_{i=1}^{m_n} a_i^{(n)} f^{Ni}$$
 and $g^n(x_1) = \sum_{i=1}^{m_n} a_i^{(n)}$.

Since $\lim g^n(x_1) = g_0(x_1) = 1$, it follows that for each $\varepsilon > 0$ there is an M > 0 such that for n > M,

$$\left|\sum_{i=1}^{m_n} a_i^{(n)} - 1\right| < \varepsilon.$$

Thus from (2.1) and (2.2),

$$\liminf_{n} \|g^n\| \geqslant N \|g_0\|.$$

Now $g_0 \in K(S_N)$ and, by (2.3), $\varphi(g_0) \geqslant N \|g_0\|$. Thus $C_{S_N} \geqslant N$, and so $Q_X = +\infty$.

Remark 1. For every N>1 the subspace S_N constructed in the proof of Theorem 1 has the property that $K_X(S_N)=X^*$, and hence C_{S_N} is finite.

Proof. Let f be a non-zero element of X^* . For each positive integer n let

$$d_k^{(n)} = egin{cases} rac{f(x_{k+1}) - f(x_k)}{N \, \|g_0\| - 1} & ext{for} & 1 \leqslant k < n \,, \ rac{N \, \|g_0\| f(x_1) - f(x_n)}{N \, \|g_0\| - 1} & ext{for} & k = n \,, \end{cases}$$

and let

$$p^n = \sum_{k=1}^n d_k^{(n)} f^{N_k}.$$

We note that

$$\sum_{k=1}^n d_k^{(n)} = f(x_1) \quad ext{ and } \quad p^n(x_j) = egin{cases} N \|g_0\| f(x_1) & ext{ for } & j>n, \ f(x_j) & ext{ for } & 1\leqslant j\leqslant n. \end{cases}$$

If $x \in X$, then $x = \sum_{i=1}^{\infty} a_i x_i$ for some scalar sequence $\{a_i\}$; since $g_0(x_i)$ = 1 for each i, the series $\sum_{i=1}^{\infty} a_i$ converges. If $\varepsilon > 0$ is given, then there is an M > 0 such that for n > M,

$$\left|\sum_{i=n+1}^{\infty} a_i\right| < \frac{\varepsilon}{2N \|g_0\| \|f\|},$$

and

$$\left|\sum_{i=n+1}^{\infty} a_i f(x_i)\right| < \frac{\varepsilon}{2}.$$

Thus for n > M,

$$|p^{n}(x) - f(x)| = \left| N \|g_{0}\| f(x_{1}) \sum_{i=n+1}^{\infty} a_{i} - \sum_{i=n+1}^{\infty} a_{i} f(x_{i}) \right| < \varepsilon$$

by (2.4) and (2.5); i. e., w^* -lim $p^n=f$, and thus $f \in K_X(S_N)$.

COROLLARY 1. A Banach space X is reflexive if and only if $Q_Y < \infty$ for every norm-closed subspace Y of X.

Proof. A closed subspace Y of a reflexive space X is reflexive. and so $Q_{\mathcal{F}}=1$.

On the other hand, if X is not reflexive, then there is a non-shrinking basic sequence $\{z_n\}$ in X([7], Thm. 1, p. 372) and hence a basic sequence $\{y_n\}$ of type P^* ([8], Thm. 1, p. 358). If $Y = [y_n]$ is the closed linear span of $\{y_n\}$, then $Q_Y = \infty$ by Theorem 1.

It is easy to verify that the unit vector basis of (l1) and the basis $\{z_n\}$ of (c_0) , where

$$(2.6) z_n = (\underbrace{1, 1, \dots, 1}_{n}, 0, 0, \dots, 0),$$

are of type P^* ; thus $Q_{(c_n)}=Q_{(l^1)}=\infty$. Letting X=(m) and $Y=(c_0),$ we see that it is possible for Y to be a closed subspace of X and for Q_Y to be infinite while Q_X is finite. This cannot happen in the presence of a continuous projection from X onto Y.

THEOREM 2. Let X be a Banach space, Y a closed subspace of X and T a continuous projection from X onto Y. Then $Q_Y \leqslant ||T||Q_X$.

Proof. Since the range of T is all of Y, T^{*-1} , where T^* is the adjoint of T, exists and it is easy to verify that

$$||T^{*-1}f|| \leqslant ||f|| \leqslant ||T|| ||T^{*-1}f||,$$

for any f in the range of T^* .

