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Another characterization of Hilbert spaces
by

J.J. SCHAFFER (Montevideo)

1. Introduction. Let X be a real Banach space of dimension not less
than two. We denote the norm by |-||, the (solid) unit sphere by X, its
boundary by 0X. We set sgnz = |lz||" 1z for each xeX\{0}. In [3], Clark-
son introduced the following concept, in order to make a detailed analysis
of the triangle inequality in uniformly convex spaces: for any z, y e X\{0},
we define the angular distance (Clarkson’s “angle”) a[x,y] = |sgny — sgna|.
In [6], Massera and Schéffer established the following property of the
angular distance, which turns up in many geometrical questions; we
include a proof for the sake of completeness.

LemMA 1. For any x,yeX\{0}, we have

@ lly— 2l = $alz, yImax {|2ll, ly]}.

Proof. Because of the symmetry, it is sufficient to consider the case
ol < flyll. Set o = alw,y]. If |a| < (1—3a)lyl, (1) follows from |ly]]
= ly—z+2| < lly—al+Q—3a)lyl; if (1— o)yl <=l < |lyll, it follows
from allyl = |y— |1y sgna] = |ly—2— (ly| — =l sgnal| < ly—)+ eyl

It is easy to see that the coefficient % in (1) cannot be replaced by
any larger number, by taking y = —ex with a small positive e. However,
it is fairly obvious that when X is a Hilbert space the coefficient can be
chosen as close to 1 as one pleases, provided a[z,y] is sufficiently small.
The main purpose of this paper is to show that this property characterizes
Hilbert spaces whenever the dimension is not less than three (but not
when it is two).

The main tool will be the characterization of Hilbert spaces by the
“symmetry of orthogonality”, which (at least for spaces with strictly
convex unit spheres) goes back to Blaschke’s characterization of the ellip-
soids in three-dimensional affine space as the convex bodies with plane
“shadow boundaries” ([1]; see [2], (16.14), (17.25)), and was first stated
in ity general form by James ([4], Theorem 1), although the equivalent
geometric fact is given by Kakutani ([5], Theorem 5).

We ghall algo show that this characterization may be rephrased as
follows: if the dimension of X is not less than three, then X is a Hilbert
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space if and only if the length of any rectifiable curve that containg no
interior point of X is not increased by radial projection onto 9.

2. Inferior limits. For convenience we introduce the notation
lly — =l
afz, ylmax{|jz|, [y|}

for any #, y«X\{0}, a[z, y] # 0. This function is obviously symmetric
and positively homogeneous; if ||| = |y, then (z,y) = 1. Lemma 1
states that u(x, y) > % for all #, ¥ for which v is defined. These remarks
show that

(@)

p(z,y) =

1 <p =liminfy(z,y) <1.
afzy]-»-0
The condition we are interested in is p = 1.
For any unit vectors w, v such that #4v 5= 0 we have alw, u+t ]
= |+ 2|7 H|(1— [+ Ao|l) u+ Av]| — O as 2 - -0, whence

liminfd/alu, u-+ ] = liminfy(u, u+ o) > p.
Fs-0 At0
Therefore u = 1 implies

liminfijalu, w4 20] > 1
As40

for all u, vedX such that w-wv s 0. It will turn out in the end that this
apparently weaker, highly “local” condition is actually equivalent to
u=1

Two incidental remarks: it will appear in the proof of Theorem 1
(implication (b) — (¢)) that in any case the limit lim A Jalw, u-+ 2v] exists;
and the reader is invited to verify that if some plane section of X is a par-
allelogram, and we choose u, v as adjacent vertices of this, then that limit
is precisely %;in such a space the lower bound in (2) is therefore attained.

3. Orthogonality. If z, yeX, we say that » is orthogonal to y, and
write © | v, if |zl < eyl for all real 1; we say that orthogonality
is symmetric it @ | y implies 4 | ». Since orthogonality is  separately
homogeneous in each member, it is sufficient to consider unit vectors.
If @, y are non-collinear wnit vectors and Y is the two-dimengional sub-
space spanned by them, # | y may be interpreted geometrically as the
fact that there exists at z a supporting line of the unit disk X ~ ¥ of ¥
with the direction of y. We therefore state for reference:

LeMua 2. Orthogonality is symmetric in X if and only if the unit disk

Zy =X X of every two-dimensional subspace Y has the following prop-

erty:

(IT) If u,ve0Zy and v has the direction of a supporting line of Xy
at u, then u has the direction of a supporting line of Xy at .
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We require a slightly sharper condition:

LuMuA 3. Orthogonality is symmetric in X if and only if the wnit disk
Xy =X~ Y of every two-dimensional subspace Y has the following prop-
erty:

(ITo) If w,vedZr and v has the divection of an extreme supporting
line of Zy at w, then w has the divection of a supporting line of Xy at v.

