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On the other hand, & maps X(B)®B onto A(B, X) and conge-
quently &£, which is the identity, maps [A(B,, X;), A(By, X;)], conti-
nuously into A(B,X). Thus [A(B,, X,), 4By, Xy)]; is continuously
embedded in A(B, X).

Now, & maps X;(B;)@B; continuously into A(By, X;) (i =0,1)
and therefore it maps [X,(Bo)®By, X1(B;)®B:], = X(B)DB into
[A(B,), X o, A(By, X;)]s. Bub the image of X (B)@B under & is A(B, X),
Consequently

A(B, X) c [A(By, Xo), A(By, X1)ls-

‘We already proved the reverse inclusion and its continuity, and thus
the open mapping theorem yields the desired conelusion.

In the case where X(B) = [X,(B,), X,(B;)]° the result sought is
obtained by using 7 instead of 4 in the preceding argument.
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A ring of analytic functions
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R.M. BROOKS (Baton Rouge, La)*

This paper is devoted to an investigation of a topological ring of
analytic functions. Specifically, this ring, denoted by R, is the set of funec-
tions analytic on the unit disc with the usual addition and scalar multi-
plication, the Hadamard product for its ring multiplication, and the com-
pact-open topology. The ring R is identified algebraically with a subring
R of the ring of continuous functions on the non-negative integers X,
The operations in R are the usunal pointwise operations, and the structure
of R iy determined by considering its isomorph R.

In Section 2 we are concerned with the problems of identifiying
the maximal ideal space of B and describing the maximal ideals intrinsi-
cally. We first show, using theorems on general rings of continuous fune-
tions, that the maximal ideals are in one-to-one correspondence with
the points of the Stone-Cech compactification pX of X. We next give
an intrinsic deseription of the maximal ideals, using the properties of
the power series expansions of analytic functions. Using this description
we strengthen the previous theorem appreciably and show that the max-
imal ideal space with the hull-kernel topology is homeomorphic to 8X.
Finally, the Hadamard product is used to give a simple characterization
of the dual space of the topological linear space of analytic functions on
the unit dise. This dual space is isomorphic to the set of functions in B
whose radius of convergence exceeds one, which is exactly the intersec-
tion of the maximal ideals corresponding to points of fX—X (the dense
maximal ideals of R).

In Bection 3 we continue the investigation of the maximal ideals
by studying the structure of their associated residue class rings. The
complex number field C is isomorphically embedded in R/M, where M
is a maximal ideal of R. If M corresponds to a point of X, then R/M and
the isomorph C* of C are identical; whereas, if M corresponds to a point
of pX X, then R/M is a transcendental extension of C* having trans-
cendence degree ¢, the cardinality. of the continuum. Moreover, we show,

* This research has been supported in part by NSF and the ATOSR.
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in the second case, that R/M is algebraically closed. Using theorems
on transcendental extensions and algebraically closed fields, we show
that, in either case, B/M and C are isomorphic fields. The two classes
of maximal ideals are distinguished by the fact that their residue class
rings admit radically different types of complex-valued isomorphisms.

In Section 4 we are concerned primarily with the structure of the
closed ideals of R. The basic tool used is the rotational completeness
theorem for amnalytic functions, which we prove using the methods and
results of harmonic analysis. We show that the closure of every principal
ideal is principal, give a necessary and sufficient condition that a prin-
cipal ideal be closed, and show that every closed ideal is a principal ideal
generated by an idempotent element of R. Using these theorems we in-
dicate connections with the general theory of dual rings, of which R is
an example. In the last portion of the section we investigate the prime
and primary ideals and show that each prime (primary) ideal is contained
in a unique maximal ideal and that closed prime (primary) ideals are
maximal.

The author wishes to thank Professor P. Porcelli, who directed the
dissertation of which this paper is the major portion.

1. Preliminaries. In this paper D will denote the interior of the unit
dise in the complex plane ¢ and R will denote the collection of all complex-
valued functions which are analytic on D. The family R can also be re-
garded as the set of all power series with complex coefficients having
radius of convergence greater than or equal to one. Addition and scalar
multiplication in R are the usual pointwise operations and ring multi-
plication is given by the Hadamard product: if f and ¢ are elements of

E with power series f(a) = } f,4° and g(z) = 3 g,2°, then fg(u)
o n=0 P=0
= ) fogpa®. With these operations R is a commutative ring with iden-
p=0 0
tity e, where ¢(z) = (1—a)™' = ' 4”. If we give R the compact-open
=0

P
topology, or equivalently, the topology of uniform convergence on compact
subsets of D, then R is a topological ring in the sense of Naimark ([21,
D. 168). Moreover, multiplication is a continuous function on R % R into E.
The ring B has an algebraic realization which we will use extensively
to study E. We denote by X the space of non-negative integers with the

discrete topology, and for each feR, f(x) = 3 fpo®, we define f: X - C
P=0

by f(p) =fp. The map f— f is an isomorphism of R onto %, the family
of all COI]EIIJleXZ valued functions f on X satistying lim sup |f (p)[M? < 1.
The ring R is a subring of ¢(X), the ring of all complex-valued continuous
functions on X, and an over-ring of B(X), the ring of all bounded complex-
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valued continuous functions on X. We will determine the structure of R
by considering its isomorph R. In the sequel R and & will be identified
and the words “closed” and “dense” will be used to describe sets in £
whose isomorphs in R have these topological properties. The symbol
“"” will be dropped since no confusion will result from this omission.

The scalar field C is embedded algebraically and topologically in R
via the function # defined by #(a) = ae for acC.

2. Maximal ideals. The dual space of R. Let M be a maximal
ideal in R and let ¢ be the natural homomorphism from R onto the residue
clags ving R/M. Since M is maximal, R/M is a field which contains ¢n(C)
as a subfield. For each E < X the function %z, the characteristic fune-
tion of B, is an idempotent element of B, and ¢(kz) = ¢(e) or ¢ (8), where
0 is the zero element of R. In particular, if k, = %k, then k, is idempo-
tent, and, moreover, n == m implies k,k, = 0. Hence, there exists at
most one neX such that ¢(k,) = ¢(e), and ¢(k,) = ¢(0) for all other
meX. By linearity and homogeneity we may divide the homomorphisms
into two classes, determined by their action on the ideal of polynomials
I, (the finitely non-zero elements of R).

(D) o(f) = @(6) for all fely,

(II) there exists a unique neX such that ¢(f) = f(n)p(e) for each
fel,.

‘We will say that a maximal ideal is of fype (I) or (II) according as
its corresponding homeomorphism is of type (I) or (II). If M is of type (I),
then M o I, and is dense in R. For each neX the set M" = {fcR:f(n) = 0}
is a maximal ideal in R, and is, moreover, closed.

