

Isometries of certain Banach algebras

by

M. CAMBERN (Orsay)

- 0. Introduction. Let B denote a complex Banach space. By an *isometry* of B we will mean a map φ of B to B which is linear, norm-preserving, and surjective. The purpose of this article is to describe the isometries of two well-known function spaces which, under the norms considered, are not only Banach spaces but Banach algebras:
- (1) the algebra $C^{(1)}([0,1])$ (henceforth denoted by $C^{(1)}$) of complex functions continuously differentiable on [0,1], with norm given by

$$||f|| = \max_{x \in [0,1]} (|f(x)| + |f'(x)|)$$
 for $f \in C^{(1)}$

and

(2) the algebra AC([0,1]) (to be denoted by AC) of absolutely continuous complex functions on [0,1], with norm

$$||f|| = \max_{x \in [0,1]} |f(x)| + \int_0^1 |f'(x)| dx$$
 for $f \in AC$.

It is shown that any isometry of $C^{(1)}$ or of AC is induced by a point map of the interval [0,1] onto itself.

1. The algebra $C^{(1)}([0,1])$. We prove the following proposition: Proposition. Given $x \in [0,1]$, $\theta \in [-\pi,\pi]$, then there exists $h \in C^{(1)}$ such that

$$|h(x)| + |h'(x)| > |h(y)| + |h'(y)|$$

for $y \in [0, 1]$, $y \neq x$, with |h(x)| = h(x) > 0, and $|h'(x)| = e^{i\Theta}h'(x) > 0$.

Proof. Let f be the real non-negative continuous function on [0,1] which has the value 1 at x, has slope 1 on (0,x) (if this set is non-void) and has slope -1 on (x,1) (if this latter set is non-void). Next let $g \in C^{(1)}$ be given by

$$g(y) = \int_0^y f(s) ds - \int_0^x f(s) ds.$$

Then |g(x)| + |g'(x)| > |g(y)| + |g'(y)| for $y \in [0, 1], y \neq x$, and g(x) = 0, from which it follows readily that the function $h \in C^{(1)}$, defined by

$$h(y) = e^{-i\Theta}g(y) + 1,$$

has the desired properties.

If X is any compact Hausdorff space, we will denote by C(X) the Banach algebra of continuous complex functions defined on X with norm $\|\cdot\|_{\infty}$ determined by

$$||g||_{\infty} = \sup_{x \in X} |g(x)|$$
 for $g \in C(X)$.

Now let W denote the compact space $[0,1] \times [-\pi,\pi]$. Given $f \in C^{(1)}$, we define $f \in C(W)$ by

$$\bar{f}(x, \theta) = f(x) + e^{i\Theta}f'(x), \quad (x, \theta) \in W.$$

The following, which we state as a lemma, is then obvious:

Lemma 1.1. The mapping $f \to \tilde{f}$ establishes a linear and norm-preserving correspondence between $C^{(1)}$ and the closed subspace S of C(W), $S = [\tilde{f}: f \in C^{(1)}].$

We recall that a linear functional f^* contained in the unit ball U^* of $C^{(1)*}$, the dual space of $C^{(1)}$, is called an extreme point of U^* if it is not the midpoint of a segment lying in U^* . Clearly f^* is extreme in U^* if and only if $e^{i\eta}f^*$ is extreme for all $\eta \in [-\pi, \pi]$.

Next given $(x, \theta) \in W$, we define a continuous linear functional $L_{(x, \theta)}$ on $C^{(1)}$ by

$$L_{(x,\Theta)}(f) = f(x) + e^{i\Theta}f'(x), \quad f \in C^{(1)},$$

and prove the following

LEMMA 1.2. An element f^* of $C^{(1)*}$ is an extreme point of the unit ball U^* of $C^{(1)*}$ if and only if f^* is of the form $e^{i\eta}L_{(x,\theta)}$ for some $\eta \in [-\pi, \pi]$, $(x, \theta) \in W$.

Proof. It is well known ([1], p. 441) that each extreme point 7* of the unit ball of the dual space of S is of the form

(i)
$$\tilde{f}^*(\tilde{f}) = e^{i\eta}\tilde{f}(x,\theta), \quad \tilde{f} \in S,$$

where η is a fixed element of $[-\pi, \pi]$ and (x, θ) is fixed in W. Thus, by virtue of the correspondence established between $C^{(1)}$ and S in Lemma 1.1, each extreme point of U^* is of the form specified.

