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Chapter I

1. Let U(z) = U(xy, ®a, ..., Z,) be a real-valued harmonic function
defined in a domain D of the n-dimensional Eueclidean space (n > 2).
Consider the norm W (z) of the gradient of U(z),

n
U\ 12
W(x) = |grad U] = V(22 .
(@) = lgrad U] {é(am)}

It is a claggical fact that W(x) is subharmonic in D, and therefore
{W(2)}" is also subharmonic for any p > 1. E.M. Stein and G. Weiss
[8] established a remarkable fact that {W (%)}’ is subharmonic in D for
some values of p less than 1, more precisely, subharmonic for any
n—2
n—1"

The example U(x) = (3 #5)~"»" shows that the result is false for p
less than (n—2)/(n—1). The case n = 2 is, of course, classical if we in-
terpret the result as the subharmonicity of log W.

In this chapter we extend the Stein-Weiss result to higher gradients.

2. Let a = (a;, a3, ..., @;) be any multi-index of weight m, that
i8, a;, &gy ..+, @, are non-negative integers and m = [a| = a;+ ay4...+ an.
We write a! = aslay!...a,! and

LAY ISR

Given any harmonic function U (x) we consider its gradient of order
m, that is, the set of all distinet derivatives of order m (arranged in any
fixed way)

(1.1.1) P>

gra,dm U(iﬂ) = {-Da U},alf—m

* Research resulting in this paper was partly supported by the Air Fovee con-
tract AF-AFOSR-62-118 and the NSF contract GP-574.
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and its norm

(1.2.1) W(z) = lgrad, U] = { D) (DU ()"

uf =1
We have then the following result which for m = 1 reduces to the
one stated above:

TiBoREM 1. If U(z) = U(®y, Loy ..., &) 98 harmonde, the function
{W(2)} = |grad,, U|" is subharmonic for

n—2

1.2.2 =
( ) P m-n-—2

We note that for fixed » the right-hand side here iz arbitrarily small
if m is large enough. If n = 2 the result should again be interpreted as
the subharmonicity of log W(z) (and also easily follows from classical
facts). :

3. The rest of the chapter will be devoted to the proof of Theorem 1.
In this chapter (but not in the other two) we shall also use another no-
tation for the derivatives of order m. If f = (B;, fay ..., fm) 13 @ multi-
index of m components such that 1 <p; <n fori =1,2,...,m, we will
write
@ 0 9]
Hmﬂ da,‘” day,,

and the set {Ugs} of such derivatives designate by a single letter «. The
numbers m and n are kept fixed throughout. Thus # is a vector function
with m" components and the norm |u| of » will be

(3o

In this sam cach component D*U of grad,, U occurs exactly m!/a!
times £o that

fu] = (m )lld‘gla‘dm Uj.

By u; we shall denote the derivatives du/dz; of the ve('tor funetion .

Let
f= 0 =wp,

where U is harmonie. We are interested in functions @(t), ¢ = 0, increasing
and sueh that ¢(f) is subharmonie. We may restrict ourselves to funetions

@ that are eoncave; hence ¢’ > 0, ¢" < 0. We begin by computing the
Laplacian of ¢(f).
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‘We have

Ap(f) = ¢ () lgrad 44" (f) 4f.
Clearly,
lgradff = 4 > (w-u)?,

where the dot designates scalar produet, and

RN i RS IT I ACE
Af =2 A\J [U AT+ lgrad U,*] = 2 Z (T&I) —2 Z |t
il

i i
Let now
Z'('u, ;)

Ju ]2]%[

(1.3.1) M = max ——

Since ¢'' < 0, we have

(N4 Y (el (N2 N g

,_J

(1.3.2) Ag(f) =

=" (DAME Y i+ 20 () Yl
It follows that if

(1.3.3) 2Mig" (t)+¢' (1) = 0,
the function ¢(f) is subharmonie. In particular, we have subharmonieity if
2Mig" (B) 4 ¢ (1) = 0.,

which ean be written ¢’ (f) = ¢t~ ", Here ¢ > 0 since ¢’ > 0. Taking
the second constant of integration 0, we find @(f) = ¢'#~"*¥, and the
main problem now is finding the value of M. If we show that

(1.3.4) y oo Mn—2

QA —2 ’

the function g(f) = fO-IRME=D) — |-+ will be subharmonic,
and Theorem 1 established. If n = 2, then M =} and the preceding
argument leads to ¢(t) = logt.