THEOREM 2.1. A maximal ideal M in R is closed if, and only if, it
o of type (IX). If M is closed, then there ewists a unigue neX such that
M = M"

Proof. In view of the above remarks the necessity is obvious. To
prove the sufficiency we shall show that if M is of type (II), then M = M™
for a unique neX. If ¢ is the natural homomorphism of E onto R/M,
then there exists a unique neX and that ¢(f) = f(n)p(e) for each fel,.
Let &, = e—k,. Then feM implies fk,eM and f—fk,eM. But f—fFk,
= f(n)k,. Hence, @(f(n)ks) =¢(8) or f(n)p(k,) =q@(f). However,
@(k,) = ¢(e). Therefore, f(n) = 0 and feM" Thus M < M", and from
the maximality of M we have M = M™.

‘We note here that the set of non-zero continuous multiplicative
functionals on R to C, a subset of R* (the dual space of R), is a countable
diserete space in the weak*-topology of R*. Since the space of such func-
tionals is homeomorphic to the space of closed maximal ideals of B we
infer that M,, the closed maximal ideal space of R, is homeomorphic
to the non-negative integers. Thus, as in the cases of normed rings and
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rings with continuous inverse, the natural place to study this ring is
in its closed maximal ideal space.

Before completing the identification of the maximal ideals of R
we must digress to the theory of rings of continuous functions. The non-
negative integers with the discrete topology isva completely regular
Hausdorff space, and, hence, admits a Stone-Cech compactification,
which will be denoted by AX. C(BX) denotes the continuous funections
on fX. We shall now state without proof several facts which are important
in the present study (for proofs, see [1]); 1) X is dense in X, which is
a compae’s Hausdorft space; 2) B(X) is isomorphic and isometric to
C(pX); 3) to each point p of AX there corresponds exactly one maximal
ideal M" in B(X) and M? = {f¢B(X):f*(p) = 0}, where f* is the contin-
uous extension of f to AX; 4) to each 1)01nt p of BX there corresponds
exactly one maximal ideal MY in O(X); 5) for each pefX, MY ~ B(X)
< M7; 6) each prime ideal in ((X) (B(X)) is contained in a unique
maximal ideal in C'(X) (B(X)).

LeMMA 2.2.1. If f is an element of R, then f is a unit in R (i. e., is
invertible) if, and only if, 1) peX implies f(p) 5= 0 and 2) Lm|f(p)|'"

b4

exists and equals one.

Proof. If 1) and 2) hold, then f and f~' have radius of convergence
one, where 7' (p) = (f(p))~". Hence f and f! are both in R and f is a unit
in R. Converscly, if fis a unit in R, then f~' <R and f(p) # 0 for all p < X.

Sinee f'eR, hmsup]f (p)|"" <1 and hmmf}f WP >1. However,
limsup |[f(p)[M? < 1 Hence hm If(p)'? = 1.
D
We shall now define two lattice-like operations in R.
TFor each feR we define fve by the following formula:
floy i If(p)] =1
(Fve)(p) = ' : ’
L [flp) <1
Similarly, we define
Flp)y it ifp)<1
(Fn e)p) = Lo
1 it f(p)l > 1.
Levma 2.2.2. If feR, then 1) fve and fA e are elements of R, 2) f ve
s o unit in R amd 3)f = (fre)(f ve).

Proof. The proofs of 1) and 2) follow immediately from the de-
finitions of fA e and f ve and from Lemma 2.2.1. The proof of 3) follows
by considering the cases |f(p)| <1 and |f(p) > 1.

Lemma 2.2.3. If M and N are distinet mazimal ideals in R, then
there ewist feM ~ B(X) and g<N ~ B(X) such that f+g=e
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Proof. If M # N, then there exist f'e M —N, heR, and geN such
that 2f'+g = e. But M is an ideal in R; hence, hf'eM. If we define f
by f = Rf'Ae, then feM ~ B(X), since f is bounded and hf' Ve is a unit
in R Let 4 ={peX:|f(p)l <1} ={peX:|hf'(p)] <1}. Then k eB(X)
< Rand g = g'kseN. From the definitions of f and g we have (f+¢)(p)
=1, or f+g = e. We must now show that ¢ is bounded. For peX —4,
g(») =0, and for ped, |if'(p)| <1. Therefore, |g(p)| = lg'(p)}| =
= 1—Af"(p)l <1+ hf (p)] <2 for ped. Consequently, geN ~ B(X).

THEOREM 2.2. There exists a one-to-one correspondence between the
magimal ideals of R and the points of the Stone-Cech compactification of
the non-negative integers. Moreover, if M?, M?, and M} are the maximal
tdeals of B(X), R, and C(X), respectively, which correspond o a point p
of BX, then M} ~ B(X) < M? ~ B(X) <« M}. Findly, if peX, then
MY~ R =M’ and M” ~ B(X) = '

Proof. Let M be a maximal ideal in B. Then M ~ B(X) is a prime
ideal in B(X) and is contained in a unique maximal ideal M? of B(X),
where p is an element of fX. We define the function o from the set #
of all maximal ideals of B to the set .#p of maximal ideals of B(X) by
o(M) = the unique maximal ideal M? in #p which contains M ~ B(X).
If M and WV are distinet maximal ideals in R, then M ~ B(X)and N ~ B(X)
cannot be contained in the same maximal ideal of B(X), because of
Lemma 2.2.3. Hence o is well-defined and one-to-one. Now, if p <X and
M3 is the maximal ideal in ¢(X) which corresponds to p, then My ~ R
is an ideal in R, and, hence, is contained in a maximal ideal M of R.
Thus M{ ~ B(X) « M ~ B(X) « M? for some gefX. However, MY
~ B(X) =« M? and MY ~ B(X) is a prime ideal in B(X). Therefore,
¢ =p, and ¢ is onto. By composing o with the function z: 45— X
defined by z(MY) = p we have a one-to-one map from . onto X, This
completes the proof of the first part of the theorem and also gives us
the second statement. M} ~ B(X) ¢ M? ~ B(X) = M? for each pepX.
Finally, if peX, then M? = {feC(X):f(p) = 0}, M? = {feR:f(p) = 0},
and M? = {feB(X):f(p) = 0}, from which it follows that M% ~ B = M?
and M? ~ B(X) =

Theorem 2.2 gives an identification of the maximal ideals of R.
‘We shall now give a more specific description of the maximal ideals M?,
pefX—~X, and, using that description, we shall give a characterization

~ of A#. We have, as a corollary to Theorem 2.2, that these ideals are exactly

the dense maximal ideals of R.
LeMMA 231 If pefX—X and {p,:ae} is a net in X converging
to p, then for each neX there ewists an ay such that p, > n for a = a,.
Proof. Fix neX. Since p¢{0,1,...,n} and X is a Hausdorff space,
there exists an open set U containing p such that U ~ {0,1,...,0} = O.
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Now, 9, — p implies that there exists a,e® such that p,« U for « > q,.
Thus p,¢{0,1,...,n}, anq Po > N _

We define for feR, f(p) = |f(p)]'® for p # 0 and f(0) = 1.