The converse depends upon a result of K. de Leeuw ([3], p. 61) which sacrificing some generality, we will state as follows. Suppose that X is any compact Hausdorff space, that A is a closed linear subspace of C(X), and that x belongs to X. If there exists an $f \in A$ with $f(x) = \|f\|_{\infty}$ and

$$|f(y)| \leq ||f||_{\infty}, \quad y \in X, y \neq x,$$

with equality holding only for those $y \in X$ that satisfy

$$g(y) = g(x)$$
 for all $g \in A$,

then the functional $h \to h(x)$, $h \in A$, is an extreme point of the unit ball of A^* . Employing this result, one obtains as an immediate consequence of the proposition that each functional of the form (i) is extreme in the unit ball of S*. Hence, again applying Lemma 1.1, each $e^{i\eta}L_{(x,\theta)}$ is an extreme point of U^* .

We now suppose that φ is an isometry of $C^{(1)}$. The adjoint φ^* is then an isometry of $C^{(1)*}$, and thus carries the set of extreme points of U^*

LEMMA 1.3. The image by φ of the constant function 1 of $C^{(1)}$ is a constant function $e^{i\lambda}$, $\lambda \in [-\pi, \pi]$.

Proof. For each extreme point $e^{i\eta}L_{(x,\theta)}$ of U^* , $|e^{i\eta}L_{(x,\theta)}(1)|=1$. Thus for each extreme point, $|e^{i\eta}L_{(x,\Theta)}(\varphi(1))| = |e^{i\eta}\varphi^*L_{(x,\Theta)}(1)| = 1$. From this it follows that $|(\varphi(1))'|$ can assume only the values zero and one. Hence it is identically zero.

For $x \in [0, 1]$, $\theta \in [-\pi, \pi]$, we denote by $e^{i\lambda} L_{(y_{x,\Theta}, y_{x,\Theta})}$ the functional $\varphi^*L_{(x,\theta)}$. Note that λ is fixed in $[-\pi,\pi]$, independent of x and θ , i. e. $\varphi^*L_{(x,\Theta)}(1) = L_{(x,\Theta)}(\varphi(1)) = e^{i\lambda}.$

LEMMA 1.4. If $x \in [0, 1]$, then for all $\theta \in [-\pi, \pi]$, $y_{x,\theta} = y_{x,0}$.

Proof. For fixed x in [0,1], we consider the map of $[-\pi,\pi]$ to [0,1] given by

$$\Theta \to y_{x,\Theta}$$
.

The fact that this mapping is continuous is easily verified. (One may, for example, employ the proposition.) Hence the image of $[-\pi,\pi]$ in [0, 1] is a connected subset of [0, 1]. It is, in fact, a singleton. For otherwise we could find g in $C^{(1)}$, such that $g \equiv 0$ on a subinterval $I \subseteq [y_{x,\theta_0} \in [-\pi, \pi]] \text{ while for some } y_{x,\theta_0} \notin I, |g'(y_{x,\theta_0})| > |g(y_{x,\theta_0})| > 0.$ Hence for an infinity of Θ with $y_{x,\Theta} \in I$,

$$L_{(x,\Theta)}(\varphi(g)) = \varphi^* L_{(x,\Theta)}(g) = 0,$$

while

$$L_{(x,\theta_0)}(\varphi(g)) = \varphi^* L_{(x,\theta_0)}(g) + 0,$$

which is absurd. Thus, for all Θ , $y_{x,0} = y_{x,\Theta}$ as claimed. Finally, we define a point map τ of [0,1] to [0,1] by

$$\tau(x)=y_{x,0}.$$

Consideration of $(\varphi^{-1})^*$ shows that τ is onto, and, applying Lemma 1.4. one-one.

THEOREM 1.5. Let φ be an isometry of $C^{(1)}$. Then, for $f \in C^{(1)}$,

$$(\varphi(f))(x) = e^{i\lambda}f(\tau(x)),$$

with $e^{i\lambda} = \varphi(1)$. Moreover, τ is one of the two functions F, 1-F, where Fis the identity mapping of [0,1] onto itself: F(x) = x for $x \in [0,1]$.