4. Tn the lemma that follows the index 8 has the meaning explained
in Section 3.
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LEMMA 1. Let U(x) = Uz, @y, - .., €,) be a solid harmonic of degree m.
Then
(1.4.1) [uf* = 2 Uy =0C [ U(a)dz,
1)<l

where the constant C depends on m and n only. More generally, if U and U’
are any two solid harmonics of degree m, then

(1.4.2) ZUﬁUﬁ#G [ U@ U (@)de.
<t
Proof. It is enough to prove (1.4.1). By homogeneity, we have
ou

fl yix = C flf—wda,
[Ed

lrf=1 |=

O denoting a constant depending on m and »n only. On the other hand,
Green’s formula gives

[ o a0 | 5[5

|&]=1 l2j<1 4

o, [ AU\
T a)de = C fl(ﬂ’) dx,

LY joi<t 7

so that

with the same (. Successive application of this gives (1.4.1).

5. We now pass to the calculation of M.

Let U(s) be a harmonic function and », a point of its definition.
Expand U in spherical harmonies at x,. If V and W are the terms of the
development of degrees m and m--1 respectively, then at the point a,
the derivatives of order m of U are the same ag the derivatives of order m
of ¥, and the derivatives of order m-+1 of U are the same ag those of W.
On account of (1.4.2) we have in (1.3.1)

ow
w-u; = C V— d s
mil

W = ¢ [ Ve,

i<t

Swt=o [ S

lz[<1
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Hence M is simply the maximum of

n n
S AW w2
1.5.1 1=\ v OVl = -
- 7");11[‘1"111 O dx] ;(‘ amf) ’

where V' and W are all possible solid harmonics of degrees m and m4-1
respectively, satisfying the conditions

f Vidr = fl Z(%—‘Z)q dr =1,

T

// \

the dot produet in (1.5.1) being the integral over |z| <1 of product.
Let us now fix W and maximize with respect to V. Then

- AW\ OWT] .
301 =[2;(V —aml)”i)ml] 8V =0,

provided
NV-V)=2(V-8V)=0.

W\ ow
D) =

The largest value of A is the maximum. Write & = (V-0 W/dxz;) and
multiply the last equation by dW/dx;. We obtain

}1 (8W OW) 2,

a.’l:‘, 3.21'

But this implies that

and if we now multiply by ¢ and sum,

oW oW\ ,
Dbl ) =1 2

Now if we assume that the 0 W [0x; are linearly independent, then
the quantities t&; are arbitrary. It follows that A is simply the maximum of

y te LA ( \" 5,»—6,1)2
Ld i {)7‘ d(ﬂj Ly (}J}',

with the condition that Y&} = 1. Let us denote by & the unit vector with
components &;. Then

2 X (dW)ﬂ o ((JW dW)
L = max |——) =1 .
X\ e c \ & of
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and

aW \* 2! ifW)'l
[ = max |—— ) =1,
i “;?f( ok ) ) ( om;

(We use here systematically the notation: (P = (F-F) = the integral
of F* over |z} <1.)

We have excluded sofar the W for which the derivatives OW/da;
are linearly dependent. But since any such W can be approximated in
norm (W) = (W)?) by a W with linearly independent derivatives, the
maxinmum of 7 remains the same if one imposes on W the last condition.

