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On w*-sequential convergence, type P* bases, and reflexivity *
hy

R.J. FLEMING, R. D, MCWILLIAMS and J. R, RETHERFORD (Florida)

1. If X is a Banach space and § a subspace of X*, let Kx(S) denote
the w*-gequential closure of § in X*. McWilliams ([6], Thm. 1) has re-
cently shown that if feKx(S) and

(1.1) e(f) = inf{S?L-p”an: {fa} = 8 and w*-lim,f, = f},

then Kx(8) is closed in the norm topology of X* if and only if there is
a number ¢ > 1 such that ¢(f) < Cjf] for all feKx(8). In accordance
with this, for a subspace 8 of X* let

(1.2) Oy = inf{C: ¢(f) < O|lffl for all feKx(8)},
(1.8) Qx = sup{Cs: S is a subspace of X*}.

It is clear that Qx = oo if and only if either

(1.4)  there exists a sequence {Sy} of subspaces of X* such that Cg,— oo
ag N — oo,
or

(1.5)  there is a subspace § in X* such that Cg = oo.

If X is reflexive, then Kx(S) = § for every closed subspace S of
X* and hence trivially Qx = 1. Similarly, since w-sequential and w*-
sequential convergence coincide in (m)* ([4], Theorem 9, p. 168),
where (m) is the (non-reflexive) space of bounded sequences, it follows
that Qu) = 1.

In Section 2 it is proved that if X has a type P* basis ([8], p- 354)
then Qx == oo, It then follows that for X to be reflexive it is necessary
and sufficient that @y < oo for every closed subspace Y of X. Further,
it is shown that if X has an unconditional basis and @x < co, then X
is reflexive. ' ’

* Supporled in part by Nalional Science Foundation Grant GP-2179 and Flo-
rida State University Research Council Grant 036 (42).
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In Section 3 it is shown that (1.5) is satisfied for (/) and for (¢,).
For a quasi-reflexive space [2], (1.5) can never be satisfied, but (1.4)
is satisfied for the quasi-reflexive space of James ([5], p. 523). Further
it is shown for a quasi-reflexive space X that Kx«(Jx(X)) = X**, Wheré
Jx i8 the canonical mapping from X into X**, and that it § is a subspace
of .X* then Ifx(KX S)) Kx(lg)

Fmally, in Section 4 some unsolved problems are mentioned.

- If {w,} is a basis for a Banach space X, then {m,} is said to be
of Jpe P* if

sup fioy)| < oo and < oo,
n

n
sup hy
| Y
where {h;} is the sequence of functionals in X* biorthogonal to {@;}.

0 TaroreM 1. If X is a Banach space with a basis {r;} of type P*, then
X = OO,
Proof. We may assume that sup |z
2

< 1. Let {A;} be the sequence
in X* biorthogonal to {r;} and let

From [8] (Prop. 3, p.356) there it a goeX™ such that Jo(my) =1

for each n. Let N be a positive number greater tha
n 1. D Ty
follows: for each j, gr efine {fN ey a8

. 4
7 = gl go— (W lgo| = 1) X' 1.

t=1

Then [[f*]| < Nllg,|+ (X |jgol —1)T for each
j. On the other hand,
sinee |jza] <1 for each n, |[f¥]| > fo (@741)] = Nligoll. It is clear that

}Eﬁflw(wk) = ¢o(@x) =1 for each k.

Thus, since {f'} is bounded in norm, u*- lim = g,. Suppose
i

= Zm‘a’i]dwf

=1

where a,, ..., a, aré scalars. Then

(21) loll = lg (@my)] = 2 fgo]| 2«4

1=1
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Let Sy be the (not necessarily closed) subspace of X* spanned by
{f"'}. Suppose {g"} is a sequence in Sy converging to g, in the w*-topology.
For each n,

Moy, My,
¢ = Y a’  and  ¢May) = D e’
=1 i=1

Since mg™(,) = go(®;) =1, it follows that for each &> 0 there
is an M > 0 such that for » > M,

My,
Sa—s]<e

t=1

(2.2)

Thus from (2.1) and (2.2),

(2.3) limiilfllg’”ll = Nligoll.