Proof. Given $x \in [0, 1]$, consider the function g of the proposition. constructed so that g(x) = 0, g'(x) is positive real and greater than |g(y)|+|g'(y)| for all $y \in [0,1]$, $y \neq x$. For all Θ in $[-\pi,\pi]$ we have

$$\|g\|=e^{-i\theta}L_{(x,\theta)}(g)=e^{-i\theta}\varphi^*L_{(x,\theta)}\big(\varphi^{-1}(g)\big)=e^{i(\lambda-\theta)}L_{(\tau(x),\Psi_{x,\Theta})}\big(\varphi^{-1}(g)\big),$$

which clearly implies that $(\varphi^{-1}(g))(\tau(x)) = 0$, and that $\psi_{x,\Theta} = \psi_{x,0} + \Theta$. Now given any element $f \in C^{(1)}$ with f(x) = 0, then for all $\Theta \in [-\pi, \pi]$,

$$f'(x) = e^{-i\theta} L_{(x,\theta)}(f) = e^{-i\theta} \varphi^* L_{(x,\theta)} \big(\varphi^{-1}(f) \big) = e^{i(\lambda - \theta)} L_{(\tau(x), \Psi_{x;0} + \theta)} \big(\varphi^{-1}(f) \big)$$

so that $(\varphi^{-1}(f))(\tau(x)) = 0$.

For arbitrary $f \in C^{(1)}$, define g(y) by

$$g(y) = f(y) - f(x), \quad y \in [0, 1].$$

Then g(x) = 0, so that

$$\begin{split} 0 &= \left(\varphi^{-1}(g) \right) \! \left(\tau(x) \right) = \left(\varphi^{-1}(f) \right) \! \left(\tau(x) \right) \! - \! f(x) \left(\varphi^{-1}(1) \right) \! \left(\tau(x) \right) \\ &= \left(\varphi^{-1}(f) \right) \! \left(\tau(x) \right) \! - e^{-i\lambda} \! f(x) \, . \end{split}$$

Thus, replacing f by $\varphi(f)$, it follows that for all $x \in [0, 1]$ and $f \in C^{(1)}$

$$e^{i\lambda}f(\tau(x)) = (\varphi(f))(x).$$

If F is the identity mapping of [0,1] onto itself, we have

$$\tau(x) = e^{-i\lambda} (\varphi(F))(x).$$

One then easily establishes the remaining statement of the theorem.

2. The algebra AC([0,1]). Let V denote the closed unit ball of the space $L^{\infty}([0,1])$ provided with the weak-star topology. It is well known that for this topology V is compact ([5], p. 228). We then let W denote the compact space $[0,1] \times V$. Given $f \in AC$, we define $\tilde{f} \in C(W)$ by

$$\tilde{f}(x, \alpha) = f(x) + \int_0^1 f'(s) \, \overline{\alpha}(s) \, ds, \quad (x, \alpha) \, \epsilon W,$$

and state the following lemma:

Lemma 2.1. The mapping $f \rightarrow \tilde{f}$ establishes a linear and norm-preserving correspondence between AC and the closed subspace S of C(W), $S = [\tilde{f}: f \in AC].$

Next, for $(x, a) \in W$, we define the continuous linear functional $L_{(x,a)}$ on AC by

$$L_{(x,a)}(f) = f(x) + \int\limits_0^1 f'(s) \, \overline{a}(s) \, ds, \quad f \in AC.$$

It follows, as in the previous section, that the extreme points of the unit ball U^* of AC^* constitute a subset of $[e^{i\eta}L_{(x,a)}:\eta\in[-\pi,\pi],$ $(x, \alpha) \in W$. Moreover, it is clear that if $L_{(x,\alpha)}$ is extreme in U^* , then α must be extreme in the unit ball of L^{∞} , i. e. $|\alpha|=1$ almost everywhere on [0, 1] ([2], p. 138).

Now for a given point x in [0, 1] we denote by a_x the L^{∞} function which takes the value 1 on [0, x) (if this interval is non-void) and takes the value -1 on (x, 1] (if this latter set is non-void).

LEMMA 2.2. For all x in [0,1] and Θ in $(-\pi/2,\pi/2)$, the functional $L_{(x,e^{i\Theta_{a_x}})}$ is an extreme point of the unit ball in AC^* .

Proof. Given $x \in [0,1]$, we define $h_{x,0} \in AC$ by

$$egin{aligned} h_{x,0}(x) &= 1\,, \ & h_{x,0}'(y) &= 1\,, & y\,\epsilon(0\,,x)\,, \ & h_{x,0}'(y) &= -1\,, & y\,\epsilon(x,1)\,. \end{aligned}$$

Since $L_{(x,a_x)}(h_{x,0}) = \|h_{x,0}\|$, and $|L_{(y,\beta)}(h_{x,0})| < \|h_{x,0}\|$ for $(y,\beta) \in W$, $(y,\beta)\neq(x,\alpha_x)$, the result of de Leeuw previously cited shows that $L_{(x,\alpha_x)}$ is extreme.