Finally, since the space of W is rotation invariant we may replace &
by any unit vector, so that

oW \® ‘
M = max ((E) with
o,

Now
7, e do = (m W
e
and
1 . 1
W 5 _ ",_.l-}-‘llll»}‘ld [ Wzd ] = -
(W) ufg ¢ J ’ w22 J Wido.
y.r]—_l | == al
It follows that
(W) = (n-+2m+2)" (m-+1)""
or

ow\? . 2
M= ma,x( 3 ) with  (W)* = (n+2m-+2)" (m+1)"1,

Dy

and finally we arrive at the formula

7
(1.5.2) M = max — - (W [0, —
w o (m+1)( n~}—“m—k—‘))(W)2

6. Consider now a solid harmonic W of degree m--1. We have
(se{e“ “{1}, p. 239)

m41

(1.6.1) W= Za““ *‘c""('”“”( )H,,(ch, )

#=0
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where H, is a solid harmonic of degree g in 2, ..., ,, Ci is an ultra-
spherical polynomial defined by the equation

(1—at+)" ¢ () t*,

[48

=
I
<

and =B+ .
We want to maximize (0W/da,)* /(W) We observe that the terms
of the sum in (1.6.1) are orthogonal over the unit sphere 2 Bt Ld =
=1, for if we fix x, and r the functions 10%111tmg from the terms are ortho-
gonml over the sphere aj--...+ o) = P—ai. If we differentiate with
regpect to x;, we obtain a blnllldl expression for 0 W/[dx, whose terms will
likewise be orthogonal. It follows from .this that in order to maximize
it is enough to assume that the right-hand side of (1.6.1) consists of a single
term. For if we denote by W, the u-th term in the sum (1.6.1), then

OWjon,) _ % S OW,jon) (W, 0,)?
e = —— Cmax —— et
(W) (W, p (W)
£

and if the maximum on the right is attained for u = p, and a suitable
W,,, then the left-hand side attains its maximum for W consisting of
a single teem W,

We now fix u and calculate (9W,/0z,)" and (W,):. We have

" a 2 i (- 2)j2 &z :
("Vﬂ)ﬂ — J pn 220 [C’ B _H)/ ( 7‘ll )] Ho (@, e 2 de.

<1

We wmay assume that H; is normalized; say, 1ts integral over the
surface of the unit sphere in thc SPace Xy, ..., &, is equal to 1. Then

)
410 e

i 20 —pt ¢ (n—2)[2 &£ a2
(W‘l)z = f dr, ’ e [(" (l .u)] ( ?‘1 )] ™ do,
-1 h

4]

where o°+af =%, or setting x, = reosl, ¢ = rsinf,

i 1
(W = [ o f P L[ (cos 0) F (sin 04 dr

1 o .
o i { [ ;) (cos 0)T (sin@)* "~ 240,
24 n 42
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Finally, substituting cosf = @, we obtain
(L6.2) (W)=~ J:n; S f [CREG=27 () (L — g+ D2
7. From the definition of W,,
4
0 7
But (see [17], p. 175, formula (15))
(1—a})[C; ()] + kwCi(#) = (k+20—1)Ci 1 (@),
which shows that
ow,
0
Comparing this with (1.6.2) we obtain

oW, \? —2)
(1.7.1) ( ------ —") z("’+2:‘nfr"n r f (OO () (1 — g+ 902 g

= (m+ p++n—2)r"" “G"“L‘”)’"( " )H“(mg, ey W)

From the classical formula (see [1], p. 236, formula (26))

+1 12
. N2 9 2 70—|—211)7;
Ty = [ [Ch(m)Pl—a®)y Py = ="
" fl (Ch(@)T (1—a") e Ty
we deduce that
Ji1 k(k+v)

Jh (=149 (k—1+2s)
From this, (1.6.2), (1.7.1), (1.5.2) and also the observation that in

computing (dW[dx,)*/(W)* we may restrict ourselves to the W’s of the
form W,, we obtain after elementary computation that

U — max (m—+p—+n—2)(m+1—u)
o1 (m+1)(2m4-n+2)

— max (Mgt (—3)[(m41)—u]
Ogpmt1 (m—+1)(2m+n+2)

If » >3 the maximum is clearly attained when wo=0; if n =
it is attained when u = 0 or u = 1. In all cases, therefore,

m-+-n—2
2m-+n—2

This proves the formula (1.3.4) and so establishes Theorem 1.

W & ‘n—2)[2 14 (n--2)f2 & Z N
L o e o] R T

e ©
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8. Theorem 1 asserts that, for any harmonie U and u = grad, U
the function w,(Juj) is subharmonic, where

n—2

m—{—n~—_

wo(t) =170, py = (t=0).