Leya 2.3.2. If feR, then feB(X) and J'(p) <1 for each pefX —X,
where J° is the unique continuous extension of f to SX.

Proof. It is clear from the definition of R that feR implies fe B (X

If pefX—X, then there exists a net {p,:ae¥} in X such that p,—p,
and J’(p) = lim7(p,) = limf(p,). Fix &> 0. Then there exists a posi-

tive integer N, such that sup{f(n):n > N,} <1+27%, and by Lemma
2.3.1 there exists a,¢2l such that p, > N, for a > a;. Moreover, therc
exists a,e?2 such that |f(p,)— P (p)| < 27'¢ for a = a,. Since 2 iy a di-
rected set, there exists aaeg[ such that a, > o, and a4 = 0,. Then « > ¢,
implies ]‘ﬂ(]o ) <Fp)+27% and F(p,) <14+27' Henee, f'(p) < 1l-ts
for arbitrary &> 0, and ’(p) <1.

LeMMA 2.3.3. If pefX—X and feM?, then f'(p) < 1.

Proof. Suppose there exists p X —X and feM? such that 7 (p) = 1.

If {p,:ac} is a net in X converging to p, it follows that f(p,) — 1, and

there exists a2 such that f(p,) > 27* for a > a,. We define g from X

to the reals by g(n) = (f(»))™ if n = p, for some a> a, and g(n) =1

otherwise. Then limsup|g(n)|’* =1, since limj(p,) = 1. Hence, geR
n

and fgeMP. But fgeM? implies that (fgn e)eM"’ and (fgA e) is boundod
Therefore (fgA e)eM? ~ B(X) = MY, and (fg ¢)’(p) = 0. Hence, (fg)*(
-»0. However, for a >'ag, (fg)(p,) = 1. This is a contradiction, a,nd 11,
follows that pefX—X and feM” implies f*(p) < 1.

LevMa 2.3.4. If each of f and g is in R and p is an element of X —X
such that 7 (p) < 1, then Fg(p) < 1.

Proof. Suppose f and g are elements of B and pefX—X such that
7(p) < 1. Now, for each neX, F(n)g(n) = fg(n), and by the continuity
of the extensions f’, 7, and fg"’, we have ff(q ) P(q )—fg'”(q) for each
gepX. Therefore, fg”(p = p)g(»), FPlp) <1, and §'(p) <1. Hence,

17 p)

LEMMA 2.35. If f and g are elements of R and if p is an element of
BX—X such that F(p) < 1 and §°(p) < 1, then (Fig)(p) < 1.

Proof. If neX, then (FFg)(n) = |f(n)+g@)"™ < 9’”(}(%) vg(n)
= 2"(fv§)(n), where Vv denotes the usual maximum of real-valued
funetions. Thus, if {p,: a2} is a net in X converging to p, then (FFg)’(p)
<Um2Peff(po) v (pa)] < 1.

TemoREM 2.3. If pefX—X,
Proof. Let J?

then MP = {feR:f(p) < 1}.
= {feR:[’(p) < 1}, Then J? == R, and from Lemma
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2.3.3 it follows that M” < J”. We infer from Lemmas 2.3.4 and 2.3.5 that
J” is an ideal in R. Hence M? = J*.

CoROLLARY 2.3.1. If we define R, to be the set of all feR such that
limsup |f(p)|'? < 1, then Ry = (M {M*:pefX—X}

Proof. If feR,, then limsup|f(p)|"? < 1, and if {p,:a<} is any
I

X, then imf(p,) < 1, and feM?. Hence

R, ¢ M” for each pefX—X. For the other containment it will suffice
to show that if fe R—R,, then there exists p efX —X such that fe R— M”.
Suppose that feR—R,. Then hmsup If(n)]"" = 1 and there exists a sub-

net in X converging to pefX—

sequence {n;:k =1,2,...} of {n} such that hmf np) = 1. Now {nz}
is a net in AX and, therefore, clusters to some pomt peBX. Moreover,
since the subsequence {n;} can be chosen such that n, < n, <..., it
can be assumed that pefX—X. Then /(p) =1 and st—JIP.

" COROLLARY 2.3.2. If pepX —X, then M} ~ B(X) § M? ~ B(X) § M}.

Proof. If pepX—X, then the function k defined by %(0) = 1 and
k(n) =n"" for n 50 is an element of M?— (M” ~ B(X)). Similarly,
the function I defined by I(n) = (n!)™' is an element of (M” ~ B(X))
—-(Mi’j ~ B(X)) for each pefX—X. This follows from Corollary 2.3.1
and the faet that 7 is a unit in C(X).

We can use Theorem 2.3 to strengthen Theorem 2.2 appreciably.
However, we shall also need several facts from the theory of Stone-Cech
compactifications and from the theory of structure spaces of commuta-
tive rings.

If Y is an arbitrary completely regular Hausdorff space and fY
is the Stone-Cech compactification of ¥, then the points of AY can be
regarded as the indices of the ultrafilters in the lattice Z(Y) of zero sets
of C(Y). In this case, if pe ¥, then p is the index of the ultrafilter o¥ of
all zero sets which contain the point p. A base for the closed sets in Y
is given by all sets of the form C'(4) = {peBY:4 e”}, where & is an
ultrafilter in Z(Y) and A is an element of Z(Y). Moreover, the closure
in fY of A4, denoted by clyp(4), is exactly C(4) (for a more detailed
discussion, see Chapter 6 of [1]).

If 4 is an arbitrary commutative ring with identity and .# is the
set of all maximal ideals of A, then we can give .# a topology (called
the hull-kernel topology) in the following manner. For each a< A we define
E(a) = {Me#:aeM}. The collection {E(a):aecd} is a base for the closed
sets in the hull-kernel topology on 4 (ef. [1], p. 111, or [2], p. 221-223).

In our case the space X is discrete; hence, Z(X) is the collection
of all subsets of X. Also the base for the closed sets in . (= #5) can be
chosen much smaller than in the general case. The sets E(k,), where
A = X, form a bage for the closed sets in the hull-kernel topology. To
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show this we must demonstrate that for each feR there exists 4 < X
such that E(f) < B(ky). This is equivalent to showing that for each
feR there exists 4 = X such that feM” implies k4 eM”. To this end we
fix feR, and let B = {neX:j(n) <1} and A = X—B. We note that
b, = k4. Suppose feM”. It will suffice to show that if {po: ae} is
a net in X which converges to p, then {k4(p,)} converges to zero, since
then #%(p) = 0 and k4 eM”. Now, if {p.:a <2} is a net in X converging
to p, then there exists ape?l such that F(p) <1 for a > ay. Then, for
a> ap, PecB and ky(p,) = 0. Hence, ¥%(p) =0 and ki eM’.

THEOREM 2.4. The mazimal ideal space .# of R with the hull-kernel
topology is homeomorphic to fX, the Stone-Cech compactification of X.