Moreover, if M is any real constant, the function $h_{x,0}+Mi$ peaks in modulus at x. Thus if $\theta \in (-\pi/2, \pi/2)$, we can find a function $h_{x,\theta} \in AC$, where $h_{x,\theta}$ is of the form $e^{i\theta}(h_{x,0}+Mi)$ for some real constant M, such that $L_{(x,e^{i\phi}_{x_{\lambda}})}(h_{x,\Theta})=\|h_{x,\Theta}\|, \ \ \text{and} \ \ |L_{(y,\beta)}(h_{x,\Theta})|<\|h_{x,\Theta}\|, \ \ \text{for} \ \ (y\,,\beta)\,\epsilon \overline{W}, \ \ (y\,,\beta)\neq 0$ $(x, e^{i\Theta}a_x)$. Thus $L_{(x,e^{i\Theta}a_x)}$ is also extreme.

Suppose that φ is an isometry of AC. We may now easily establish the following lemma:

LEMMA 2.3. The image by φ of the constant function 1 of AC is a constant function $e^{i\lambda}$, $\lambda \in [-\pi, \pi]$.

Proof. Let x be any point of [0, 1]. Then, for all $\theta \in (-\pi/2, \pi/2)$, the fact that $L_{(x,e^{i\Theta_{a_x})}}$ is an extreme point of U^* implies that $\varphi^*L_{(x,e^{i\Theta_{a_x})}}$ is a functional of the form $e^{i\eta}L_{(y,\beta)}$, some $\eta \in [-\pi,\pi]$, $(y,\beta) \in W$. Thus $|L_{(x,e^{i\Theta_{\alpha_n}})}(\varphi(1))| = |\varphi^*L_{(x,e^{i\Theta_{\alpha_n}})}(1)| = 1$, so that $|(\varphi(1))(x)| = 1$ and

$$\int\limits_0^1 |(\varphi(1))'(s)| ds = 0.$$

Hence, for all y in [0,1], $(\varphi(1))(y) = e^{i\lambda}$, with λ fixed in $[-\pi,\pi]$.

For x in [0,1], and θ in $(-\pi/2,\pi/2)$, we will denote by $e^{i\lambda}L_{(y_{x,\theta},\theta_{x,\theta})}$ the functional $\phi^*L_{(x,e^{i\theta}a_x)}$. (Note that λ is fixed in $[-\pi,\pi]$, independent of x and θ .) We wish to show that if x is any given point of [0,1], then for all $\theta \in (-\pi/2,\pi/2)$, $y_{x,\theta} = y_{x,\theta}$, and $\theta_{x,\theta} = e^{i\theta}\beta_{x,\theta}$. These facts are established by the following three lemmas.

LEMMA 2.4. If $x \in [0,1]$, $\theta \in (-\pi/2,\pi/2)$ and E is a subset of [0,1], open in [0,1], which contains $y_{x,\theta}$, there exists an $h \in AC$ such that $\varphi^*L_{(x,e^{i\theta}a_x)}(h) = ||h||$, and

$$\max_{z \in ([0,1]-E)} |h(z)| < |h(y_{x,\theta})|.$$

Proof. We employ the concept of a T-set introduced by Myers [4]. If B is any Banach space, then a subset T of B maximal with respect to the property that for every finite set $[f_1, \ldots, f_n]$ contained in T,

$$\left\| \sum_{j=1}^{n} f_{j} \right\| = \sum_{j=1}^{n} \|f_{j}\|$$

is called a T-set.

Thus we let $T(x, \theta)$ denote the subset of AC consisting of all f in AC such that $L_{(x,e^{i\theta}a_x)}(f) = ||f||$. Clearly norm is an additive function on finite subsets of $T(x, \theta)$, and consideration of the function $h_{x,\theta}$ of Lemma 2.2 shows that $T(x, \theta)$ is maximal with respect to this property. A useful equivalent characterization of $T(x, \theta)$ is the following:

$$T(x, \theta) = [f \in AC: ||f + h_{x,\theta}|| = ||f|| + ||h_{x,\theta}||].$$

Since φ^{-1} is an isometry, the set

$$\varphi^{-1}(T(x,\theta)) = [\varphi^{-1}(f): f \in T(x,\theta)]$$

is a T-set of AC, which admits the characterizations

$$\begin{split} \varphi^{-1} \! \big(T(x, \, \theta) \big) &= [g \, \epsilon A C \colon \varphi^* \! L_{(x, \epsilon^{i \phi} a_x)}(g) = \|g\|] \\ &= [g \, \epsilon A C \colon \|g + \varphi^{-1} (h_{x, \theta})\| = \|g\| + \|\varphi^{-1} (h_{x, \theta})\|]. \end{split}$$