One may ask whether this is a best possible result. Of course, if
o (1) is convex and increasing, then the subharmonicity of w,(lu]) implies
that of w[yy(|u])], and a positive answer to our question is given by the
following

THEOREM 2. Suppose that w({) is continuous for t =0 and y(jul),
w = grad,, U, is subharmonic for any harmonic U. Then w(t) = o("0),
where w(t) is increasing and convex and p, = (n—2)[(m-+n—2). If n = 2,
we replace here 170 by log t.

Write |u®> = f, ¢(t) = w('*). We have to show that y(f) is a convex
tunction of #9, i. e., ¢(#) is a convex funetion of 0. Suppose first that v
is continuously twice differentiable for ¢ > 0. Take a fixed point , and
any U such that |u| >0, Yui>0 at z,, and denote by My the ratio
under the max sign in (1.3.1). Since Ag(f) > 0 at a,, the fivst equation
(1.3.2) shows that 2Myfp” (f)+¢'(f) > 0. Taking the upper bound of
My and observing that by replacing U by AU we may give f any preas-
signed positive value without changing My, we see that we have 2.Mip" (1)
+@'(f) = 0 for all £ > 0, a fact which as can be easily verified expresses
the convexity of g(f) with respect to .

To dispose of the hypothesis that ¢ is twice differentiable for ¢ >0
we use the method of regnlarization. Let {y,(f)} be a sequence of func-
tions defined for ¢ >0, non-negative, in (', satisfying the condition

o0
[ 2a(t)dt =1 and having support shrinking to the point 1 as n— oo, Let
0

oo

palt) = [ p(s)ya(s)ds.

0

The functions v, () are in ¢ for ¢ > 0. Moreover, as easily seen,
if (u]) is subharmonie for all U, so is y,(ju}). Hence y,(t) is a convex
function of o for t > 0. But v,(t) tends to y(¢) for ¢ > 0. It follows that
w(t) is a convex function of 0 for ¢ > 0, and so also for ¢ > 0 since it is
continuous for ¢ = 0.

To show that y(t) is increasing (i. e., non-decreasing) for ¢ > 0, ob-
serve that if it were not so, then we would have y(0) > w(t) for all ¢ po-
sitive and sufficiently small. Take any U such that {u| = 0 at z,. Then
w(|u]) would have a strict maximum at @, which is incompatible with the
hypothesis that (ju|) is subharmonie.
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Remark. Further extensions of theorem 1 have been  obtained
Dy . M. Stein and G. Weiss in a paper not yet published.

Chapter II

1. It is a familiar fact that a system of % functions of n variables
is the gradient of a harmonie function if and only if both the divergence
and the eurl of the system vanish. In this chapter we investigate the prob-
lem when is a given system of functions a gradient of order m of a har-
monie function. We shall need the results in Chapter III. Sowe of the
arguments below are borrowed from [2].

We recall the notation. We consider functions of a varviable @ ==
= (@, By, ..., 0,) and we write || = ( })'". By a we denote multi-indices
(ay, @y +--, o), Where the ¢; are non-negative integers, and by the weight
of o we mean the number |of = Yao;. We write

of = o lad \ o g gin ( d )u 3 ( d )al ( 0 )u;L

! Jagloa,l, 92 7 o) o \am )

If P(z) is a polynomial Ya,a®, we mean by P(0/0x) the operator
S, (00z)°.

By II, we shall denote the linear space of all homogeneous polyno-
mials of degree m in x. By &, we shall mean the subelass of I7,, consist-
ing of all harmonic polynomials of degree m.

If P and @ are in I1,, we set

0
2,Q) =P(—0~>Q-
i z
It is easy to see that (P, Q) is an inner product on I[,,. For suppose
that |a| = || = m. Then (8/dz)a’ =0 if f 3£ a, and (9/0w)s" = a!.
Thus if P = 3 au% @ = ) bya, then

laj=nt |fi=m

(2.1.1) (P, Q) =P(7%)Q = Za,,bua! = (@, P).