Proof. We have, from Theorem 2.2, that the funetion p — MY
is one-to-ome. We will show that this mapping is a homeomorphism.
Tt will suffice to show the following: if 4 < X, then peC(4) if, and only
if, M?<B(ky), where k= k4 (4'= K—A). If this is the case, then the
function p — M” takes a basis for closed sets in fX onto a basis for closed
sets in .#; hence, it is a homeomorphism.

Tet 4 « X, and suppose that peC(4) Now C(4) = clyx(4), and
there exists a net {p,:ac?} in A which converges to p. Then Ty (pa) is
identically zero and k7 (p) = 0. Hence, ki eM?. Conversely, if kelI”,
then %%(p) = 0, and if {p,:aec¥U} is a net in X which converges to p,
then %, (p,) must be eventually zero. Hence, {p,racd} i3 eventually
contained in 4, and peclyx(4) = C(4).

From Theorem 2.4 we obtain the following topological information
about the maximal ideal space of R: it is & compact totally disconnected
Hausdorff space which containg a homeomorphic copy of X, namely,
{M?:peX}, as a dense discrete subspace.

We shall now give a simple characterization of the dual space of
the topological linear space R in terms of its ring structure. Here we shall
consider R as a space of analytic functions on D.

Levma 2.5.1. If {C,:n = 0,1,...} is a sequence of complexr numbers
satisfying the condition limsup |C,|'™ < 1, and of for each sequence {a,:n

n

=0,1,...} of complex numbers satisfying the same condition, the serics
o

2 a0, converges, then limsup |C,]'" < 1.
n=0 n

Proof. Suppose {0,:n =0,1,...} is a sequence of complex num-

bers satisfying limsup|C,|'™ = 1. Then there exists a subsequence {n;:
n

k=1,2,..} of {n:n=0,1,...} such that |C, |'™ converges to one

and C,, # 0 for each k. We define the sequence {a,:n =0,1, ...} by

@y, = Crg i 1 = my, for  some k, and @, =0 if n £ my, all k. Then

limsup o, <1 and Y a,0, fails to converge,
[ n=0
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THEOREM 2.5. The dual space R* of R is isomorphic to the ideal
Ry~ {M":pefX—X}.

Proof. First, we shall fix geR, and show that g defines a unique
functional L, in R*. We note that if fe R, then fy (juxtaposition denotes,
as above, the Hadamard product) is an element of R, and fg is defined
at 1. We define L,:R — C by L,(f) = fg(1). The function L, is linear,
homogeneous, and continuous and is, therefore, an element of R*. More-

o0

i~
over, if g = Y C,w,, where w,(x) = ¥, and if f= Ya,w,, then L,(f)
0

= -
~ bz p=0

= Ya,C,. The mapping ¢ — L, is clearly a well-defined homomorphism
1#=0

of R, into R*. We will now show that this mapping is one-to-one and
onto. If ¢, # g,, then there exists a non-negative integer 7 such that

Ch (5, where g, = 3Clw, and g, = }Chw,. But Ly (w,) = (gw,)(1)
=0 v=0

= 0111 and L_z/z('“‘n) = (gzwn) 1) = Cfl Hence, g, # ¢, implies I’lll #* Lﬂg:
and the mapping g — I, is one-to-one. Now we fix an element L of R*
and consider the power series > L(w,)?”. We will show that this power

V=0
scries has radius of convergence greater than one, and, hence, defines

an element of R,. Xt feR, f= Ya,w,, then L(f) = L({Ja,w,) =
p=0 n=0

Da,L(w,) by the continuity of L. Hence, if we define f by the series
2=0
o

Nexp(--1i6,)w,, where L(w,) = r,exp(if,); then f is an element of R
n=0

[=S] [=¥] oo
and L(f) = Yr, = D\L(w,)|. Therefore, Y L(w,) converges absolutely,
N=0 D=0 »=0

oo

and if we define ¢ = > L(w,)w,, then geR. Now, by Lemma 2.5.1, geR,
p=0

and L, = L. Hence, the mapping ¢ — L, is an isomorphism of B, into

R*, where the correspondence is given by I,(f) = fg(1).

3. Residue class rings. In the preceding section we gave a de-
seription of the space of maximal ideals of R and a description of the ideals
themselves. We continue here our study of these ideals by considering
the structure of their residue class rings.

We will first concern ourselves with the maximal ideals of type (II).
We denote by ¢, the multiplicative functional corresponding to M”,
peX (q,(f) = f(p)). We will show that if M? is of type (II) (peX), then
9,1 (C) = RJMP. To this end we define o:R/M? — C by o(pp(f)) = #u()
for each feR. The function ¢ is an isomorphism of R/M” onto €, and
aeC implies o(p,7(a)) = a, Hence, each class in R/M” is determined
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by a complex number. Thus, for peX, there exists an isonmorphism
0,: R/ M” — € which is C-homogeneous (o,@,n = identity).

If M? is a maximal ideal of type (I) (pepX —X), then the structure
of R/M" is more complex than in the case just considered, and we need
here several definitions and results from the theory of field extensions.
A detailed discussion is found in Chapter II of [3]:

If % is a subfield of K, then %k[Z] will denote the polynomial ring
in the indeterminate Z over k, k[Z}, ..., Z,] will denote the polynomial
ring in the n indeterminates Z,, ..., Z,, over k, and if L is any set of ele-
ments of K, k(L) will denote the smallest subfield of K which containg
both % and L. An element & in K is said to be franscendental over k if
it satisfies no polynomial in k[Z] except the zero polynomial. A finite
set {&,,..., &} of elements of K is said to be algebraically independent
if the only polynomial in %[Z,,...,Z,] satisfied by {&;,..., £,} is the
zero polynomial. A subset L of K is called a transcendence set over k if
every finite subset of L is algebraically independent over k. By a Zorn’s
lemma argument it can be shown that every transcendence set in K is
contained in a maximal transcendence set, called a transcendence basis
of K over k. Moreover, any two transcendence bases of K over &k have
the same cardinality, which is ealled the transcendence degree of K over k.
Finally, if L is a transcendence basis of K over k, then K is an algebraic
extension of k(L).

A field K is said to be algebraically closed if every polynomial in
K [Z] has a root in K, or equivalently, if the only irreducible polynomials
in K[Z] are of degree one. A field K is called an algebraic closure of
a subfield % if 1) K is algebraic over k and 2) K is algebraically closed.
If K is an algebraically closed field and K and K’ are isomorphic, then
K’ ig also algebraically closed. The following theorem will be stated without
proof, a proof may be found on pages 107, 108 of [37]:

THEOREM 3.1. Let K' be an algebraically closed field and K be an
algebraic extension of a field k. If @ is an isomorphism of & into K, then ¢
can be extended to an isomorphism of K imto K'.

THEOREM 3.2. If pefX —X, then @,q(C) SR[M".