Suppose W is a subspace of Y* and Y' $\epsilon K_{Y}(W)$. If $S = T^{*}(W)$ and $f = T^*Y'$, then $f \in K_X(S)$. Suppose that $\{f_n\}$ is a sequence in S such that w^* - $\lim_n f_n = f$. Let $Y'_n = T^{*-1}f_n$ for each n. Then w^* - $\lim_n Y'_n = Y'$, $\{Y_n'\} \subset \stackrel{n}{W}, \text{ and from (2.7) } \|Y_n'\| \leqslant \|f_n\| \text{ for each } n. \text{ Thus } \varphi(Y') \stackrel{n}{\leqslant} \sup \|f_n\|,$ $\text{ and } \quad \text{so } \quad \varphi(Y') \leqslant \varphi(f) \leqslant C_S \|f\| \leqslant C_S \|T\| \|Y'\|. \quad \text{Thus } \quad C_{W} \leqslant \|T\| C_S, \ \, \text{and} \ \,$ hence $Q_{Y} \leqslant ||T||Q_{X}$.

The next theorem is proved in a similar manner.

Theorem 3. If T is an isomorphism (i. e., linear homeomorphism) from a Banach space X onto a Banach space Y, then

$$(||T^{-1}|| ||T||)^{-1}Q_{\mathcal{X}} \leqslant Q_{\mathcal{Y}} \leqslant (||T^{-1}|| ||T||)Q_{\mathcal{X}}.$$

THEOREM 4. If X is a Banach space with an unconditional basis $\{x_i\}$ and if $Q_X < \infty$, then X is reflexive.

Proof. Suppose there is a subspace of X isomorphic to (c_0) . Then, by [1] (C. 6, p. 157), there is a subspace Y of X isomorphic to (c_0) such that there exists a continuous projection from X onto Y. It follows from Theorems 2 and 3 that $Q_X = \infty$, contradicting the hypothesis.

Suppose X contains a subspace isomorphic to (l^1) . Then $\{x_i\}$ is nonshrinking ([3], Thm. 3, p. 76), and so ([8], Prop. 5, p. 367) the sequence $\{f_i\} \subset X^*$ biorthogonal to $\{x_i\}$ is a non-boundedly-complete basis for $[f_i]$. Now by [3] (Thm. 2, p. 74), the space $[f_i]$ and hence also X^* contain a subspace isomorphic to (c_0) . Thus ([1], Thm. 4, p. 155) there is a subspace Y of X isomorphic to (l^1) and a continuous projection from X onto Y. By Theorems 2 and 3, $Q_X = \infty$, contradicting the hypothesis. Thus X has no subspace isomorphic to (c_0) or (l^1) , so by [5] (Thm. 2, p. 521) Xis reflexive.

3. If X is a space with a type P^* basis, then Theorem 1 provides a method for constructing a sequence $\{S_N\}$ of subspaces of X^* satisfying (1.4). An example in [6] and the following example show that (1.5) is satisfied in (l^1) and (c_0) respectively.

Example. Let $X = (c_0)$ so that $X^* = (l^1)$. The sequence $\{z_i\}$ defined by (2.6) is a basis of type P^* for (c_0) and the biorthogonal functionals $\{h_i\}$ in (l^1) associated with $\{z_i\}$ are given by $h_i=\underbrace{(0,\ldots,0,1}_{i-2},\,-1,\,0,\,0,\ldots)$.

In the notation of Theorem 1, the functionals $f^{n_j} = \{f_p^{n_j}\}$ are defined by

$$f_p^{n_j} = egin{cases} 1 & ext{if} & p=1, \ n-1 & ext{if} & p=j+1, & n\geqslant 2. \ 0 & ext{otherwise}, \end{cases}$$

Let $\{M_k\}$ be the collection of disjoint sets of positive integers defined as follows: for each k, $M_k = \{n : n = 2^{k-1}(2p-1), p = 1, 2, 3, ...\}.$ For each pair of positive integers n, j with $2 \le n, 1 \le j$, define the element H^{nj} of $(l^{\bar{1}})$ by $H^{nj}=(H^{nj}_m)$ where

$$H_m^{nj} = \begin{cases} 0 & \text{if} & m \notin M_{n-1}, \\ f_p^{nj} & \text{if} & m = 2^{n-2}(2p-1). \end{cases}$$

Let $S = [H^{nj}]$. If $\{f^i\}$ is the unit vector basis of (l^1) , then w^* -lim H^{q_j} = $f^{2^{q-1}}$, so $f^{2^{q-1}} \in K_X(S)$, for every positive integer $q \ge 2$. If $\{g^n\} \subset S$ and w^* -lim $g^n = f^{2^{q-2}}$ then an argument similar to that of Theorem 1 shows that $\liminf_n \|g^n\| \geqslant q$. It follows that $C_S \geqslant q$ for arbitrary $q \geqslant 2$, i. e., $C_S = +\infty$.

