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TreoreM C'. If the series (1.1) in Theorem C s of power series type,
then the function F has at @, an r-th Peano unsymmetric derivative in L,
p < oo, equal to s.

The proof parallels that of Theorem C. The generalization obviously
adds nothing to our Theorem 2.

9. The coneclusion of Theorem 1 holds if the hypothesis is replaced
by the following one: at each point @ <F we have (1.4) with O instead
of o (the polynomial P(f) may then, of course, be of degree k—1 or
less). The proof remains unchanged if we note that the conclusion of
the lemma on p. 91 remains unchanged if we replace the o in (2.3) and
(2.4) by O, provided a > 1.
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On a theorem of Mackey, Stone and v. Neumann
by

S. WORONOWICZ (Warszawa)

The canonical commubation rules of the quantum mechanics of a
system with N degrees of freedom have the following form:

QnPom—. mDn = ©0pm; '
Py Pp—PpP, =0, (myn=1,2,..., )
Qan_‘Qan =0,

where Q,,P, (n=1,2,...,N) are self-adjoint operators in the Hil-
bert space H. For zeB”, weE"* we define

N ~
U(&) = exp (‘i 25?3"@,,), V(z) = exp (1: Zm,.Pn).

The commutation rules were put by H. Weyl in the following correct
form:

U (@) U(&,) = U(dy-+,),
V(@) V() = V(2y+ ),
V() U (%) = U(&) V(z) exp(iZénm,,).
Let us notice that @ — exp(i 3 #,2,) is a character of the group B,
We assume that the algebra generated by the operators U () is eyclic.
This assumption means that this algebra has a simple spectrum. In
the language of physics we say that the operators @, form a complete
set of commuting observables (cf. [6], p.122). From these assumptions
it follows that there exists so called Schridinger representation of the
operators ¢ and P. This means that there exists an isomorphism
BL I*EY)
such that

a
(IQI7'p) () = ¥a0(¥), (IPI7'9)(y) = —i—azw(y)
for g CP(EY) « I*(BY).
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We can rewrite these equations in the Weyl form:
(IU(@HI76)() = pw)exp (i Y ayn),

IV (@) I '%)(y) = ¢(@-+y)

for pe*(BY).

This theorem (called Stone and v. Neumann theorem) was proved
in [7] and [8]. It was generalized by G. Mackey (in [5]) for the case where
EY was replaced by any separable locally compact Abelian group.

H. Araki (in [1]) and I. M. Gelfand (in [3]), using Bochner theorem
for nuclear spaces, determined all cyclic representations of the com-
mutation rules for systems with infinite number of degrees of freedom
(quantum theory of fields).

In the present note we show that Araki-Gelfand method allows to
obtain a simple proof of a variant of the Mackey theorem.

Let G be a separable locally compact Abelian group, @ the character
group of &, and (%, s) the value of the character #<@ at the point xze@.

THEOREM (Mackey). Let H be a separable Hilbert space and let (U, H)
and (V,H) be a strongly continuous unitary representation of G and of G
in the space H respectively such that

1. V(x) U(2) = (@, ) U (%) V(2).

2. There ewists a cyclic vector hyeH:

{U @ he:3e@}] = H, (ho|ho) = 1.

Then there emists an isomorphism Hoh « h[-1eL*(G), the Hilbert
spaces H and L*(Q) such that

(T@H)y] = (@, 9)hlyl, (V(@)h)[y] = hlay].

Proof. Put E(#) = (U(&)h,| hy). One checks that B(d) =1 (& is
the unity of @), B(-) is positive definite continuous function on &. Ap-
plying the generalized Bochner theorem (see [4]) we have

B(@) = (U@)h | he) = [ (3, y)du(y),
Q@
where y is positive measure.on G.
k

R k
Let heH and h = 210117(501)%- Let us put h(y) = Y ¢;(@;, y). One
el

=

can easily check that
Gf ha(y) ha(y) B (y) = (hy | ).

