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On linear processes of approximation (1)
by

G. FREUD (Budapest) and S. KNAPOWSKI (Poznat)

§1. As in the first part of our work, we are concerned with the
so-called method of test-functions. To reproduce the main features of the
problem, let us be given a sequence of linear operators B,(f) which trans-
form a Banach space X of functions into itself. It is required to know
whether, resp. how precisely, the sequence B.,.(f) approximate all the
functions of X. There are situations in which this can be decided by stud-
ing the order of approximation in a certain subelass of X. We then call
this class a test-class for the approximation problem in question. As to
the well-known results in this direction, we refer to chapter 1 of our pa-
per [3]. We supply two additional remarks.

(a) The first test-condition, using a finite class of test-functions,
seems to have been discovered by H. Bohman (see [1], chapter 3).

(b) For X-spaces of infinite dimension it is not possible to have a finite
test-class, unless presupposing for B,'s something more than the mere
boundedness of their norms. For let us consider a finite subset f;, fa, ... o Ifr
of X. We consider the linear subspace X, spanned by f’s. Let f,..; be an
element of X outside X,. Denoting by X,,, the linear subspace of X
spanned by X, and by f,.;, we have for every feX,,, the unique de-
composition f = p+af,,;, peX,, a & number. Then we define B(f) = ¢
for feX,,, and by the Hahn-Banach principle extend it to the whole
space X. Pufting B, = B, we have B,.(f;})=f;, j=1,2,...,r, but
Bu(fryr) = 00 fry.

§2. Let X be either the space C,, or one of L*[—x,x], p >1,
with the usual norms. The elements of L,[—=,=] are considered
2n-periodic. We note that in each case we have the following in-
equalities which hold for every continnous g(u), feX and arbitrary a, 8
(8, fixed)("):

() We will also make use of the observation, which is trivial for X = Oy, resp.
IP[—=, =], that |f(t)] < g(t) implies [|f]l < |lgl. In fact, we used this property of X
also in [3], but we failed to mention it.
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B
@1)  |[ifu+n—F@lg@an] < [Ifu+0—Fllp(w) du,

8 8
(22) | [Ifwtt+ 80 —fut o) dul| < If(t+ 80 =S Ol [lp (w)] du.

We make a convention, once for all throughout this paper, that
whenever a function of more variables than one occurs under the sign
of norm, it should be understood that the norm is taken according
to the variable ¢ and all the other variables are parameters.

Let {B,(f;1)} be a sequence of linear transformations of X which
transform the subspace O, into itself. The norms of B,’s are supposed
to be bounded:

1B (5 Ol
[l

As in the previous paper, it will be understood that constants in-
volved with O-estimates are numerical after having fixed X and {B,}.

First of all we are quoting the main result of [3], in faet, in a slightly
refined form.

TEHEOREM 1. Let {1,} be a monotonously increasing sequence of positive
integers and suppose, in addition to (2.3),

(2.8) 1Byl & sup - = 0(1).
feX

(2.4) By(15t) =1,
(2.5) Ba(675 1) = e“—{—O(il—)
An o —1 1 »
'Lkr . el
(2.6) é‘ B, ( sin? = ,t)l =0 (An)'

Then for every feX

st = [f2) -1

The proof of this theorem. runs, with small modifications, along
the lines of [3]. As indicated in [3], the above theorem is appropriate
e. g.-for processes which approximate as the Fejér means bub it is not
appropriate for processes of Jackson type. In the present paper we will
provide a theorem applicable in the latter case. We use the concept of
the modulus of continuity . :

|!Bn (f (7); min(1,

)dy}

(2.8) ydet sup IfE+Ry—f @)l

w(d;f; X
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We note that, as a consequence of w(8d; f; X) <
# > 1, we have

(2.9) o (lyl; f5 X)

2dw(0; f; X),

) |
<2ibo(Li57) o gslso
¥

Then we assert the following

THEOREM 2. Let {1,} be a monotonously increasing sequence of positive
integers and suppose, in addition fo (2.3),

(2.10) B,(1;t)—1 =0,
(2.11) B,(e";t)— e = 0 ( )
Znlogiy,
(2.12) B, (e sin?~ ) ( )
n
i(k+d)r gz g L0
(2.13) ngn (e( +H7 gip; )! =0 (Zn) .