2. Lemma 1. Suppose that Qell,,. Then (Q,P) == 0 for all Peh, if
and only if Q is divisible by ai-+a3+...u.

Let 4 = Yooz}, If Q is. divisible by ai4...4-w), then @ =
R-(@i+...+ %) and
]
(Q,P) = R(—a—a-c—) AP =0 for all Pechy,,.
S«-uppose, eonversely, that (@, P) =0 for all Peh,. Consider the
mapping ¢:P — AP of II,, into II,_,; we claim that the mapping is

©
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“onto”. In fact, if Rell, ., and R is orthogonal to all polynomials of the
form AP, Pell,, then R(8[dx)AP = 0 for all Pell,. Setting P(x) =
= (#} ... +z) R(x) we obtain

IS EER] A
"\ 030»1——1-...—%55 R(z) (w14 ..+ o) =0,
which, in view of the fact that the operation (P, @) is an inner product
(see (2.1.1)) implies that R{z) (2 +...+ap) = 0, i.e. B =0. Thus the
mapping ¢ is actually “onto”.

The kernel of the mapping ¢ is precisely h,,. Hence dim hy, = dimIJ,,
—dim/l, _,, and the orthogonal complement ;2 has dimension

dim 17, — dimh,, = dimI7,,_,.

Consider now the mapping w: [, I, given by »(Q) =
(@ 4. +22)Q(2), Qell, o. The mapping is one-one and so the image
W ({Ty_y) Of IT,_5 has dimension dimlI7,, .. Furthermore, zp([[,,b_ﬁ)eh;ﬁ , for
f Peh,, then

(9@, B = (2200, B) = @ o) 4P10) = 0.

Jonsequently, since dimy(/L,_,) = dimk;,;, we have Ty = w(Iy_s),
that is, every Peli, is of the form (@+...+52)Q, Qell,_», and the lemma
is established.

3. TuworeM 1. Let {P,} be a sel of homogeneous polynomials of degree
k, where a runs through all multi-indices of weight m. Then P, = (@ [0x)'P,
where Pely,,r if and only if 30.(0/0x)P = 0 for all seis ofq polynomials
Q. of degree To such thai Ya*Q,(x) is divisible by L. .

The necessity of the condition is clear. To prove the sufficiency,
consider the set of polynomials R, = (8/0x)°P, where Pely,. . They
form a linear subspace of the gpace of the veetors {84}, S,ell;. In the
space of vectors § = {8} we have an inner product (8, 8;) = D(S1as Sau)-
If {Q,} is & vector orthogonal to all R,, R, = (0]0x)"P, then we have

«

d
——|P) =0
Z (Q“’(D-v) )
for all Pehy. ;. Bub

> (Qa, (—%)P) = > @, P) = (Z‘ #Q., P) -0

for all Pehy, . According to Lemma 1 this implies that '@, is divisible
by @24...+; and thus, by hypothesis, 3 (Qu, Po) = >'Q.(0/0x) P ,(2) = 0.
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Jonsequently, if @, is orthogonal to the space of vectors {R.}, it is also
orthogonal to the vector {P.j}, i.e., {P.} is among the {R.}.

4. TumoREM 2. Let {u,} be a set of C*™ functions in the sphere |xj < li’,
where a runs through oll multi-indices of wetght m. Then u, = (0[0m)“
where u is @ harmonic function if and only if 'Q.(0/0w)u, =0 whenew
Q. ore homogmeous polynowwls of the same degree such that D, (w)
is divisible by z3+.. k.

Remark. The condition that the w, are in C* can be dropped, but
then Q,(d/dx) must be taken in the sense of distributions.

Proof. The necessity of the condition is obvious as before.

In the proof of sufficiency, observe, first of all that the u, are neces-
sarily harmonic. For set Q.(z) = 2i+...+a; if =4 and @, = 0 if
« # B. Then our hypotheses imply that Auz = 0.

Let now %, = Ya;P,(x) be the expansion of «, into normalized sphe-
rical harmonics. We observe that a series > aP,(x) of normalized sphe-
rical harmonies converges' for |z| < R if and only if D] ¢ << oo for all
o < R. Consequently, we have Y|aj|g¢" < co for o < R.