From ?:he assumption 2 and from the completeness of the set of
characters it follows that the mapping k- h(-) can be extended to an
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isomorphism of the Hilbert spaces H and L*(G, u). From the definition it
follows that

(U@h) () = (@, y)h(y)

(From h = hy it follows that h(y) == hy(y) for p-almost all y.)
Now let us consider the operators V(z). In view of the assumption 1
we have

(V@) @) = (DeV (@) Ulgaha) () = 3 e, @) Uld) ¥ (@)ho) (9)
= e, 2) (&, 9) (V@ ho)(y) = D eldi, zy) (V(2)ha) (9)
= h(wy) (V (@) ko) (¥).-

The mapping z — (V(m)ho)( -) isa continuous (hence measurable)
function on @. Its value belongs to L*(@, u). Then (cf. [2], p. 198) there
exists & measurable function on the product

for p-almost all y.

GxGa(z,y) > a(z,y)eO*

such that (V(m)ho) (y) = a(m,iy) for all z and w-almost all y. Therefore
(V(@)1)(y) = h(zy)a(, ).

Setting in this equations h = V{2)h, and h(y) = a(z,y) we get
a2z, y) = alz, 2y)a(®, Y).

This equation is true for all , 2z and u-almost all y. Retting 2 = o~
we get (because hy(y) =1) 1 = a{z™, zy)a(z, y) and a(e,y) #0 for
u-almost all y.

Let us write

N = {(z, 2, y) e G*: a(az, y) # a(z, 2y)a(z, ¥)},
N = {(w, y)e G:a(w,y) = 0}.

The gets N and N’ are measurable, since a(-, -) is measurable. Let
(@, 2, y) and yy (2, y) be characteristic functions of the set N and N’
respectively. Obviously,

[ an(@, 2, 9)du) =0, [ zw(e, »)duly) =0.
& G

Using Fubini theorem we have 5

[au(@) [ awte, 2 v)dp@ie = [au@)de [ 1y(@, 2, 9)du@) =0,
G (-] (-] G

[au@) [ 2w (@, ) du@) = [du(@) [ 2w (@, y)du) =0
o3 Q @ [
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(dz refers to Haar measure on @). Then there exists a y,e« @ such that
[ 1w(@, 2, y)du(@de =0, [ 2w (2, 90)du(a) = 0.
& @

These equations mean that a2z, y,) = a(z, xy,) (@, y,) for p-almost
all # and almost all z and a(z, y,) % 0 for u-almost all z. From these
relations it follows that

a(az, Y,)

- for p-almost all z and almost all 2.
a(z, ¥o)

a(2, #yo) =

Since the operators V(x) are unitary, the measure u(x) and its trans-
lation u(zy,) are equivalent (cf. [3]). Setting y = oy, and
K(y) = alyys", 9o)

we get the equation

_ K(z)
a2, y) = ———

K(y)
Now for each heH we put

hlyl = h(y)K(y).

for almost all # and w-almost all y.

Then
(U@ R)[y] = E(y)(U(2)h)(y) = K (3)(&, y)h(y) = (&, y)h[y],
(V@R)y] = K@) (V@h)(9) = Ky)hoy)ato, )
= h(oy)K (ay) = hlay].

(The last equation was proved for almost all # and u-almost all y. From
the continuity of the mapping @ — V(x)h it follows that it is true for
all # and p-almost all y).

‘We have

(hy1he) = [ ha(@)ha@d ) = [ h(yITalgldy, where dy _—_T%':‘(.(y_y)%z..

Since the operators V(z) are unitary, the measure dy is invariant;
therefore dy is the Haar measure on the group &. Thig proves that
h[-1eL?(@). The proof is complete.

The author thanks dr. I. Bialynicki-Birula and Prof. K. Maurin for
having pointed out the problem to him. Special thanks should be given
to Prof. K, Maurin whose help enabled the author to write this work,
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