Then for every feX ' ,
Baly@s 410l = 0 (o (3555 x).

We will prove this theorem in § 3. The lemmas needed in the course
of this proof have been postponed to § 4. In the last § 5 we make remarks
and give some examples.

(2.14)

§ 3. Let u be the greatest integer not exceedmg Anf2. We will employ
the de la Vallée-Poussin means

(3.1) B, = 0,(f3 ) 2 B0, (f; 1) — 0, (f3 1);
0,(f; t) stand for the familiar Fejér-sums

>_’ (1 - m) a;,e"“

]k]<v

where a; are the Fourier coefficients of f(f)

(3.2) o, = 0,(f; 1)

1 i
ak=2—n_ff(’y)& dy.

We need the estimate
(3.3) fl = 0( ( ifi X));

o (3 %)

for X = C,, it is a combination of Jackson’s approximation theorem
and a well known theorem of de la Vallée-Poussin; as to X = L[ —=, =],
the extension does not present difficulties.
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Splitting
Bn(f? )—f@) = {'”u (F; 0
= {’D#(f H t)

"f(t)}'{"Bn (f_ Uy 1)

+{Bn(”mt) 2,(f; 1)}
'Uu; +2{B Uzﬁt_“"zu(f; }
— {Bu(o,; t)— 0, (f; 0},

we see that the ﬁrst two terms are estimated satisfactorily by (3.3) and

(2.3). All that remains to be proved is

64 IBai0-aol=0(o (L5 x) tr vy
Setting

(3.5) (k3 1) & B, (61—

we get by the linearity of B,

);t)_‘la

Ano(f3 1) 2 Bu(o,; )~ 0, (f; 1) =517; ff(y+t)2(1—%)n,.(k t)e~ My,

1kl<y

Putting f(z) = f() in this formula, we have, using (2.10) and sub-
tracting (without any loss of generality f can be supposed real)

1 ™
(3.6) Buslf3 ) = ~Re [{f(y+0—F0)dn, (1, y)dy,
where -
(3.7) Any(, ) d"‘Z(l_ﬁ)%(k; e,

k=1

Our proof will be finished if we show

(3.8) J“é’” f{f(y+t)~ (t)}An.v(t,y)dy”= o(w(%;f; _x))_
In fact, we have
AT I B vy

=2r)(v+1) 2/(v+

gy)formula (4.1) of lemma 1 (§ 4), we have A,,(t, y) = O(»), so that
1
2mf(y1)
Iy =0

—2m(v+1)

I+ —rF@ay = o(w (%55 x))
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W
=4
=

By lemma 3 (§ 4), (4.15),

ﬂ ——1;t T —«W(V-)-l)
09 5o HA] T gty a +
/(1)
y+t f@+y—fol 1 S lfly+0—70)] |
(wlogv) ‘[ y 4 M +O(—”—2_)Jzn,(.+1) y® —dyll'

Using lemma 4 and formula (4.1) of lemma 1 (§4), the first term
of (3.9) is Ow(l/r;f; X )-
As to the second term of (3.8), (2.1) and (2.9) yield

1 f‘ LRt O/ I f Wy+9—1ol
vlogw - y? ” vlogvmwl) ¥
< 1 f m(’lj§f2; X) dy gl—z—-w(—l-;f;X) Jn W _ O(w(i;f; X)),
g 10gv21r/(v+1) Y Og" ¥ 2n(r+1) y 4

and a similar argument gives for the third term

ot

J, can be handled as (3.9), so that (3.8) follows.

1

y2

f" fy+9— t)ld“

?/8

2rl(v+1)

§ 4. We will use the following notation: for the sequence 7, (k; 1),
k=0,1,2,..., we define

Ay (5 t) = n,(k; D) —nn(k+151),  Ana(k; §) = Ann(k; 1) —Ana(B+1; 1),
A3 (B3 1) = Anu(k; ) —APn (k415 1).