Now goeK(Sy) and, by (2.3), ®(go) = Nlgoll. Thus Ogpy = N, and
50 Qx = +oo
Remark 1. For every N > 1 the subspace Sy constructed in the proof
of Theorem 1 has the property that Ex(8y) = X*, and hence Cg,, is finite.
Proof. Let f be a non-zero element of X*. For each positive inte-
ger n let
for 1<k<m,

’ f(mk+1)‘“f£f’_k_)_

N -1
i — flgoll
l Vgl @) =f @) 0 f s,
Nllgoll —1
and let n
"= Y arf.
k=1
We note that
" Nlgolif (@)~ for j>m,
T4 ) =
%d’“n = f(s) and p"(axy) (@) for 1<j<sn

If weX, then o = f au; for some scalar sequence {ac}; since go(%

=1 for each 4, the geries 2 a; converges. If &> 0 is given, then there

it an M > 0 such that f01 n > M,

} 2 ““ 2N||go”[|f“

(2.4)
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and
‘o0
€
(2.5) | D) afla)|<;.
Ta=n+1

Thus for n > M,

" (@) —f(@)] = [Vligollf(@)) ) w— 2+ af ()| < e
t=n+1 t=n+1

by (2.4) and (2.5); i. e., w*lim p” = f, and thus feKx(Sy).

n

COROLLARY 1. A Banach space X is reflewive if and only if Qy < oo
for every morm-closed subspace Y of X.

Proof. A closed subspace Y of a reflexive space X is reflexive,
and 80 Qy = 1.

On the other hand, if X is not reflexive, then there is a non-ghrink-
ing basic sequence {z,} in X([7], Thm. 1, p. 372) and hence a basic se-
quence {y.} of type P* ([8], Thm. 1, p. 358). If ¥ = [y,] is the closed
linear span of {y,}, then @y = co by Theorem 1.

It is easy to verify that the unit vector basis of (I) and the basis
{2,} of (c,), where

(2.6) 2 = (1,1,...,1,0,0,..., 0),
‘——;"-—-'

are of type P*; thus Qop = Qay = oo. Letting X = (m) and ¥ = (Co),
we see that it is possible for ¥ to be a closed subspace of X and for Qy
to be infinite while @y is finite. This cannot happen in the presence of
a continuous projection from X onto Y.

TEEOREM 2. Let X be a Banach space, Y a closed subspace of X and
T & continuous projection from X onto Y. Then Qr < |ITQx.

Proof. Since the range of T'is all of ¥, T*~%, where T* is the adjoint
of T, exists and it iz easy to verify that

(2.7 =1 < A < T2

for any f in the range of T*,

Suppose W is a subspace of Y* and Y'eKp(W). It 8§ =T"W)
and f = T*Y’, then feKx(S). Suppose that {f,} is a sequence in § such
that w*Hm f, = f. Let ¥, = T*"%, for oach n. Then w*-lim ¥, = ¥/,

n

n

{¥.} = W, and from (2.7) %2l <lfull for each n. Thus o(Y') < sup ||fl,
3
<
=

and so ¢(¥') <o(f) < Oslfl < Osl|T| T’ Thus Ch < 1) Cs, and
hence Qr < ||71Qx.
The next theorem is proved in a similar manner.
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TuEOREM 3. If T is an isomorphism (4. e., Uinear homeomorphism)
from a Banach space X onto a Banach space ¥, then

(2.8) TN '@ < Qr < (IT-ITI)Qx-

THEOREM 4. If X 4s a Bamach space with an unconditional basis {;}
and if Qx < oo, then X ds reflemive.

Proof. Suppose there is a subspace of X isomorphic to (¢,). Then,
by [1] (C. 6, p. 167), there is a subspace ¥ of X isomorphic to (¢,) such
that there exists a continuous projection from X onto Y. It follows
from Theorems 2 and 3 that Qy = oo, contradieting the hypothesis.

Suppose X contains a subspace isomorphic to (I*). Then {#;} is non-
shrinking ([3], Thm. 3, p. 76), and so ([81, Prop. 5, p. 367) the sequence
{f;} = X* biorthogonal to {x;} is a non-boundedly-complete basis for [f;].
Now by [3] (Thm. 2, p. 74), the space [f;] and hence also X* contain
a subspace isomorphic to (e,). Thus ([1], Thm. 4, p. 155) there is a sub-
space ¥ of X isomorphic to (I') and a continuous projection from X onto Y.
By Theorems 2 and 3, @y = oo, contradicting the hypothesis. Thus X
has no subspace isomorphic to (60) or (I'), so by [5] (Thm. 2, p.521) X
is reflexive.