Suppose now that @,(z) are homogeneous polynomials of the same
degree such that >'u"Q,(z) is divisible by ai--ai-+...4-4}. Then

Szl 3 Swo e o

Since the inner sum on the right represents a harmonic polynomial
of degree v— |a|, the vanishing of the series implies the vanishing of each
of the terms. Thus we have

N (L9 )5 ape
%Qa(-a-m—)[ay “(2)] =0
whenever Y%°Q,() is divisible by @} ...+ 1. By the preceding theorem

there exist harmonie polynomials, which we will denote by b,P, such
that P, is a normalized spherical harmonic and

9\
aijf(a") = ('5;) b,, 4 mPu fm (W’L = Iu.!).

These polynomials b,P, are uniquely determined for » > m. For if also
= (0/02)°b, , P, +m, then

a “ ’ !
('5;;) [bu+»nP1v1-:n_b,,.;mP,,Hn] =

far all @, |a| =m, which would imply that &, .2, .~ b, 0Py i

©
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a polynomial of degree << m—1. If we show that the series >b,P,(x)
converges for x| < B, then denoting its sum by () we shall have

a a d a
(—3—;) wo) = (o] o = apio = u).

Now, for a normalized spherical harmonic P, of degree » we have
1P, ()] < OV laf”,

where ¢ depends on the dimension n only. If 0/d¢ denotes differentiation
in the direction of the unit vector (uy, i, ...y 4a); We have

= Hi az,
F=1
and

H a m
‘(%’) bv+me+m(w) = “:Z i . ] v ,+m($)

where ¢ is a sufficiently large constant, and this is majorized by
AL ~2|[".

Integrating along the ray we obtain

by Py (@)] < Ol ™ D lag]o" 2.

< 02 |a3] [P2(2)],

Since Yailo < oo for ¢ < R, it follows that Dby e Py (@) < 00
for |»| < R and Theorem 2 is established.

Chapter III

1. Let f(#) = f(@y, @y -5 2,)eI? = I7(B,). We consider its Poisson
integral

- m——m~v7 2dz, 1>0.
o f e

Young's inequality implies that Pfel? p < g < oo, for each i > 0.
I t= tl—’—tz, then ,Ptf Pil’Ptzf

We congider Riesz tramsforms R;f, j =1,2,...,n, of f. There are
a number of definitions of Riesz transforms. Usmg Fourier transforms

we may define R;f by the equation

(Rif) = _”4”—f

2}
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1o
Lo
'™y

This definition is legitimate for fe L%, and it then turns out that for
any fin ¢ and having finite support we have [IR;fll, < 4,fll,, where
1< p < oo, and 4, depends on p only. Thus B; can be extended by con-
tinuity to all of L,(H,). This extension defines R;f only almost every-
where, but there is another definition of R;f, given by means of singular
integrals, which shows that R;f can be defined everywhere, and is point-
wise continuous if f is continuously differentiable (and in L”). In the
arguments below, where we consider Riesz transforms of Poisson inte-
grals the fransforms are assumed to be continuous.

If « = (a;, ag,..., 0) is & multi-index and the a; are non-negative
integers, we set R" = RiIRg2...Ryn. If felf, 1< p < oo, then R ix
defined and [[R'fll, < Apif,-

Suppose that feL2 Then by differentiating under the integral sign
one sees that Pif, as a function of « and ¢, is in (. Furthermore, all de-
rivatives of Pf are in L?(E,). The Fourier. transform of the Poisson ker-
nel is e~®. Consequently, we have (P;f)” = #(z)e~"".

Let again fe L2 Taking Fourier transforms we see that R'P,f = PR%f
and consequently R°P;f and all its derivatives are in (™ and L*(E,).
It D is a monomial differential operator in » and ¢, then, since DP,f is
in L* and R°Pf is in C%, both R*DP;f and DRP,f are well defined and
by taking their Fourier transforms we see that

(3.1.1) R*DP,f = DR"'P,f.
Finally, by again taking Fourier transforms, we see that
il 7
3.1.2 LR =R, — R
( ) iz, R*DP,f = R, pr R'DPf,

} eL , the operators d/dx; and R;8/dt coincide on all functions R°“DP,f,
€
2. THEOREM 1. Let