LEMMA 1. As a consequence of (2.10)-(2.13), we have

(4.1) (k3 ) = 0Q), k=0,1,..., 4,
1
(4.2) 1 (0;7) =0, ﬂn(lit)=0(m},
1

) =0(=), k=0,1,...; 4,
(4.3) Aﬂn(k: t) 0 (}m)’ .
(4.4) Aaq(k-t)=o(—1—) E=0,1...., 4.
. n ’ ;.i’
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Proof. Using (3.5), we have

. —1
Ay, (k3 1) = 2@'37,(6’("“)('-‘) sin 32—; i),

. T—1
A%, (k3 1) = —4iB, (e“k'“)("‘) sin? ——; t),

it
A¥na(k; 1) = —8iB,, (ewk-wzxr—t) Sm”z ;t)‘

Ingerting these expressions into (2.12) and (2.13), we get

1
(45) Ar,(05) = 0 (7)
in—1 1
. 3, . —_ —_—
(4.6) ;14 a5 )] = O(ﬁ)-

" By (4.5) and (4.6)

b3
N . 1
(4.7) A% (k5 1) = A%, (0; t)"z A, (j3t) =0 (Eﬂz‘)7 k=o0,1,.., Any

=0

so that )
$ /'.n 1
4.8 At (s )] = 02,
(4.8) gt 7o (5 1) O(An)
Next, by (2.10) and (2.11),
L

49 A5(031) = Of—"—
(4.9) 7a(0; 2) 0(ln10gln)’
whence by (4.8)

k-1 1
(410) Ao, (ks 1) :Ann(O;t)~§A5nﬂ(]’;t)=0(—A-n—), k=0,1,..., 4.

Finally, by 7,(0;1) = 0 and (4.10),
k-1

(5 1) = 1(03 9= YAy (j5 1) = 0(—;“—) =0(), k=0,1,...,%m.
. =0 "

A.part from the second inequality of (4.2), we have proved all the
assertions of our lemma. This remaining inequality follows directly from
(2.11). The lemma has been proved. -
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Let o, dgy &= 0,1, ..., be arbitrary numbers and get doyy =4d,,,
= d,,;3 = 0. Write
Cr = co+61-+ 4.+ ey, =0,1,2,...,9,
O = Op+C,+CyF...+ 0y, k=0,1,2,...,9,
O = 0P +0P+0P+... 409, k=o0,1, 2,...,,
further .
Ady = dy—dyyy By = A—Adyyy, A8 = Ady— A%y,

E=10,1,...,4.
LEMMA 2. We have

» »

E k 2 AP 3 2
(4.11) (1 —_ ?) delc = (1 —_ —,u‘) Ok)Asdk-{— -;' O;f)Azdk+1 .
k=0

k=0 k=0
Proof. As we have proved in [3] (formula (4.1)) (%)
412 5‘ 1- 5 oy = v 1- 5 op s2a, 4 2 530“)41:1
('. ) L v] T L v) * 'k+;‘_J ke
k=0 k=0 k=0
Substituting O = CP—0f, into (4.12), we come readily to (4.11).

Remark. Setting ¢, = 1, ¢, = ¢, = ... = ¢, = 0, we have from (4.11)

¥ 7(; 3 »
(4.13) 2(1— ;—)(k;2)dadk+;Z(k_gz)mdm.l = d,

k=0 k=0

and setting '00 =1, ¢ =1, ¢y =03 = ... =0, = 0, we get similarly
14 k 3 » l
(4.14) Z(H —)(k+ 08+ 2 N e 1 28y = o (1———)d1.
Y v v
k=0 k=0
... lmyma 3. We have for 0 < [y] <7, v < An,

n('V — 1; t) 8—i‘y(v+1)

1 1
¥ (1—e )y o ((vlogv)y”)) +0 (my]*) ’

(418) Ay, (t,y) = 2
Proof. We imsert in (4.11) ¢,=0, ¢, = ¢ ™, %k3>1, further
dy = (k3 8)," k'= 0,1, ..., »; usirg’ the summation formula o

k+2) e o e itk
05‘2) —_ ( 2 )'1__7"’7 —(k-l—-l) (1—-6_1:1})2 -+ (1 —6“‘”)3(1_6 i +1)”)’

'y RN B ‘ o
® Aet{%ally,i, ¢wing to -4 misprint in the place quoted, the last summation was
made to ruh'from k= 1 to k& =17. e :