3. If X is a space with a type P* basis, then Theorem 1 provides
& method for constructing a sequence {8y} of subspaces of X* satistying
(1.4). An example in [6] and the following example show that (1.5) is
satisfied in (I') and (c,) respectively.

Example. Let X = (ey) 80 that X* = (I!). The sequence {z;} defined
by (2.6) is a basis of type P* for (¢,) and the biorthogonal functionals
{h;} in (I') associated with {z;} are given by h; = (0,...,0,1, —1,0,0,...).

—=7
In the notation of Theorem 1, the functionals f* = {fy/} are defined by

1 if p=1,
il ={n—1 i p=j+1, n>2.
A0 otherwise,

Let {M,} be the collection of disjoint sets of positive integers defined
as follows: for each &k, My = {n:n = 25-1(2p —1), p=1,2,3,...}
For each pair of positive integers n, Jwith 2 < n, 1 < j, define the element
H" of (i) by H" = (H") where :

0 if  m¢M,_,
i mo= 2 (2p—1).
Let 8 = [H™]. If {f*} is the unit vector basis of (1M, then w*ilim "%

ER

7
=" 50 P eK 5 (8), for every positive integer ¢ = 2. If {§"} = § and
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w*-lim ¢" = fz”‘z then an argument similar to that of Theorem 1 shows
tha,tn limint |lg"| > ¢. It follows that Cs >4 for arbitrary ¢ = 2, i.e.,
n .

Cg = +oo.

We now,.show that (1.3) cannot be satisfied in quasi-reflexive spaces.

TumorEM 5. If X is quasi-reflemive and 8 s @ subspace of X**, then
Kx.(8) is norm-closed in X**, and Kx.(Ex(8)) = Kxa(8).

Proof. Since Kx.(8) = Kx.(5), it may be agsumed that & is norm-
cloged. Let 8, = 8 Jx(X), where Jx is the canonical mapping of X
into X**. Then 8 is the direct sum of S, and a finite-dimensional subspace
8§, of X**. The projection P of 8 onto §; along 8, is norm-continuous.
Thus if FeKx.(8), so that F is the w*-limit of a norm-bounded sequence
{F,} in S, then the sequence {F,—PF,} is a bounded sequence in §,.
Since 8, is finite-dimensional, there is a subsequence {F,,—PF,} which
converges in norm to some @ eS,. Thus {PF,,} converges in the w*-to-
pology of X** to F—@, so that F—GeKx.(8,). Since F = (I'—G)-+-G,
and since Kx*(S,) and 8, are contained in Kx.(8), it follows that Kx«(S)
is the sum, not necessarily direct, of K «*(8,) and §,. Since §, is a norm-
closed subspace of Jx(X), it is clear that Kxe(8;) n Jx(X)=8;. Thus
Kx.(8,) is the direct sum of §, and a finite-dimensional subspace S,
of X**, so that Kx.(S;) and hence also Kx.(8) are norm-closed in X**
([31, p. 14).

Now K x(8) is the sum of 8, §;, and §,. Since 8, and S, are finite-
dimensional, it follows that Kx.(§) is the direct sum of 8; and some
finite-dimensional subspace S, of X**. Hence Ky.(Kx.(8)) is the sum
of K(S,) and 8, but this sum is equal to Kx.(8).

THEOREM 6. Let X be quasi-reflexive, Y a closed subpsace of X, and 8
a subspace of Y*. Then Ky(S) is norm-closed in Y*, and Ky (Er(8)

Proof. It has been shown in [2], pp. 908-909, that ¥ must be quasi-
reflexive and that there must exist a topological isomorphism I' from z
onto Y for some quasi-reflexive space Z. Now T*(8) is a subspace of Z2**
and hence Kz, (I*(8)) is norm-closed in Z** by Theorem 5. It is clear
that Kg(8) = (1*)'[Kz. (T*(8))], so that Ky(S) is norm-closed in Y.
Further, Ky(Ky(8) = (I*)"[Eze (Ez. (T*(9)))] = (L*)" K. (1™ (8))] =
= Ky(8).

It is easy to show that the basis {x,}, where z, = (1,1,...,1,0,0,...),

_T-——J
of the quasi-reflexive space B of R. C. James ([5], p. 523), is of type P
Thus by Theorem 1, (1.4) is satisfied but Theorem 6 shows that (1.5)
cannot be satisfied for E.
The following theorem improves the regult of Civin and Yood ([2],

* ©
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p. 909) to the effect that if X is quasi-reflexive, then X is reflexive if and
only if it is weakly complete.