We will assume that $y_{x,\theta}$ is an interior point of [0,1], as the following argument may readily be modified if $y_{x,\theta} = 0$, or $y_{x,\theta} = 1$. Thus there exists an open interval (a,b) such that $y_{x,\theta}\epsilon(a,b) \subseteq E$. Then $\varphi^{-1}(T(x,\theta))$ contains an element g_1 which is non-constant on $(a,y_{x,\theta}]$. For supposing the contrary, and letting χ denote the characteristic function of $(a,y_{x,\theta}]$, we obtain an immediate contradiction by defining $g \in AC$ to be given by

$$g(z) = e^{-i\lambda} \int_{0}^{z} \chi(s) ds,$$

and noting that $\|g+\varphi^{-1}(h_{x,\theta})\| = \|g\| + \|\varphi^{-1}(h_{x,\theta})\|$.

Thus there exists a $g_1 \in \varphi^{-1}(T(x,\theta))$ and a point $c \in (a,y_{x,\theta})$ such that

$$g_1(c) \neq g_1(y_{x,\theta}) = e^{-i\lambda} (\max_{z \in [0,1]} |g_1(z)|).$$

Similarly there exists $g_2 \epsilon \varphi^{-1}(T(x, \theta))$ and a point $d \epsilon(y_{x,\theta}, b)$ such that

$$g_2(d) \neq g_2(y_{x,0}) = e^{-i\lambda} (\max_{z \in [0,1]} |g_2(z)|).$$

Clearly the functions h_1 and h_2 , defined by

$$h_1(z) = egin{cases} g_1(c) & ext{ for } & z \leqslant c, \ g_1(z) & ext{ for } & z \geqslant c, \end{cases}$$

$$h_2(z) = egin{cases} g_2(z) & ext{for} & z \leqslant d\,, \ g_2(d) & ext{for} & z \geqslant d\,, \end{cases}$$

belong to $\varphi^{-1}(T(x,\theta))$. Then $h=h_1+h_2+e^{-i\lambda}$ has the desired properties. LEMMA 2.5. If $x \in [0,1]$, $\theta \in (-\pi/2,\pi/2)$, then $\beta_{x,\theta}=e^{i\theta}\beta_{x,\theta}$.

Proof. We recall the function $h_{x,0}$ of Lemma 2.2, and note first of all that $(\varphi^{-1}(h_{x,0}))'$ vanishes on no set of positive measure. For suppose, to the contrary, that this function vanished on a set D of non-zero measure. Then for some positive integer k, at least one of the two sets $D \cap [0, y_{x,0}-1/k]$, $D \cap [y_{x,0}+1/k, 1]$ has non-zero measure. Choose such a set and denote it by A. By Lemma 2.4 there exists an h in $\varphi^{-1}(T(x,0))$, and an $\varepsilon > 0$, such that

$$\sup_{z\in\mathcal{A}}|h(z)|<|h(y_{x,0})|-\varepsilon.$$

Next choose a measurable function G with

$$|G| = 1 \text{ on } A, \quad G = 0 \text{ on } [0,1] - A, \quad \int_{0}^{1} G(s) ds = 0,$$

and such that $e^{iA}G\bar{\rho}_{x,0}$ has non-zero imaginary part on some subset of A with positive measure. Now define $g \in AC$ by

$$g(z) = h(0) + \int_0^s (h'(s) + \varepsilon G(s)) ds.$$

Then clearly we have the relation $||g+\varphi^{-1}(h_{x,0})|| = ||g|| + ||\varphi^{-1}(h_{x,0})||$, but $e^{ix}L_{(\nu_{x,0},\rho_{x,0})}(g) \neq ||g||$, which contradicts the characterizations of the mapping $\varphi^{-1}(T(x,0))$.

Thus writing

$$(\varphi^{-1}(h_{x,0}))'(s) = |(\varphi^{-1}(h_{x,0}))'|(s)\beta(s)$$

defines β almost everywhere as a function on [0,1] with $|\beta|=1$, and it is evident that $\beta_{x,0} = e^{i\lambda}\beta$. Finally, recalling that for $\theta \in (-\pi/2, \pi/2)$, the function $h_{x,\theta}$ of Lemma 2.2 is of the form $e^{i\theta}(h_{x,\theta}+Mi)$ for some real constant M, it follows that $\beta_{x,\theta} = e^{i\theta}\beta_{x,0}$.