Proof. Let f by the element of R defined by f(0) = 1 and f(n) = »™"*
for n s 0. Then f is a unit in R and feM? for each p <fX —X, where W%
is the maximal ideal of B(X) which corresponds to p. If f is equivalent
to a complex multiple ye of ¢ modulo MP, then g, (f—ye) = p(0) and
f—yeeM®. But yee B(X). Therefore, f—yeeM” ~ B(X) ¢ M} = {geB(X):
g*(p) = 0}. Now, if {p,:ae?¥} is any net in X converging to p, then,
by Lemma 2.8.1, for each neX there exists a,c¢ such that P.>n when-
ever a2 .a,. Hence lim f(p,) = 0, and lim (f— ye)(p,) = 0 implies y =0

a a
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or feMP, which is a contradiction. we see that
Pp(f) e B[ MP — 0 (C).

The complex number field is algebraically closed, and it follows
that ¢,7(C) must also be algebraically closed. Hence, if pefX—X, then
R[M” is a transcendental extension of ¢,7(C), i. e., each element of B/M”
—@yn(C) is transcendental over ¢,7(C). The letter f used below denotes
the function defined in Theorem 3.2.

Lmmma 8.3.1. If r is « positive real number and if f* is defined by
) = (f(n)), then fe R and g,(f") e R[M" —q,n (C). Moreover, if v, 5 r,,
then (1) # @ (2).

Proof. If » is a 7positive

Therefore,

real number, then limsupif (n)!™
n

= limsup |f (n)|™ < 1, and f"eR. Suppose ¢,(f") = @,(ye) for some yC.
n

Then f"—ypeeM? ~ B(X) < M7, and (f'—vyef(p) = 0. But f7(p) =0,
and, hence, y = 0. This implies that f"eM” and, consequently, feM?,
a contradiction. Hence, ¢, (") e R/ M” —¢@,n(C). Now suppose that »; and
r, are distinet positive real numbers such that @,(f1) = ¢, (f2). Without
loss of generality we may assume that r, < 7, and, hence, that r, = r;+7,
whete » is a positive real number. From our original assumption it follows
that f2—f1eM? or fif —f1eM?. Thus f(f —e)eM”, where f is a unit
in R. Hence f"—eeM”, a contradiction.

We have now established the existence of an uncountable collec-
tion {p,(f"):r real, positive number} of distinct elements of R/M", each
of which is transcendental over g,n(C). In the following lemma and theo-
rem we will show that from this colleetion an uncountable transcendence
set can be extracted.

Let T be a transcendence basis of C over the field of rational num-
bers ecomposed of positive real numbers. Then T has the cardinality of
the continuum, and if 8,,...,s, is a collection of rational numbers and

if 7y,...,7, i8 a collection of elements of 7' such that D'spr = 0, then
8, =8y =... =8, =0. =

LEmMA 3.3.2. The collection S(f,T) = {pp(f):reL} 48 a transcen-
dence set in R[M” over g,n(C).

Proof. Suppose P(Z,, ..., Z,) is a polynomial in ¢,5(C){Z;, ..., Z,]
satistied by {pp(f™1), ..., ¥p(f™}, a finite collection of elements from
S(f, T). We shall show that P(Z,, ..., Z,) is the zero pelynomial. Now

m

P(Zy, ..., Z,) = Yaj i, Z{ ... Z;, where i 7 j implies that there exists
i=0

’
il

Plen(fD), - ulf™) = Dty i@ (e (),
=0

le{l,...,n} such that 4 s£j;, and where a ep,n(C). Moreover,
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and g, (f7)7 = ¢, (f7). Let a; = @i ki = i1¢‘1~];1---+731L7‘1L~

Then P[%(fl),...,q)v(f’“)) may be written as follows: 2%(1,;<pp(fki),

since q'u(f{lrl) <@ (fi"m) = @ (filrl.fiﬂrﬂ . 'fi"'m) = Pp (f ritething = %'(fki)-
From the algebraic independence of {ry, ..., Ty} it follows that 4 = j
implies that k;# k. Now, since the ks are distinet they can De
rearranged in order of inereasing magnitude. We denote the superscript
of smallest magnitude by k,, the next by %, and finally we denote the
superseript of largest magnitude by %.. Similarly, we rearrange the coef-
ficients so that a; is the coefficients of ¢, (f*i) in the nweLW ordering. The

polynomial P (¢, (f1), «.ey @p(f™) now has the form: _Z;aiqvp('f""i), where
1=

By < ky < ... < by, and a;e@,n(C) for each {0, ..., m}. Moreover, each g,
is the image under ¢, of a complex multiple y; of e; hence, the polyno-
m m

mial has the form qu,,(yie)qg‘,(f"i) = ‘Pu(;_z; yif).

By assumption, P((Pp (fr1)7 . “ﬂPu(frn)) = g7 (0), the zero of @,n(C);

m H . X n -
henee, ¢,(Y yif*) = pp(0) and 3 yif e But Yy fi = f"o(z;yifh Foy,
=0 i=0 i=0 i=

where k,—k, > 0 for each ie{l, ..., m}. The factor f¥oin the last expres-
m n

sion is a unitin R and, therefore, Yy, f* *0el,. Welet g, denote Syfrich,
1=0 =1

and let

Then yye-- gy« M*. Further, since g, is the sum of finitely many elements

of B(X) and y.e is an element of B(X), we have yoe-t g eM? ~ B(X)

< M?. Hence (yoe+¢,)" (p) = 0. But ¢f(p) = 0; hence, y, = 0. Supposc
m

m
we have shown that y, = ... == y,_; = 0. Then 3yf = fie( 3 p;fiiFe)e
i=€ =€

m

M® and Yy fieeMP. As above we may conclude that y, = 0. Hence
i=6

cach coefficient of P(Z,, ...

P(Z., ..., Z,) is the zero polynomial in @,7(C)[Z,, ..

is a transcendence set in R/M” over g,n(C).

TeEOREM 3.3. If pepX —X, then R[MP is an extension field of q,n(C)
having transcendence degree ¢, where ¢ denotes the cardinality of the continuum.

Proof. In Lemma 3.3.1 we demonstrated the existence of a trans-
cendence set having cardinality c¢. Therefore the transcendence degree
of R/MP over g,y (C) is at least ¢. But the cardinality of B/M” is itself c.
The theorem follows from these two facts.

THEOREM 3.4. If p X —X, then R|MP is an algebraically closed field.