THEOREM 7. If X is quasi-reflemive, then Kx.(Jx(X)) = X**.

Proof. The result is trivial if X is separable, for then X* is also
separable. In the general case, there is a topological isomorphism 7' from
Y* onto X for some quasi-reflexive gspace ¥ ; here ¥ and Y* are of the
same deficiency n ag X itself. Now ¥ has a reflexive subspace Z such that
Y/Z is separable ([2], p.910). Then (Y/Z)* is isometrically isomorphic
with the annihilator 4 of Z in ¥* (Day [3], p. 25). Since Z is reflexive, it
follows that Y/Z, A, and T'4 are quasi-reflexive with deficiency » in their
respective second conjugates ([2], pp. 908-909).

If 4 is the identity mapping from B = T4 into X, then ¢** is an iso-
metric isomorphism from B** into X** and it is easily verified that
i** (Ko (JpB)) & Kx.(JxX). Now Hp.(JpB) is equal to B**, which is
the direct sum of JxB and an m-dimensional subspace S of B**; hence
i**8 © Kx.(JxX). It may be veritied directly that (i**S) ~ JxX = (0);
indeed, if ©**F = J x@, where F ¢S and z¢ X, then B, but then Jzz = F,
g0 that # = 0. Sinee K x.(JxX) containg the direct sum of JxX and the
n-dimensional subspace i**§, it must be that Ky.(JxX) = X*™.

4. We raise the following questions concerning possible improvements
of the results in this paper:

(P1) If X is separable and Qx < oo, must X be reflexive?

More specifically,

(P2) If X has a basis and Qx < oo, must X be reflexive?

Singer ([8], p.368) has posed the following question:

(P3) Tf X is a non-reflexive space with a basis, must X have a basis
of type P*? '

An affirmative answer to (P3) would, by virtue of Theorem 1, angwer
(P2) affirmatively.

(P4) Are (P2) and (P3) equivalent?

(P5) Tf Qx < oo, then must every subspace of X with an uncondi-
tional bagis be réflexive?

We remark that the method of proof of Theorem 4 is ineffectual
in trying to answer (P5). Consider X = ([0,1] and ¥ a subspace of
010,17 such that Y is isometrically isomorphic to I, Now C[0,17* is
weakly complete and hence can contain no subspace isomorphic to ().
Thus by [1], Thm. 4, p. 155, there is no continuous projection from €0, 1]
onto any subspace isomorphic to (I).

It is interesting to note that the converse of (P5) is false. Again con-
sider the quasi-reflexive space B of James. We have shown that Qp = oo,
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but A. Petezynski (see [8], p. 368) has remarked that every subspace of E
with an unconditional basis is reflexive.
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On sequences of continnous functions and convolution
by

T.K. BOEHME (Santa Barbara, California)

1. In the study of Mikusirigki operators the question arises “given
a sequence of continuwous functions g, on the half-line ¢ >0 iz there
a gingle non-zero continuous ¢ such that, for each n, g is of the form

12
(1) 9(t) = [galt—wfa(w)du, ¢>0,

where f, is a continuous function?” For an affirmative answer it is ob-
viously necessary that there exist some interval [0, 7], T > 0, such that
none of the g, vanish identically on [0, 7]. If this condition is satisfied
the angwer given by Theorem 3 below is ‘‘yes, there is always such a fune-
tion g”.

In what follows we will utilize the following notation. The functions
involved are complex values functions on the half-line ¢ > 0; juxtaposi-
tion of functions denotes convolution so that equation (1) will be written
g = gnfu- C is the vector space of continuous functions, and I is the vector
space of locally integrable functions. For g in ¢ or in L we will use the
semi-norm

T
lglle = [ lgl()dt,
0

and a sequence g, is convergent in L to g if ||g,— gllz — 0 for every T > 0.
The fundamental inequality for this semi-norm (in addition to the triangle
inequality) is that, for any two functions g and fin L, |lgfllr < llgliz|lfllz-
The set C, (or L,) is the set of all g in ¢ (or L) such that ||g|ly > 0 for all
T > 0; that is, it consists of those funetions which vanish on no neigh-
borhood of the origin. In particular, a function ¢ in 0, is not the zero
function. The symbol & will be used for that function in ¢ which is such
that h(t) = 1 for all ¢ = 0. .

The basic principle in what follows is & theorem of C. Foiag which
says
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