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Isonetries of certain Banach algebras
by

M. CAMBERN (Orsay)

0. Introduction. Let B denote a complex Banach space. By an iso-
metry of B we will mean a map ¢ of B to B which is linear, norm-preserv-
ing, and surjective. The purpose of this article is to describe the isometries
of two well-known function spaces which, under the norms considered,
are not only Banach spaces but Banach algebras:

(1) the algebra O ([0,1]) (henceforth denoted by CW) of complex
functions continuously differentiable on [0, 1], with norm given by

I = f}ﬁ(l]‘(w)lﬂf’(m)!) for  feC®

and

(2) the algebra AC([0,1]) (to be denoted by A0) of absolutely con-
tinuous complex functions on [0, 1], with norm

Ifl = max|f@)l+ [If @do  for  fedo.

It is shown that any isometry of C® or of AC is induced by a point
map of the interval [0, 1] onto itself.

1. The algebra C®([0,1]). We prove the following proposition:

PROPOSITION. Given #¢[0,1], 8e[—n, ], then there emists heC™
such that

B (@)|+ 18 ()] > R ()| + (B’ (3)]

for ye[0,1], y # @, with |h(z)] = h(x) >0, and I/ (2)| = °h'(x) > 0.

Proof. Let f be the real non-negative continuous function on [0, 1]
which has the value 1 at «, has slope 1 on (0, ») (if this set is non-void)
and has slope —1 on (z, 1) (if this latter set is non-void). Next let geC™
be given by

g(y) = [f(s)ds— [f(s)ds.
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Then |g(w)|+ g’ (#)] > lg(¥)]+ g’ ()] fory [0, 1],y # @, and g(2) = 0,
from which it follows readily that the function heC®, defined by

h(y) = eg(y)+1,
has the desired properties.
If X is any compact Hausdorff space, we will denote by ¢(X) the
Banach algebra of continuous complex functions defined on X with
norm ||-|l, determined by

\Iyllw=ig£lg(w)l for  geC(X).

Now let W denote the compact space [0, 1]x[—=, =]. Given fe0®,

we define feC(W) by
f@, 0) = f(@)+€°f (z), (z,0)eW.

The following, which we state as a lemma, is then obvious:

LEMmMA 1.1. The mapping f — f establishes a linear and norm-preserv-
ing correspondence between CV and the closed subspace S of C(W),
8 = [f: feC®],

We recall that a linear functional f* contained in the unit ball U*
of 0% the dual space of 0@, is called an estreme point of U* if it is not
the midpoint of a segment lying in U*. Clearly f* is extreme in U* if and
only if €"f* is extreme for all ne[—r=, n].

Next given (z; 6)cW, we define a continuous linear functional Lz o)
on C® by

L(Z,G)(f) = f(e)+ 6wf'(w)7 fsoll)y
and prove the following

Lemuma 1.2. An element f* of C™* is an extreme potnt of the wnit ball
U* of OO if and only if f* is of the form €L o for some ne[—n,n],
(@, 6)W.

Proof. It is well known ([1], p. 441) that each extreme point f*
of the unit ball of the dual space of § is of the form :

(i) bt ze”’f(m, 6), feS,

where 4 is a fixed element of [—n y 7] and (z, 0) is fixed in W. Thus, by
virtue of the correspondence established between ¢ and § in Lemma 1.1,
each extreme point of U* is of the form specified.

The converse depends upon a result of K. de Leeuw ([3], p. 61) which
sacrificing some generality, we will state as follows. Suppose that X is
any compact Hausdortf space, that 4 is a closed linear subspace of C(X),
and that » belongs to X. If there exists an fed with f(2) = ||fll,, and

VO <lfle;  yeX,y #a,

e ©
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with equality holding only for those yeX that satisfy
g(y) = g(z) for all ged,

then the functional h — k(z), hed, is an extreme point of the unit ball
of A*. Employing this result, one obtains as an immediate consequence
of the proposition that each functional of the form (i) is extreme in the
unit ball of §*. Hence, again applying Lemma 1.1, each &Ly, is
an extreme point of U™

We now suppose that ¢ is an isometry of 0. The adjoint ¢* is then
an isometry of C)*, and thus carries the set of extreme points of U*
onto itself.