We now show that (1.5) cannot be satisfied in quasi-reflexive spaces. Theorem 5. If X is quasi-reflexive and S is a subspace of X^{**} , then $K_{X^*}(S)$ is norm-closed in X^{**} , and $K_{X^*}(K_{X^*}(S)) = K_{X^*}(S)$.

Proof. Since $K_{X^*}(S) = K_{X^*}(\overline{S})$, it may be assumed that S is norm-closed. Let $S_1 = S \cap J_X(X)$, where J_X is the canonical mapping of X into X^{**} . Then S is the direct sum of S_1 and a finite-dimensional subspace S_2 of X^{**} . The projection P of S onto S_1 along S_2 is norm-continuous. Thus if $F \in K_{X^*}(S)$, so that F is the w^* -limit of a norm-bounded sequence $\{F_n\}$ in S, then the sequence $\{F_n-PF_n\}$ is a bounded sequence in S_2 . Since S_2 is finite-dimensional, there is a subsequence $\{F_{n_i}-PF_{n_i}\}$ which converges in norm to some $G \in S_2$. Thus $\{PF_{n_i}\}$ converges in the w^* -to-pology of X^{**} to F-G, so that $F-G \in K_{X^*}(S_1)$. Since F=(F-G)+G, and since $K_{X^*}(S_1)$ and S_2 are contained in $K_{X^*}(S)$, it follows that $K_{X^*}(S)$ is the sum, not necessarily direct, of $K_{X^*}(S_1)$ and S_2 . Since S_1 is a norm-closed subspace of $J_X(X)$, it is clear that $K_{X^*}(S_1) \cap J_X(X) = S_1$. Thus $K_{X^*}(S_1)$ is the direct sum of S_1 and a finite-dimensional subspace S_3 of X^{**} , so that $K_{X^*}(S_1)$ and hence also $K_{X^*}(S)$ are norm-closed in X^{**} ([3], p. 14).

Now $K_{X*}(S)$ is the sum of S_1 , S_2 , and S_3 . Since S_2 and S_3 are finite-dimensional, it follows that $K_{X*}(S)$ is the direct sum of S_1 and some finite-dimensional subspace S_4 of X^{**} . Hence $K_{X*}(K_{X*}(S))$ is the sum of $K(S_1)$ and S_4 , but this sum is equal to $K_{X*}(S)$.

THEOREM 6. Let X be quasi-reflexive, Y a closed subprace of X, and S a subspace of Y*. Then $K_Y(S)$ is norm-closed in Y*, and $K_Y(K_Y(S)) = K_Y(S)$.

Proof. It has been shown in [2], pp. 908-909, that Y must be quasi-reflexive and that there must exist a topological isomorphism T from Z^* onto Y for some quasi-reflexive space Z. Now $T^*(S)$ is a subspace of Z^{**} and hence $K_{Z^*}(T^*(S))$ is norm-closed in Z^{**} by Theorem 5. It is clear that $K_Y(S) = (T^*)^{-1}[K_{Z^*}(T^*(S))]$, so that $K_Y(S)$ is norm-closed in Y^* . Further, $K_Y(K_Y(S)) = (T^*)^{-1}[K_{Z^*}(K_{Z^*}(T^*(S)))] = (T^*)^{-1}[K_{Z^*}(T^*(S))] = K_Y(S)$.

It is easy to show that the basis $\{x_n\}$, where $x_n = (\underbrace{1,1,\ldots,1}_{n},0,0,\ldots)$,

of the quasi-reflexive space E of R. C. James ([5], p. 523), is of type P^* . Thus by Theorem 1, (1.4) is satisfied but Theorem 6 shows that (1.5) cannot be satisfied for E.

The following theorem improves the result of Civin and Yood ([2],

p. 909) to the effect that if X is quasi-reflexive, then X is reflexive if and only if it is weakly complete.

THEOREM 7. If X is quasi-reflexive, then $K_{X*}(J_X(X)) = X^{**}$.

Proof. The result is trivial if X is separable, for then X^* is also separable. In the general case, there is a topological isomorphism T from Y^* onto X for some quasi-reflexive space Y; here Y and Y^* are of the same deficiency n as X itself. Now Y has a reflexive subspace Z such that Y/Z is separable ([2], p. 910). Then $(Y/Z)^*$ is isometrically isomorphic with the annihilator A of Z in Y^* (Day [3], p. 25). Since Z is reflexive, it follows that Y/Z, A, and TA are quasi-reflexive with deficiency n in their respective second conjugates ([2], pp. 908-909).