Studia Mathematica XXV
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we come to (see (3.7))

v e — iy
sl 9) = {2(1—-)(k+2)dadk+— DY L -

k=0

>

k=0

( —f)(k+1)md,,+ 2 k+1) mdkﬂ}

4 k=0 (1=

»—3 y—3
k) 3 s
D (1= a2 S fori+
{g( 4 4 g
2 Pl ) 1 oY )
(1= U1y g8 l _ 1— e~y A433
+ » A—ep (1—e YA%d,_, + » —e‘“’))s( ey A%,
3 e 3 e_giy .
—_— (1 — —~ir—1)1y g2 1— e~ A% .
+ » (1—e ™) (1—e VA%, +— y (1—e by (1—e""") 4%,

Making use of (4.13), (4.14) and bearing in mind that dyy =4d,,
=d,,3 = 0, we obtain

0;1) 1 e
Ana(ty y) = -Ee‘"'—-{ )*(1—;)ﬂn(1;t)}m +
7 (v—1;1) ¢ ~iYp—1)__ —iyy 2 e —1u(r—1)
T ey T T Sy A X

»—3 »—3
3
X dmio=2; 114 Dt 0142 3 isona i35 1} 017,
k=0 k=0

Using lemma 1 and formula (4.6), we conclude the proof of our
lemma.

LEMMA 4. We have

wio | f l){f(y+t)—f(t)}£:%;dy|’ —ofa(3:; x))
and

~n/(r+1) J— 1
w17 Y+9~10) gz ] = 023 x)).

-1
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Proof. The integral inside the norm sign in (4.16) will be called
7,(f;1). We substlt;ute in this integral y—x/( v—]— 1) for y. Then

) —fy-+1)

(1— -"»(V—"l('ﬂ))

‘ mm[(r+1) f(y+t
ry(f; t) = -

..{u(v-;-l)dy -

anf(r+1)
w+wl{v+1)

fly+)—f(8)

/TR )
(1— g~ T—riDys ey,

amj(r+1)
Hence, by addition

e (?’ i T&) ~f+

2n(f;1) = — 1= e-—i(y—n)/(v+l))2

e—-iy(—.;. l)dy +

3j(v-+1)
+ f lf(?/+t t)}{ e_w)z - a— e..i(y_gqj(,+1))z}e e H)d!/+
2wf(r+1)
3m/(r+1) t+mj(v+1)
fly+8)—f(1t) —ip+Y g fly+1)—f() Ry
T | G meaenet Y= (1 —g—T—IFFIE Y
s (1—e ) (1—e )
= K,+K,+K;+K,.
Hence

4

(4.18) 2l (3 Ol < ) IK-
=1

Applying (2.2),

(4.19) 1|K1u_=0(w (v—;i;f; X)) fw % - O(m(%;f; X))-

amjf+1)
Ag to K,, for 2n/(v+1) <y < =,
1 i ~ J— -
A~ TP (Q—eg @—mNeThyE = O(y ™) {(1— e~ *-mC+D)_ (1 _ g~y
- o()
By this, (2.1) and (2.9),
« fo X 1
(€20 K =.o(: wl; i ’dy) O(vw (G5 X))
anGry  J AN
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Next,

[ 2 -ofufinz).

2mf(v+1)

1
=0 (o (56 ))
As to thelast integral X,, we observe that it can be estimated without
pain. by O(»7Yf|). However, with a view to making the final result as
simple as possible, we shall use the “Hille-Klein inequality” (see J. Czip-
szer [2]).

For pel[—n,x] with [p(y)dy =0 and h>0, we have

a+th

(4.22) [ le@)ldy <120(h; ¢; LY).

We write K, in the form

/(v--1)

K, = — fy+)—fly—=+1) e_iv(r+1)d/y___

(1— e—i(ﬂ—ﬂ)l(”+1))2

+7)(r+)
B (Tl Tt (O G
- a— e~ -+ ny2

S— wi(+1)

=o( [ urn—su—ntniag)+o( [ ifw+o—rwia).

To estimate the first term, we use (4.22) with ¢(y) = f(y +1)—
—f(y—m+1). Hence

(1)

w2 K= 0(o(lsiz) +o( [ +o—siola).