Proof. (I7) obviously implies (/T,). Assume that (I7,) holds, and let
1, 00Xy be given, with o in the direction of a supporting line of Xy
at u. Let w,,w, be those unit vectors of the extreme supporting lines
of Xy at « that lie in the same half-plane as » with respect to the line 0.
By (I7,), 1wy, mw, both lie on the unique supporting line parallel to Ou
in that half-plane, and therefore the arc w,w, of 94Xy that contains »
(and which might of course consist in a single point) lies entirely in this
supporting line. Therefore (IT) holds, and (I7), (IT,) are equivalent. The
conclusion follows from Lemma 2.

4. The main result.

THBEOREM 1. Let X be a real Banach space of dimension not less than
two. The following conditions are equivalent:

L lly — |
(a = liminf =1;
) B = dewiero ale, ylmax (), Iy — ™7
(b) liminfd/a[u, u+4 2] = 1 for all u,vedX, utov #0; °
A0
(e) orthogonality is symmetric.

The preceding conditions are satisfied if, and when dimX >3 only
if, X is a Hilbert space.

Proof. We prove (X a Hilbert space) - (a) > (b) = (¢). The
implication (¢) — (X a Hilbert space) when dim X > 3 is the characteri-
zation proved by James ([4], Theorem 1) that was mentioned in Section 1.
The proof of (¢) — (a) for dimX = 2 is given in the next section.

A Hilbert space satisfies (a). Let (-,:) denote the inner product.
Since » is symmetric, we may assume [z < |ly)l. Set o = alw,y], ¥
= (sgna, sgny). Then o® = 2(1—y) and |ly —2|*— (1 —}e?) & |lyl* = |2l +
9122y I gl — (1= »*) [WII* = (llel|— ¥ |¥])* = 0. Therefore y(z,y) >
(1—%a2)"®, Together with (2) this implies (a).

(a) implies (b). Trivial (see Section 2).

(b) implies (¢). Let Y be a two-dimensional subspace of X and X'y
= Y~ Y its unit sphere. For any u<0Xy and any y<¥Y we denote by
o(u, y) the distance between y and the line 0u, i. e., o(u, y) = inf{|ly— Au|:
Areal}. For fixed u, (%, -)is a seminorm; for fixed y, o(-, ) is continuous
on 0Zy. ’
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Agsume that #,v¢02y, and that v has the direction of an extreme
supporting line of X% at w; for definiteness, we suppose it has the sense
in which the supporting line is tangent to Z'y. There exists a unit vector w
in the same half-plane with respect to Ou, and such that o(u,w) =1,
On account of the definition of v, » = limsgn(sgn (u-+ Jw)—u). There-
fore, by (b) applied to u, w, Ao

1= Joll > o(u, v) = limo (, |u+ | ~"w)/a[u, u-tlw)
A0
= lim4c(u, w)/a[%, u+iw] > 1.
A-»40

Therefore o(u, v) =o(%, —v) = 1, and », —o lie on supporting lines
of Xy parallel to Ou. Therefore Xy satisfies (I7,), and Lemma 3 implies
that (¢) holds.

5. The two-dimensional case.

End of the proof of Theorem 1. (¢) implies (a) when
dim X = 2. We may identify X with the plane Y in Section 3, so that
Xy = 2. We use the function o defined in the preceding section.

There exist sequences (w,), (¥,) in X such that lime[®,,#,] = +0

N—>00

and limyp (2, ¥n) = p. On account of the homogeneity of v we may as-
N—00

sume that z, 82 for all n; and since 80X is compact we may assume, tak-
ing a subsequence if necessary, that limz, = 492 exists. We claim that

N—00
limy, = . If this were not the case we might assume, taking a subse-
N0

quence if necessary, that |ly,—a,|| > 7 > 0 for all . But then we find,
using (2),

. s 7
1> u=Ilimy(z =>lim ———————— = oo
# 11-—»001,)( 1 Un) nsoo (1+9) & [@ny Ynl ’
which is absurd; our claim is thus established. We have
(3) Hm |[ya]| = 1,
N> 00
4) 1 [ly, — ]| fa [@, Yn] = p.
00

We may  assume, taking a subsequence if necegsary, that
Limsgn (sgny,—,) = vedZ exists; since (w,), (sgny,) converge to u, v
Te->00

hag the direction of a supporting line of X at u. (c) implies, by Lemma 2,

that v is on a supporting line of X parallel to Ou, so that o(u,v)=1.
Further,

(5) o (@, 2)— a(mm 8gn (sgny, — ‘”'n))l
<llv—sgn(sgny,—a,)| -0  as
(6) Hy,.llo(m,., 8ENY,— 2y,) = o (@p, Yn) = OBy Yn— ) < ||Yn— 2nl|.

n — oo,
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Using the continuity of (-, v) on 2%, and formulas (8), (3), (6), (4),
(2), in that order, we obtain

1=o(u,v) =limo(z,,v) = ]ima'(mn; Sgn(Sgnf‘/n_wn))
N—>00 o

= iimo(mny Sg0Y,— 25) /a[wn: Yn] < ]im”yn"“wn”/a [Zny Yu] = u < 1.
00 Moo

Therefore u =1, and (a) is verified.