B = (a1, agy .oy, k) = (a, k)

be the multi-indices of weight m,
m = |6 = |o]+%,

and fs(w,1) a system of fumctions of © and t given by
(3.2.1) folz,t) = R*Pf, B = (a,k),

where f is real-valued and in L'(B,), 1 < p < co. Then the fa(m, t) are
harmonic functions and

(3.2.2) {;fé (@, 1) (ﬂ!)—-l}lﬂ R {iﬁ *kll Z (R“sz)z(a'.)ﬁ}l/z

k=0 S laj=m-ke

=3
o
Tt

Higher gradienis of harmonic funclions

is subharmonie for
n—1
mtn—1"

Proof. We assume firgt that f is bounded and has bounded support;
hence feL?. The function R"P;f is in €%, and in view of (3.1.1) and the -
fact that P;f is harmonie, the functions fy(x,f) are harmonie.

To prove the subharmonicity of (Zf3(1)™')"® we apply Theorem 1
of Chapter I and Theorem 2 of Chapter IL. It is enough to show that if
Qp(z, t) are homogeneous polynomials of the same degree N, such that

(3.2.3) 1>

Emﬂtk('?ﬂ(x7 B, f=(ak), 1B =m,
is divisible by ai-+...+a+12, then 3Q(a/0z, a/ot)f = 0. Now, since
fs = R“P,f and the operators d/dx; and R;(0/dt) coincide for all funetions
of the form R“DP,f, feL* (see (3.1.2)), we have

ZQ'J((M‘ at) > Qﬁ( i n) B2 f

N rq,(r, 1) o )\P,f

T L
B
Since
N Qe 1) = (4 4@+ ) L, 1),
i
we have

D RQ(R, 1) = LR, )(Bi+-Ret.. + Byt 1) =0,

#
in view of the identity R} = —I, which is an immediate consequence
of the definition of the R;. Thus > Qs(d/0x, d/0t)f, = 0, as we wished
to show.

Suppose now that 1 < p < oo, feL”, and let f, be bounded, of finite
support and tend to f in L”. Then P,f, converges to P;f in L for each
t >0, and thus f§") = R"P;f, converges to R°P,f in 1" (E,). On the other
hand,

f}im = R(T{fn = PiR“ 9

and since R'f, converges to Rf in LP(E,), it follows that f,(,") = PR,
converges uniformly for {=e>0 to PRf = R"Pf =f;. Thus the
f3(@, t) are harmonic and {Xf3(z,t)(81)”'}" subharmonic for ¢>> 0 and
satisfying (3.2.2).

It remains to consider the case p = 1 of Theorem 1. Observe that
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if t > e, then Pif = P, . (P.f), and that P,feL, for all p > 1. This re-
duces the case to the previous cases.

3. If p is strietly greater than 1, then the functions (3.2.1) are the
Poisson integrals of the functions R°f. This is in general not true if p =1
even though R can be defined in that case. It is however not integrable,
even locally, so that P,R°f has no meaning.

4. The significance of the theorem of this chapter is as follows. If f
is in I, p > 1, then |P,f|" is subharmonic for + > 1. The Stein-Weiss
result quoted in Chapter I asserts that if we adjoin to P,f its Riesz trans-
forms, we obtain a harmonic vector P,f, R.P:f, ..., R,P;f whose norm
is subharmonic when raised to the power (n—1)/n. By the theorem
of this chapter, if we keep adding to the last system higher and higher
Riesz transforms we obtain harmonic vectors whose norms remain
subharmonic when raised to smaller and smaller powers.

Perhaps a change in notation will make this a little clearer. In de-
fining the norm of grad,U we considered only distinct derivatives of
order m. If, however, we define u = grad,, U successively as the first
gradient of the (m — 1)-st (which is in a way more natural, as the argument
of Chapter I shows) and set

Rf=2R, R, ..., R, |

for any multi-index y = (yy, ¥a, ..., yn) Of M components, where now
1 < y; < nfor all j, then the factorials in (3.2.2) can be dropped and our
theorem asserts that the function

m n

\ 12
{ 2 2 (RﬂR}’z' : 'Rykpff)2} !
Pi=1

4
k=071,79,0..7

is subharmonic for I > (n—1)/(m-+-n—1).
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