Q9
We note that
1 1
a)(—;f; Ll) = O(w(—;f; X))
v v g
for all of our spaces X, whence by (4.23) and (2.1)

(4.24) IR =0 (w (S5 X))

We get the desired (4.16) by (4.18), (4.19), (4.20), (4.21) and (4.24).
(4.17) follows along the same lines.
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§5. We first make some additional remarks.
a) Note that B.(f;1) = ,(f; ) (see (3.1)) with i, =n—2 serve
as an example of a process satisfying all the conditions of Theorem 2.

b) The following example shows that condition (2.3) cannot be de-
duced from the remaining conditions of Theorem 2. We set

Bu(f; 1) = va(f; )+ wn ff(r)cosmdr

with an ®, — co and observe that (2.10)-(2.13) are satisfied if we put
A = n—38. Nevertheless, |B,) > w,—4 — oo together with w,, so that
the conclusion of our theorem cannot be satisfied. This example shows
that condition (2.3) cannot be replaced by ||B,ll = 0(w,) for some w,, - oco.
We note also that, as in this example all expressions (2.10)-(2.13) vanish
identically, nothing better can be obtained in this respect on replacing
the O-bounds concerned by stronger ones. The same applies to Theorem 1.

¢) Condition (2.11) certainly cannot be weakened to

B, (e t)—é* = O( () )

Anlogd,

for some w(x) — co with  — oo, at least in case of X — C,. This is shown
by the following example. We limit ourselves to w(x) = O(logz), for
otherwise we could consider miu(w(a:),loga:) for o(x). Let us put then

w(n)
logn

w(n)
logn

(8.1) B, (f;1) = (1 )f(i)+ Fnsa(f3 1),

Onys being the Fejér means (3.2). Putting i, = n, these B,’s satisfy all
the conditions of Theorem 2, except (2.11). Supposing (2.14) true, we could
deduce for every f(t)eCs, satisfying

(5.2) max Fe+m—f@)1 < A,
the inequality
1
(5.3) max|B,(f; ) —f({t) = 0 (—-)
t n
Inserting (5.1) into (5.3), we get
: B logn
(5.4) m?XIGMz(f, H—f(@) =0 (nw(n))-
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Denoting the class of functions satisfying (5.2) by D, we have by
a well-known theorem of approximation theory (see [4])

lim supmax [f(t)— an(f; )] >0,
nsoo OGN Dt
which evidently contradicts (5.4). We note that also in this example all
expressions (2.10)-(2.13) except (2.11) vanish identically.
d) In case of X = C,., considering a function which satisfies
F+h)—f@) = O([h))
at a fixed value of ¢, it is not allowed to conclude from the assumptions
of Theorem 2

1
Bn(f; t)_f(t) =0 (l—)

at the same value of . A counter-example is furnished by
B(f;t) = va(f;t) and A, =n—2.

e) As an application we consider summation methods of Fourier
series with triangular coefficient matrices. Let

(5.5) . B,.<f;t)=i‘;’—+,;(1—u‘zz”)<akcoskt+bksinkt),

where a,, by, are the Fourier coefficients of f and u{); = 1. Then putting
2n = n—3 and assuming u{¥ = 0, our conditions (2.10)-(2.13) reduce to

() __
(5.6) 1} O(nlogn)’

‘ 1
.7 22 = 0 (;r)

n—4
3 (my __ _1__)
(5.8) gu | = O(nz :

We have to remember, however, that these conditions do not imply
the boundedness of {||B,|}. Supposing in addition that

(5.9) either 4% >0 or 4% <0, k=0,1,...,n—1,
and

[ 1—-,11;‘")
(5:10) 2 iy = O

k=0
we get (by a theorem of S. M. Nikolskij [5])
1Ball = 0(1).

icm
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Thus for the B,’s defined in (5.5), the conditions (5.6)-(5.10) are
sufficient for

1
Bl 0=1) = 0 [0 (2; £, ).
f) An important particular case of (5.5) is obtained by setting

{n)

ﬂk)=¢(

n+1)’

where ¢(2) is a function defined in [0, 1].

In order that (5.6)-(5.10) be satisfied it is sufficient that @' (x) exist
everywhere, be of constant sign and of bounded variation throughout
0 <z <1, moreover that ¢(0) = ¢’(0) = 0, (1) = 1.

Putting e. g. ¢(z) = 1—cos£m, we get substantially the Rogosinski
means 2

1 = ) ] .
E{Sn(t"t‘ 2n+'—) 'S‘Sn(t_ 2n+2‘)} = Rn(f} t)

of the Fourier series of f(f). In this case our theorem yields the
well-known. result

B.(f; 1) =f(t)+0(w (%;f; 0))
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