LEMMA 2.6. If $x \in [0, 1]$, $\theta \in (-\pi/2, \pi/2)$, then $y_{x,\theta} = y_{x,\theta}$.

Proof. Given $\theta \in (-\pi/2, \pi/2)$, let E be an open neighborhood of $y_{x,\theta}$ in [0, 1]. By Lemma 2.4 there is an h in AC such that $\varphi^*L_{(x,e^{i\Theta_{x,\lambda}})}(h)$ = ||h||, and

$$\max_{z \in ([0,1]-E)} |h(z)| < |h(y_{x,\theta})| - \varepsilon$$

for some positive ε . We then have

$$\|h\|=L_{(x,e^{ioldsymbol{arphi}_{a_{x}})}}\!ig(arphi(h)ig)=ig(arphi(h)ig)(x)+e^{-i heta}\int\limits_{0}^{1}ig(arphi(h)ig)'(s)\,\overline{a}_{x}(s)\,ds\,,$$

so it is clear that for θ_1 sufficiently close to θ , $y_{x,\theta_1} \in E$.

Thus the mapping of $(-\pi/2, \pi/2)$ into [0, 1] given by $\theta \to y_{x,\theta}$ is continuous, and the image of $(-\pi/2, \pi/2)$ under this map is hence a connected subset of [0, 1]. It then follows readily that this image is a singleton.

We now define a mapping τ of [0,1] into [0,1] setting

$$\tau(x)=y_{x,0},$$

where $y_{x,0}$ is determined as above by

$$\varphi^* L_{(x,a_x)} = e^{i\lambda} L_{(y_{x,0},\beta_{x,0})}.$$

THEOREM 2.7. Let φ be an isometry of AC. Then, for $f \in AC$,

$$(\varphi(f))(x) = e^{i\lambda}f(\tau(x))$$

with $e^{i\lambda} = \varphi(1)$. Moreover, τ is the function $e^{-i\lambda}\varphi(F)$, where F is the identity mapping of [0,1] onto itself: F(x) = x for $x \in [0,1]$.

Proof. Let x belong to [0,1]. We first suppose that f is an element of AC with f(x) = 0. Then, for all $\theta \in (-\pi/2, \pi/2)$,

$$\begin{split} &\int\limits_0^1 f'(s) \, \overline{a}_x(s) \, ds = e^{i\theta} L_{(x,e^{i\Theta_{a_x})}}(f) = e^{i\theta} \varphi^* L_{(x,e^{i\Theta_{a_x})}}(\varphi^{-1}(f)) \\ &= e^{i(\theta+\lambda)} L_{(\imath(x),e^{i\Theta_{\beta_{x,0}})}}(\varphi^{-1}(f)), \end{split}$$

so that $(\varphi^{-1}(f))(\tau(x)) = 0$.

For arbitrary $f \in AC$, define g(y) by

$$g(y) = f(y) - f(x), \quad y \in [0, 1].$$

Then

$$\begin{aligned} 0 &= \left(\varphi^{-1}(g) \right) \left(\tau(x) \right) = \left(\varphi^{-1}(f) \right) \left(\tau(x) \right) - f(x) \left(\varphi^{-1}(1) \right) \left(\tau(x) \right) \\ &= \left(\varphi^{-1}(f) \right) \left(\tau(x) \right) - e^{-i\lambda} f(x) \, . \end{aligned}$$

Replacing f by $\varphi(f)$, we find that for $x \in [0, 1]$ and $f \in AC$.

$$e^{i\lambda}f(\tau(x)) = (\varphi(f))(x).$$

If F is the identity mapping of [0,1] onto itself, we have

$$\tau(x) = e^{-i\lambda} (\varphi(F))(x)$$

and the theorem is proved.

Bibliography

[1] N. Dunford and J. Schwartz, Linear operators (Part I), New York 1958.

[2] K. Hoffman, Banach spaces of analytic functions, New York 1962.

[3] K. de Leeuw, Banach spaces of Lipschitz functions, Stud. Math. 21 (1961/62), p. 55-66.

[4] S. B. Myers, Banach spaces of continuous functions, Ann. of Math. (2) 49 (1948), p. 132-140.

[5] A. Taylor, Introduction to functional analysis, New York 1958.

Recu par la Rédaction le 1.4.1964