Proof. Let P(Z) be a polynomial in R/M"[Z]. We will show that
n s
P(Z) has arootin R[M”. The polynomial P(Z) = } a,Z', where a;<R/M",
i=0

,Z,) is the image under ¢, of 7(0), and
.y Zy,]. Thus S(f, 1)
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Since R/M" is a field we can, without loss of generality, assume that the

leading coefficient a,, of P(Z) is the identity element ¢,(e) of R/M?. Now,

a;eR/M” implies that there exists fieR such that ¢,(f;) = a;. Thus, it
n

will suffice to show that there exists geR such that ) fig' «M?, where
n . 1=0 n )

fu=e. For then we have ¢,(Y fig)eq,(M?) = ¢,7(0). But ¢,(> fig") =
i=0 =0

n n
= 20%»(]‘})[%(9)]' = Yai[g,(9)], and ¢,(g) is a oot of P(Z). We can,
L i=0
therefore, transfer the problem to R by considering the polynomial Pz
H
= Mf.Z' in the polynomial ring R[Z]. Now, for each k<X, the polynomial
=0

P2y = Zf;(k)Z" is in ('[Z], and, therefore, splits into linear factors
=

in C; i e., there exist complex numbers a,...,a, such that P.(Z)
= (Z—a,)...(Z—a,). For each keX, we let ¢,(k),..., g, (k) denote the n
complex roots of P, (Z) arranged in order of increasing magnitude, where
if g, (k)] = ... = |gu,(k)|, then these roots are arranged in order of

n

increasing argument. We note that, for each keX, 3 fi(k) [gj(k)]i =0 for
i=0
je{l,...,n}, and (—1)"g,(k)...g.(k) = f,(k), the constant term of P;(Z).
Thus (—1)"¢s...gu = foe R, and P(Z) = (—1)'gs...gu+ 312"
i=1

The constant term (—1)"¢;...¢, is an element of R and, therefore,
satisfies imsup [(—1)"(gs .. .g.) (k)]*<1. Hence, corresponding to each non-
k

negative integer m there is an integer p, such that |(—1)"(g;...g,) (k)"
< 142" for all k>p;n' Let  pp =1113:X(197':L;Pm~1+1)~ Then for
each &> pn, [(—1)"g1(k)...g2(R)7F < 142" or |gy(R)" ... |g,(K)""
< 1+27™, Now, for &k < p, we define g(k) = g, (k). For p,, <k < Pp1,
19 ()% ga(B)|MF < 1427 and there exists an integer j, 1 <j <,
such that |gj(k)\"" < 1-4+27" Therefore, there exists a smallest such
integer j,. We define g(k) = g;, (k). Finally, for keX such that & > pn,
all m, g, (B))"*. .. |gn(k)]"F <1, and there exists a smallest integer j.,
1 < jp < n, such that }gfk(k)\”k < 1. We define g(k) = g;,(k). This de-
n

fines a funetion ¢ from X to €. Moreover, if keX, then 3 f;(k) g (k) =0,
=0

e . n .
and (3 fig") (k) =0 implies that }'f;¢* is the zero of R. Hence, it will
i=0 i=0

suffice to show that ¢ is an element of R. To this end we fix > 0. There
exists an integer m such that 27" < & For k > p,., lg(B))"* < 1427
<1+e; and it follows that limsup|g(k)|" <1 and g is an element
of R. b
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Thus ) @, (fi) [q)p(g)]i = g,7(0), and ¢, (g) is a root of the polyno-
i=o

mial P(Z) in R/MP.

Theorems 3.3 and 3.4 give us a fairly complete description of R/AI”
whenever peBX —X. Moreover, from the next theorem and its corollaries
we obtain the somewhat startling result: although R/M” is an extension
field of ,7(C) having an infinite algebraic basis, E/M Y and ¢,n(C) are
still isomorphic fields.

TusorEM 3.5. If k and k' are isomorphic fields and if K and K" are
exiension fields of k end k', respectively, satisfying the conditions: 1) I{
and K' are algebraically closed and 2) the transcendence degrees of K over
& and K’ over k' are the same, then there exists an isomorphism of K onto I’
which extends the isomorphism of & onto %'

Proof. Let L be a transcendence basis for K over %, L’ a basis for
K’ over k¥, and ¢ an isomorphism of k& onto &'. Then there exists an iso-
morphism  from k(L) onto &'(L’) which extends ¢. Now, K is algebraic
over k(L) and K’ is an algebraic clogure of %'(L’). Therefore, by Theorem
3.1, there exists an isomorphism @ of K into K’ which extends p and
which, therefore, extends ¢. Moreover, since K i3 algebraically closed,
@(K) must be K. For if not, then there exists a polynomial P’(Z)
in @(K)[Z] which is irreducible and of degree greater than one. There
corresponds to P'(Z) under & an irreducible polynomial P(Z) of degree
greater than one in K [Z]. This contradicts the fact that K is algebraically
closed. Hence, ®(K) = K' and the proof follows.

COROLLARY 3.5.1. If K is an algebraically closed field of characteristic
zero and transcendence degree ¢ over its prime field, then I is tsomorphic
to the complex number field.

Proof. If K has characteristic zero, then its prime field is isomorphic
to the field of rational numbers, the prime field of C. Moreover, C is
an algebraically closed extension field of the rational numbers having
transcendence degree ¢. The corollary now follows from Theorem 3.5.

COROLLARY 3.5.2. If p e X —X, then R/ M is isomorphic to the complex
number field C.

Proof. We have, from Theorems 2.3 and 2.4, that R/M¥ is a trans-
cendental extension of ¢,7(C) having transcendence degree ¢ over ¢,7((),
and is, moreover, algebraically closed. Hence, R/M” has transcendence
degree ¢ over the image of the rational number field under g¢,7. Thus,
by Corollary 3.5.1, we have that R/M” and C are isomorphic.

Although the residue clags rings R/M" are algebraically indistin-
guishable (i. e., are all isomorphic), the fact that R/M® and ¢,7(C) are
not-identical for p<fX—X allows us to distinguish the two classes of
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residue class rings in terms of the kinds of complex-valued isomorphisms
which they admit.

THEOREM 3.6. If pe<pX, then there exists an isomorphism o of R[M"
onto C. Moreover, ¢ can be chosen to be C-homogeneous (op,n = identity)
if, and only if, peX.

Proof. The existence of the isomorphism o has been demonstrated
above. Moreover, we also showed that if peX, then the natural homo-
morphism o:Rj/MP — C, defined by o(p,(f)) = @,(f), is C-homogeneous.
To prove the converse we assume that there exists pefX—X and a C-
-homogeneous isomorphism ¢ of R/M* onto €. By Theorem 3.2 there
exists £eR/M”—qp,n(C). Consider the element ¢,n(c(8)eR/M". By
assumption, a((p,ﬂ;(g(&))) = o(£); hence, £ and g,n(c(&)) both map into
o(&) under o. But &eR/M”—¢,n(C), a contradiction to the fact that o
is one-to-one.

COROLLARY 3.6.1. If ¢ is a C-homogeneous homomorphism (¢n = iden-
tity) of R onto C, then g is continuous and, moreover, ¢ = @, for some p e X.

Proof. If  is a C-homogeneous homomorphism of R onto C, then
there exists pepX such that ¢~'(0) = M”. If we define o:R/M" - C
by olps(f)) = @(f), then ¢ is a C-homogeneous isomorphism of R|M*
onto C. Therefore, peX, and ¢ = @,. The last statement follows from
the fact that if feR, then f—o(flecM? and @,(f—e¢(f)e) = 0. But
Tolf—o(f)e) = @o(f) —p(f) = 0. Hence g, = ¢, and ¢ is continuous.