LEMMA 1.3. The image by ¢ of the constant function 1 of C® is a con-
stant function ¢, ie[—m, ], .

Proof. For each extreme point ei"L(m,@) of U™, ‘!e”L(m,e)(l)] = 1.
Thus for each extreme point, |67Lye)(p(L)l = [€"p* L)1) = 1.
From this it follows that |(p(1))’| can assume only the values zero and
one. Hence it is identically zero.

For #e[0,1], 6e[—n,n], we denote by e"‘L("z,e,h,@) the functiqna:l
¢*Lisg). Note that 1 is fixed in [—n, =], independent of # and 6, i.e.
‘P*L(z,@) 1) = L(z,@)(‘?’(l)) =

Lemma 1.4, If ©e[0,1), then for all Oe[—=n, ], Yso = Yzo-

Proof. For fixed « in [0,1], we congider the map of [—=,=] to
[0,1] given by

O~ Yup.

The fact that this mapping is continuous is easily verified. (One‘
may, for example, employ the proposition.) Hence the image of [—, =]
in [0,1] is a connected subset of [0,1]. It is, in fact, a singleton. For
otherwise we could find g in 0P, such that g =0 on a subinterval
IS [Ypo: Oc[—m, ]| while for some Y6, ¢L, 1§ (Yze))l > 19(¥ne,)l > 0.
Hence for an infinity of @ with y,eel,

L(:::,O)(Q’ (9) = ‘P*L(a:,s) (9) =0,
while
L(x,eo)(‘)’(g)) = ¢*Le,(9) + 0,
which is absurd. Thus, for all @, Y., = ¥ze a5 claimed.
Finally, we define a point map v of [0,1] to [0,1] by
7(2) = Yz0-
Consideration of (p~')* shows that 7 is onto, and, applying Lem-
ma 1.4, one-one.
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TEEOREM 1.5. Let ¢ be an isometry of CV. Then, for feCW,
(Pp()(@) = f(x(@),

with 6* = g(1). Moreover, v is one of the two functions F, 1—F, where B
is the identity mapping of [0,1] onto idtself: F(x) = for ®w<[0,1].
Proof. Given 2¢[0,1], consider the function ¢ of the proposition,
constructed so that g(w) =0, g'(zx) is positive real and greater than
lg(y)l 419’ ()| for all ye[0,1], ¥ # = For all ® in [—=, =] we have
lgll = 67 Lig,0)(9) = 670" Lo, (97 (9)) = € Liay 0, (07 (9),
which clearly implies that (p~'(g)}(z(2)) = 0, and that vy, e = y,,+6.
Now given any element feC® with f() = 0, then for all @[ —x, n],
f'(@) = Lo (f) = 0 Lo 97 (f) = 6 Ly w0107 ()

so that (p7'(f))(z(z)) = 0.
For arbitrary feC¥, define g(y) by

9(y) =fly)—f(@), yel0,1].
Then g(#) = 0, so that
0 = (g7 (@) (r(@)) = (™" () (@) —F (@) (¢~ (V) (z ()
= [ () (@) — e~ (@).
Thus, replacing f by @(f), it follows that for all ©¢[0,1] and feOW
f(r(@) = (p(N)(@).
If F is the identity mapping of [0, 1] onto itself, we have
(@) = ¢ % (p(F)) (w).
One then easily establishes the remaining statement of the theorem.

2. The algebra A0([0, 1]). Let V denote the closed unit ball of the
space L>([0, 1]) provided with the weak-star topology. It is well known
that for this topology V is compact ([51, p. 228). We then let W denote
the compact space [0,1]x V. Given fedO, we define f eQ(W) by

flo, 0) =f@)+ [f®)as)ds, (@, a)eW,

and state the following lemmas:

Levwa 2.1. The mapping f — f establishes a linear and norm-preserv-

ing correspondence between AC and the closed subspace S of C(W
8 =[f:fedC]. ? 7o,

e ©
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Next, for (x, a)eW, we define the continuous linear functional Loy
on AC by

Liay(f) = @)+ [ (s)a(s)ds, feAC.

It follows, as in the previous section, that the extreme points of
the unit ball U* of AC* constitute a subset of [6"Ly.:ne[—=,=],
(%, a)eW]. Moreover, it is clear that if Iy, is extreme in U*, then a
must be extreme in the unit ball of L*, i e. |a| = 1 almost everywhere
on [0,1] ([2], p.138).