Radon [7] was the first to point out that the unit disk of a Banach
plane that satisfies (I7) need not be an ellipse, even if it is strictly convex
(when (II), (I1,) are identical and may be interpreted in terms of “con-
jugate diameters”); all planes with such strictly convex unit disks are
described in [2], p. 104. An example with a unit disk that is not strictly
convex is & plane with an affinely regular hexagon as the unit disk.

6. Rectifiable curves. We return to a general Banach space X.
A curve I' in X\ {0} is given (parametrically) by a continuous function
fila, B] = X\{0}, where the domain is a compact interval of real num-
bers. We set d(I") = min{||f(z)|: ve[a, B}, the distance between the origin
and the curve. If I is rectifiable, I(I") denotes its length. If o is a positive
real number, oI denotes the curve represented by of; then d(oI") = od(I),
U(ol') = ol(I'). We denote by sgnf the function given by sgnf(r) = sgn (f(=)
and by sgnl' the corresponding curve; we say that sgnl’ is obtained
from I" by radial projection onto 8X.

Lemma 4. If I' s a vectifiable curve in X\{0}, then sgnI is rectifiable,
and 1(sgnl’) < U()[ud(T).

Proof. Let I' be described by f:[«, f] — X\{0}. For a given number
0,0 <o <1, let £>0 he so small that y(z, y) > gu provided alz, y]
< e. Since sgnf is continuous, there exists § > 0 such that a[f(z"), f(z"")]
<e for all v/, 7" e[a, f] with [v'—7'| < 6.

Consider any partition a =7, <7, < ... < 7w < 7% = f of [a, f]
with 7, —7:< 8, 1 =0,...,k—1. Set f; = f(v;). Then «[f;,fi.] <e,
and

0

k1 1

k—
WD) = D lfeoa—Fi = D) w(fes ferr) alfe, FopnImax AL I fipall}
k-1

> oud(I) D) Isgnfis—sgnfil-

Since this is true for any sufficiently fine partition, sgnl" is recti-
fiable, and I(I') = oud(I")1(sgnl’); since o was arbitrarily close to 1, the
conclusion follows.
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TEEOREM 2. Let X be a real Banach space of dimension not less than
two. Conditions (a), (b), (¢) of Theorem 1 are equivalent to each of the fol-
lowing conditions:

(d) for every rectifiable curve I' in XN{0}, l(sgnl") < (I jd(I"

(e) for every rectifiable curve I' in X that contains no interior point
of the unit sphere (i.e., with d(I'") = 1), l(sgnl") < ().

If the dimension of X is not less than three, X satisfies these equivalent
conditions if and only if X 4s a Hilbert space.

Proof. (d) obviously implies (e); conversely, if I" is any curve, and
we set o = d(I), then d(67") > 1 and (e) implies I(sgnl") = I(sgno 1)

<Uo™) = U(I)/d(I), so that (e) implies (d). Now (a) implies (d) by
Lemma, 4. The conclusion will follow from Theorem 1 if we prove that (d'
implies (b).

Let w,vedZ, u + v 7 0, be given. For each 1, 0 < 1 < 1, we consider
the curve I'y given by fi(v) = 441w, 7¢[0, 1] (a line segment). Now
Ay >1—12, UTY) =24, Usgnly) > [sgnf(A)—sgnf(O) = alu, u+ in].
By (d),

Alalu, u-+Av] =

Uy UsgnT)) = () =

and (b) follows on taking the inferior limit as A — +0.

1—1,
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Summability in #(p,,p,,...) spaces *

by

V. KLEE (Seattle)

A Banach space E will be said to have the BS- -property provided
every bounded sequence in F admits a subsequence z, whose sequence
of arithmetic means

2 37+ 22), HEt2t2), ...

is norm-convergent to a point of B. This property was established by
Banach and Saks [1] for the spaces L, and I, (1 < p < o), and by Ka-
kutani [2] for all uniformly convex Banach spaces. Nishiura and Water-
man [6] recently showed that the BS-property does not imply uniform
convexifiability, that it does imply reflexivity, and that reflexivity is
equivalent to a different summability property. In his review of [6],
Sakai [7] asked for an example of a reflexive Banach space which lacks
the BS-property. The purpose of this note is to supply such an example
by means of the #(p,, p,,...) spaces of Nakano [5]. (I am indebted to
Mr. K. Sundaresan for caﬂmg my attention to these spaces m a different
connection.)

Let P denote the set of all sequences in ]1, oo and let s denote the
linear space of all sequences of real numbers. For p = = (P1) Pay --.) P

and o = (@, @,,...)es, lot
= Dail"/p.

T=1

o (0)

Let #(p) denote the set of all points zes such that |||, < oo, where
1
“w“p = 1]J.f{l >0: 7 (‘lz) gl}

Then I(p) is a linear subspace of s and || |, is a norm for ¥(p). It
follows from results of Nakano (or by direct reasoning analogous to that
for the classical ¥, spaces) that the spaces }(p) are all reflexive Banach spaces
(for peP), and that ¥(p) is uniformly convex if and only if 1 < inf{p;}
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