4. Closed ideals. In this section we shall consider the closed ideals of B
and characterize these ideals in terms of principal ideals. We will con-
sider R to be a ring of functions on X (except in Theorem 4.3), and will
use the following topological property: If feR and if for each non-negative
integer n we define f,(p) =f(p) for p <n, fo(p) =0 for p >mn, then
{fuim = 0,1,2,...} converges to f in the topology of E. We shall mean
“proper ideal” (# R) when we say ideal.

TamorEM 4.1. If I is an ideal in R and if for each feR we define f*
by f*(p) = f(p), then fel if, and only if, f*el.

Proof. If feR, then f(p) = r,exp(if,) for each peX, and the fune-
tion h; defined by h;(p) = exp(—2if,) is in R. Then fh;is in I and fh; (p)
= r,exp(—if,) = f*(p). Hence, feI implies f*eI. Since (f*)* =f, the
theorem follows.

Theorem 4.1 will be used here as a lemma to the theorems following.
However, it is of independent interest. The mapping f — f* defined above
is an involution in R, and Theorem 4.1 says that every ideal in R is its
own image under this mapping (every ideal is symmetric).

THEOREM 4.2. If I s an ideal in R, then I is an ideal in R if, and only
if, there exists neX such that I < M™.
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Proof. The sufficiency is clear, since I < M" implies I c M"+#R,
and the closure of an ideal is an ideal if it is proper. Conversely, suppose I
is an ideal in R such that for each neX there exists fyel—IM". Then
fulk ¢ ", since M" is a prime ideal (for definition, see [3], p. 149). But
faf(p) = |fu(@)]®* for each peX, and fo¢M" implies that |f,(n)]* > 0.

n
We now define f,, by fu(p) =ZZ Ifs(p)|2. Then f,eI and f.(p) >0 for
=0

pe{0, ..., n}. Finally, we define f, by fi (p) = {fulp))™" for pef0,...,n}
and f/(p) = 0 otherwise. Then f, ¢R and fufnel. But fufn =l
and by subtracting f,_,fn_: from f,f, we have ky;eI. Hence, I containg
the characteristic functions of points. Consequently, I o I, and is dense
in R. Moreover, we have that every dense ideal contains the poly-
nomials.

The structure of the closéd ideals of R is easily studied by means
of the principal ideals (ideals generated by a single element of R) and
their clogures. Theorem 4.3 was communicated by P. Porcelli. We in-
clude a proof here since we have been informed that the result is not
specifically stated in the literature. We note that in this theorem R is
the ring of analytic functions.

TurorEM 4.3. If f and g are elements of R such that f™(0) = 0 implies
g™(0) = 0, then g can be approvimated in the compact-open topology by

n

finite linear combinations of the form > a;f,, where a;0, |z =1, and
50

fzi(z) = f(#;2).

Proof. We shall first consider the case where both f and g have
radius of convergence greater than one. We denote the unit circle by C
and the restrictions of f and g to ¢ by f and §, respectively. Let L(f)
denote the closure in L'(C) of the linear manifold generated in L!(C)
by f and its translates by members of C. Then Z( #) is an ideal in L(0)
(ef. [2], p.374). Moreover, the space . of maximal regular ideals of
IY(0) is homeomorphic to the space of integers with the diserete topo-
logy. Therefore, if I is a closed ideal in L1(C), then h(I) = {M e :I = M}
is a discrete set in .#. Hence, k(h(I)) = I, where k(4) = (M) {M A} for
each subset 4 of 4 (cf. [2], p.221-222, and p.423). Now, since
F™(0) = 0 implies ¢™(0) = 0, we have jekh(L(f)), and jeL(f). Hence,

¢ can be approximated in Il-norm by sums of the form Z“ifw where
i=1

a;eC and z;¢C. Now we shall show that f and g satisfy the conclusion of
the theorem. Fix ¢> 0 and a compact set K in D. Let § = min{l— |»|:
s¢K}. Then &6 >0 and there exist {a;,...,a,} =« C and {z1,...,2,}

3

& 0 sueh' that ||g— 3 a;fslh <e If zeK, then

i=1
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. * ) n ) : n
9oy Dl ) = (9= Dt} @) = =07 [ (g = 3 oif.)) (@) (e —a)a

{m=

I=1 ¢ =1

<em) (= Nafe) ) 12— 2 da)
o i==1

<@ M]En [ (o= Yuf) ) dz).

& T=1

n
But the second factor is [g— Y a il Henee, 2zeX implies
= .

S
n
lg(m)—Zaff:i(.n)ﬁ < e, and the theorem is proved for f and ¢ having
i=1 ’

rading of convergence greater than one.

Now we let f and ¢ be arbitrary elements of R satisfying the hypotheses
of the theorem. We fix £ > 0 and a compact set K in D. We next choose
a sequence {r,:m =1,2,...} of elements of [0,1) converging to one.
Then there exists n such that K is contained in the disc about the origin
of radius r.,. We fix this integer n. Now, fr, and g, satisfy the hypothesis
of the first case and there exist {a;,...,a,} = C and {2, ...,2,} = C

m

such that if 2] < 7., then |g,, (#) — Jaify, s, (@) < e If 3K, then [z < 77,
i=1

and there exists 2, |#| <7,, such that z = r,2. Then

" " n

)= N oy () =lg(ra2) = D iy (742)] = |, (2) = D i) < e
i=1 o i=1 ' i1 '

This theorem makes quite strong statements about approximating
analytic functions. For example, any function which is analytic on D
can be uniformly approximated by the function exp(z), since this func-
tion has no derivatives which vanish at the origin. Likewise, any other
similar function approximates all elements of R.

‘We now restate Theorem 4.3 in algebraic terms. Here (f) denotes
the principal ideal in R generated by f.

COROLLARY 4.3. If f and g are elements of R such that neX and feM"
implies geM™, then ge(f).

Proof. By Theorem 3.3, ¢ can be approximated by sums of the form

n
'Z:aifgi, as an analytic function. In terms of the ring of functions on X,
(=

we have f,,(p) = & f(p) = e5,f(p). Thus ﬁ’a,;le. = il’a,-e;ff = (i‘a;ezi)fe(j).
=1 i=1 i=1

Hence, ge(f).

THEOREM 44. If feR and Z(f) = {peX:f(p) = 0}, then (J) =R
if Z(f) =0 and (f) = N {M*:neZ ()} if Z(f) # D. Hence, the closure
of every principal ideal is principal.
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Prooi. If Z(f) = @, then e<(f) and () = R. If Z(f) + @, then the
fonetion e~ kg is zero if, and only if, f is zero; hence, Gwlcz(f)s(7),
But (¢—kgp) = N {(M*:neZ(f)}, and feM™ for each neZ(f). Therefore,
() = (e—kgy) = M {M":meZ(f)}.

TaROREM 4.5. If feR, then (f) is closed if, and only if, f+Tyy ds
a unit in R.