If i is the identity mapping from B=TA into X, then i^{**} is an isometric isomorphism from B^{**} into X^{**} , and it is easily verified that $i^{**}\left(K_{B^*}(J_BB)\right) \subseteq K_{X^*}(J_XX)$. Now $K_{B^*}(J_BB)$ is equal to B^{**} , which is the direct sum of J_BB and an m-dimensional subspace S of B^{**} ; hence $i^{**}S \subseteq K_{X^*}(J_XX)$. It may be verified directly that $(i^{**}S) \cap J_XX = (0)$; indeed, if $i^{**}F = J_Xx$, where $F \in S$ and $x \in X$, then $x \in B$, but then $J_Bx = F$, so that x = 0. Since $K_{X^*}(J_XX)$ contains the direct sum of J_XX and the n-dimensional subspace $i^{**}S$, it must be that $K_{X^*}(J_XX) = X^{**}$.

4. We raise the following questions concerning possible improvements of the results in this paper:

(P1) If X is separable and $Q_X < \infty$, must X be reflexive? More specifically,

(P2) If X has a basis and $Q_X < \infty$, must X be reflexive?

Singer ([8], p. 368) has posed the following question:

(P3) If X is a non-reflexive space with a basis, must X have a basis of type P^* ?

An affirmative answer to (P3) would, by virtue of Theorem 1, answer (P2) affirmatively.

(P4) Are (P2) and (P3) equivalent?

(P5) If $Q_X < \infty$, then must every subspace of X with an unconditional basis be reflexive?

We remark that the method of proof of Theorem 4 is ineffectual in trying to answer (P5). Consider X = C[0,1] and Y a subspace of C[0,1] such that Y is isometrically isomorphic to l^1 . Now $C[0,1]^*$ is weakly complete and hence can contain no subspace isomorphic to (c_0) . Thus by [1], Thm. 4, p. 155, there is no continuous projection from C[0,1] onto any subspace isomorphic to (l^1) .

It is interesting to note that the converse of (P5) is false. Again consider the quasi-reflexive space E of James. We have shown that $Q_E = \infty$,

but A. Pełczyński (see [8], p. 368) has remarked that every subspace of E with an unconditional basis is reflexive.

References

- [1] C. Bessaga and A. Pelczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), p. 151-164.
- [2] P. Civin and B. Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), p. 906-911.
 - [3] M. M. Day, Normed linear spaces, Berlin 1958.
- [4] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canadian J. Math. 5 (1953), p. 129-173.
- [5] R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), p. 518-527.
- [6] R. D. McWilliams, On the w*-sequential closure of subspaces of Banach spaces, Portugal. Math. 22.4 (1963), p. 209-214.
- [7] A. Pelczyński, A note on the paper of L. Singer "Basic sequences and reflexivity of Banach spaces", Studia Math. 21 (1962), p. 371-374.
- [8] I. Singer, Basic sequences and reflexivity of Banach spaces, ibidem 21 (1962), p. 351-369.

FLORIDA STATE UNIVERSITY

Reçu par la Rédaction le 25.7.1964

On sequences of continuous functions and convolution

bу

T. K. BOEHME (Santa Barbara, California)

1. In the study of Mikusiński operators the question arises "given a sequence of continuous functions g_n on the half-line $t\geqslant 0$ is there a single non-zero continuous g such that, for each n, g is of the form

(1)
$$g(t) = \int_0^t g_n(t-u)f_n(u)du, \quad t \geqslant 0,$$

where f_n is a continuous function?" For an affirmative answer it is obviously necessary that there exist some interval [0, T], T > 0, such that none of the g_n vanish identically on [0, T]. If this condition is satisfied the answer given by Theorem 3 below is "yes, there is always such a function g".

In what follows we will utilize the following notation. The functions involved are complex values functions on the half-line $t \ge 0$; juxtaposition of functions denotes convolution so that equation (1) will be written $g = g_n f_n$. C is the vector space of continuous functions, and L is the vector space of locally integrable functions. For g in C or in L we will use the semi-norm

$$||g||_T = \int\limits_0^T |g|(t)dt,$$

and a sequence g_n is convergent in L to g if $\|g_n-g\|_T\to 0$ for every T>0. The fundamental inequality for this semi-norm (in addition to the triangle inequality) is that, for any two functions g and f in L, $\|gf\|_T \leqslant \|g\|_T \|f\|_T$. The set C_0 (or L_0) is the set of all g in C (or L) such that $\|g\|_T>0$ for all T>0; that is, it consists of those functions which vanish on no neighborhood of the origin. In particular, a function g in C_0 is not the zero function. The symbol h will be used for that function in C which is such that h(t)=1 for all $t\geqslant 0$.

The basic principle in what follows is a theorem of C. Foiaş which says