Now for a given point » in [0,1] we denote by a, the L™ function
which takes the value 1 on [0, #) (if this interval is non-void) and takes
the value —1 on (z,1] (if this latter set is non-void).

LEMMA 2.2. For all » in [0,1] and @ in (—=/[2,=(2), the functional
Ly gioq, is an extreme point of the unit ball n AC™.

Proof. Given ze[0,1], we define %,,cAC by
hao () =1,
hao(y) =1, ye(0, z),
heo(y) = —1,  ye(z,1).

Since Loy (tag) = ool 804 1Dy (hao)l < [l for (y, £)W,
(y, B) # (@, az), the result of de Leeuw previously cited shows that L, q,
is extreme.

Moreover, if M is any real constant, the function h,,+ M7 peaks
in modulus at #. Thus if 6¢(—=/2, =/2), we can find a function h,ec AL,
where hy g is of the form 6" (h,,+ M4) for some real constant M, such that
L(z,e”:?aw)(hz,s) = ”hm,9”9 and ‘L(w,ﬂ)(hm,a)! < ”hz,ena for (yy ﬁ) EW’ (y1 ﬂ) #*
(#, €°a5). Thus L e, is also extreme.

Suppose that ¢ is an isometry of AC. We may now easily establish
the following lemmas:

LemmA 2.3. The image by ¢ of the constant function 1 of AC is a con-
stant function €*, Ae[—mn,w)-

Proof. Let x be any point of [0,1]. Then, for all fe(—=x/2, x[2),
the fact that Lo, is an extreme point of U* implies that ¢*Ly e,
is a functional of the form e“”l}(,,’m, some ne[—mn,n], (¥, f)eW. Thus
g0y (p (V)] = 9" Lgeioey (1)) =1, 50 that |(p(1)(@)] =1 and

1
[llp@) (s)1ds = 0.

Hence, for all ¥ in [0,1], (p(1))(y) = ¢, with 2 fixed in [—=, =].
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For 2 in [0,1], and 6 in (—=/2, =/2), we will denote by e“L(,,M,ﬁM)
* the functional ¢*Li e,,. (Note that 1 is fixed in [—=, =], independent
of x and 6.) We wish to show that if « is any given point of [0, 1], then for
all §e(—=/2, %/2), Yup = Yops ANA Pog = € fso. These facts are estab-
lished by the following three lemmas.

Levma 2.4, If #¢[0,1], 8e(—=/2,[2) and E is a subset of [0,1],
open in [0,1], which contains Yo, there exists an heAC such that
Q’*L(z,c'ieaz)(h) = ”hHI and

max [h(2)] < [h(Yz,0)l-
ze([0,1]- E)

Proof. We employ the concept of a T-set introduced by Myers [4].
If B is any Banach space, then a subset T of B maximal with respect
to the property that for every finite set [fi, ..., fu] contained in T,

| Z f] = é{‘uﬁn

is called a T-set.

Thus we let T'(z, 6) denote the subset of AC consisting of all f in
AC such that Ly gea,(f) = |iIffl. Clearly norm is an additive function
on finite subsets of T'(w, 6), and consideration of the function hyp of
Lemma 2.2 shows that T'(s, 6) is maximal with respect to this property.
A useful equivalent characterization of T(z, 6) is the following:

Tz, 6) = [feAC: If+holl = Ifl 4 /hgell]-
Since ¢! is an isometry, the set

¢ (L@, 0)) = [¢7(f): feT (@, 6)]

is a T-set of AC, which admits the characterizations
¢~ (T (=, 0)) = [ge AC: ¢*Lig gieny(g) = lgll]
= [9e4C: llg+o7 (ho)ll = llgll+ g™ (o)1
We will assume that y,,, is an interior point of [0, 1], as the following

a,r,r?rument may readily be modified if 4,, = 0, or Yz0 = 1. Thus there
ezusts. an open interval (a, b) such that y,,¢(a, b) < E. Then o T (z, 0))
contains an element g, which is non-constant on (a, Yze). For supposing
the cont.rary, and letbing y denote the characteristic function of (@) Ya0ls
we obtain an immediate contradiction by defining ge AC to be given by

z

9(?) = G“i"fx(s)ds,

0

and noting that [lg+¢~" (Ree)l| = llgl+[lg™" (Aol

@
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Thus there exists a g,c¢™*(T (2, 6)) and a point ce(a, y,,) such that