Proof. We shall first prove the necessity of the condition. Tf (f)
= (f), then (f) = (e— kzy;)) and there exists geR such that fg = e—ky.
Then kzy4-fg = e and f(p)y(p) =1 if, and only if, f(p) # 0. Moreover,
(figy 1) (p) is Lif p e Z(f) and is f(p) if p eX—Z(f). We define 2 by h(p) = 1
if peZ(f) and h(p) = g(p) it peX—~Z(f). Then heR, since geR; and
W+ kzg) = e )

Conversely, if f4 kg is a unit in R, then there exists geR such that
g(f+kyy) = e. Moreover, g(p) =1 if peZ(f) and g(p) = (f(p))" if
peX—Z(f). Also, we have g(e—Tzy)(p) = (f(—p)) ™" if peX—Z(f) and
gle—kzp)(p) =0 if peZ(f). But then g(e—Tzp)f = €~ lzy. Hence,
(e—Tzy) < (f)- However, (f) = (6—kzy)-

THEOREM 4.6. An ideal I in R is closed if, and only if, it is the inter-
section of closed maximal ideals. In this case it is a principal ideal; hence,
closed ideals are principal.

Proof. The sufficiency is obvious. Conversely, suppose I is a closed
ideal in R and let X, = {peX:I <« M®}. Then X, # @ and I = (O {M":
neX,}). Fix fel. Then X, < Z(f). Moreover, |f|2el, since |f|2 = ff*, and
Z(|f12) = Z(f) = Xy w {ny4, %p, ...}, where the n; are arranged in order
of increasing magnitude. If the collection {n,, n,, ...} is finite, then the
following argument can be terminated in a finite number of steps. We
shall now construct an element of I whose zero set is exactly X,. The
closed principal ideal generated by that element will be (M) {M":n X}
and will be contained in I. Now, for each ¢ there exists g;el such that
¢i(n:) # 0. Let b; = g; 9. Then hyel and hy(n;) > 0. The funection by Tog
is in T and we define ; by ki(p) = (h;(n;))* if p = n, and zero otherwise.
Then h;eR and Fggyhy hy = kmgel. Leb g denote the characteristic func-
tion of {ny, n,, ...}, and for each non-negative integer n let g, == gl -
Then {g,:n =0,1,...} iy a sequence of polynomials which convérées
to ¢:in the topology of R. But, for each n, g, is the sum of at most a finite
number of the functions k. Hence, g,cI for each n; and, since I is

closed, g I. Therefore, |fi24-q<I. But Z(|f|*+¢) = X,. Hence I = () {M™:
neXg}

‘ In vieyv of this theorem we can make a connection between the ring
beu.xg sm_xd.led and the general theory of topological rings. If 4 is a topo-
logical ring and § is & subset of 4, then the sets 2(8) = {wed:n8 = (0)}
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and Z(S) = {wed:8z = (0)} are left and right ideals, respectively. The
ring 4 is called a dual ring if 1) #(4) = (0) = Z(4) and 2) for each
closed left ideal I, (closed right ideal I,), (& (I,)) = I, (#(£(1,)) = L,).
Dual rings are discussed at length in section 25 of [2]. The ring R under
congideration iy a dual ring, since each closed ideal is principal, and is,
moreover, semi-simple. The results in [2] are obtained under the assump-
tion that the dual rings have either a continuous inverse or a continuous
quagi-inverse. Since R has dense ideals it cannot be a ring with continuous
inverse. However, the structure of R is very similar to that obtained
under these restrictive assumptions: R is a topological direct sum of
the annihilators (two-sided minimal ideals) of its closed maximal ideals.
Moreover, each minimal ideal is principal; in fact, each is generated by
an irreducible idempotent ¢ which has the property that RqR is a field
isomorphic to the complex numbers.

In the last section of this chapter we shall concern ourselves with
the prime and primary ideals in R (for a discussion of the latter, see [3],
p.152). If I is an ideal in R, then the radical of I, denoted by rad (),
is the set of all feR such that eI for some non-negative integer n.

TrroREM 4.7. Every prime ideal (and, hence, every primary ideal)
in R 1s contained in a unique mazimal ideal.

Proof. If P is a prime ideal in R which is contained in distinct
maximal ideals M? and MY then P ~ B(X) c [M* ~ B(X)]~ [M*
~ B(X)]. Hence, P ~ B(X) ¢ M? ~ M}, a contradiction, since P ~ B(X)
is a prime ideal in B(X). For a primary ideal @, rad (@) is prime, and the
result is obtained by considering this latter ideal.

TaEorEM 4.8. If P is a closed prime (primary) ideal in R, then P
s masimal.

Proof. If P is prime, then there exists a unique nefX such that
P < M". But, since P is closed, ne<X and P = M™. The theorem follows
similarly for closed primary ideals.

An investigation of the dense prime ideals yielded only the result
given in the following theorem. The proof depends on the following state-
ment, & proof of which can be found on page 7 of [1]. If I is an ideal in
a commutative ring with identity, then rad(I) = (" {P < E:P is a prime
ideal, P o I}.

THEOREM 4.9. There ewist non-maximal prime ideals in K.

Proof. From Corollary 2.3.1, we have that the intersection of the
dense maximal ideals of R is exactly the set of elements having radius
of convergence greater than one, a set which property contains I,. How-
ever, I, =rad(I,) = () {P = R:P is a prime ideal, P o I,}. Therefore,
the set of dense prime ideals properly contains the set of denge maximal
ideals.
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On higher gradients of harmonic functions

by

A.P. CALDERON and A. ZYGMUND (Chicago)*

Chapter I

1. Let U(z) = U(xy, ®a, ..., Z,) be a real-valued harmonic function
defined in a domain D of the n-dimensional Eueclidean space (n > 2).
Consider the norm W (z) of the gradient of U(z),

n
U\ 12
W(x) = |grad U] = V(22 .
(@) = lgrad U] {é(am)}

It is a claggical fact that W(x) is subharmonic in D, and therefore
{W(2)}" is also subharmonic for any p > 1. E.M. Stein and G. Weiss
[8] established a remarkable fact that {W (%)}’ is subharmonic in D for
some values of p less than 1, more precisely, subharmonic for any
n—2
n—1"

The example U(x) = (3 #5)~"»" shows that the result is false for p
less than (n—2)/(n—1). The case n = 2 is, of course, classical if we in-
terpret the result as the subharmonicity of log W.

In this chapter we extend the Stein-Weiss result to higher gradients.

2. Let a = (a;, a3, ..., @;) be any multi-index of weight m, that
i8, a;, &gy ..+, @, are non-negative integers and m = [a| = a;+ ay4...+ an.
We write a! = aslay!...a,! and

LAY ISR

Given any harmonic function U (x) we consider its gradient of order
m, that is, the set of all distinet derivatives of order m (arranged in any
fixed way)

(1.1.1) P>

gra,dm U(iﬂ) = {-Da U},alf—m

* Research resulting in this paper was partly supported by the Air Fovee con-
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