91(6) # 1Y) = e (max lg,(2)]).
ge[0,
Similarly there exists g,e¢™ (T (x, )} and a point de(y,q, b) such that

92(d) # G2(Yap) = e‘“(m?f] lg2(2)1)-

e

Clearly the functions h, and h,, defined by

g:(¢) for z<e,

ha(2) =
g.(2) for =z>=e,
2 for 2z<d
hy(2) = g:(2) )
g.(@) for 22=4d,

belong to ¢~*(T (2, 0)). Then h = hy+hy+¢~* has the desived properties.

LEMMA 2.5. If ©e[0,1], Oc(—m/2,/2), then Bop= € fyy.

Proof. We recall the function h,, of Lemma 2.2, and note first
of all that (tp“l(hx,o))’ vanishes on no set of positive measure. For suppose,
to the contrary, that this function vanished on a set D of non-zero
measure. Then for some positive integer k, at least one of the two
sets D ~ [0, Yy 0—1/k], D ~ [¢z0+1/k,1] has non-zero measure. Choose
such a set and denote it by 4. By Lemma 2.4 there exists an % in
97T (z, 0)), and an &> 0, such that

sup [h(2)] < | (Yl —2-
zed
Next choose a measurable function ¢ with

1
\ @ =1on A, G=0on/[0,1]—4, fe(s)ds=o,
0
and such that ¢“@f,, has non-zero imaginary part on some subset of A
with positive measure. Now define ge A0 by

g(@) = h(0)+ [ (W (8)+G(s))ds.

Then clearly we have the relation |lg+ ¢~ (R0l = llgll -+ llg™ (Ba o, but

€* Ly, ..(9) # llgll, which contradicts the characterizations of the

mapping ¢~} (T (=, 0)).
Thus writing

(77 (hao)) (8) = g™ ()1 (81 B(8)


GUEST


994 M. Cambern im@) Isometries of certain Banach algebras 225

defines # almost everywhere as a function on [0,1] with |f] = 1, and it Replacing f by @(f), vc.re find that for xe[0,1] and feAC,

is evident that f,, = ¢*p. Finally, recalling tham for fe( —n/2,7:/2), e*flr(m) = (@ () (=)

the function %, of Lemma 2.2 is of the form ¢ ( hg o+ M) for some real

constant M, it follows that fes = €°Bup. .
LEMMA 2.6. If me[0,1], Oe(—mn/2,7[2), then Yup = Yg,. (@) = e~ (p(F))(x)
Proof. Given fe¢(—m/2,x/2), let E be an open neighborhood of

Yze in [0,1]. By Lemma 2.4 there is anh in AC such that ¢* Lz ¢i6q,(h)

If F is the identity mapping of [0, 1] onto itself, we have

and the theorem is proved.
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continuous, and the image of (—n/2, n/2) under this map is hence a con- ) X
nected subset of [0, 1]. It then follows readily that this image is a singleton. Regu par la Rédaction le 1. 4. 1964
We now define a mapping = of [0, 1] into [0, 1] setting

(L) = Ya gy S
where y,, is determined as above by
(p*L(I:“z) = euL(Vz.o’ﬁ:c.o) :
THEOREM 2.7. Let ¢ be an isometry of AC. Then, for fe AC,
(D) (@) = e*f(r(2))
with €* = g(1). M oreover, T is the function ¢ "o (F), where F' s the identity
mapping of [0,1] onto itself: F(x) = o for xe[0,1].
Proof. Let av belong to [0, 1]. We first suppose that fis an element
of AC with f(z) = 0. Then, for all 6¢( (—=/2, =[2),

f F(8)aa(8)ds = 6"Lig gion,)(f) = 60" Ly givuy (07 (f)
0

= i(a“)L(:(:c),eiOpz,o) (‘P_ Y )) ’
8o that (p~'(f))(z(z)) = 0.
For arbitrary feAC, define g(y) by
9(%) = f(y)—f(z), ye[0,1].
Then
0= @) e@) = p™ (D) (e (@) — F (@) (o~ (1)) (v (@)
= [ ) (r (@) — e ().
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