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On a theorem of K. Maurin

by
‘W. F. DONOGHUE, Jr. (Lawrence)

In a recent paper [6] K. Maurin has shown that the embedding
of certain functional Hilbert spaces in one another under certain ecir-
cumstances is a Hilbert-Schmidt mapping. This result he applies to obtain
significant results in the theory of generalized eigenfunction expansions.
Our interest is in the Hilbert-Schmidt character of the embedding, and
we consider Maurin’s theorem in the context of the theory of Bessel po-
tentialy, where it reads as follows:

THEOREM. Let D be a bounded open set in R™ and Pj¢D) the space
of all Bessel potentials of order a vanishing outside D. The natural embedd-
ing of P§(D) in P3(D) is a Hilbert-Schmidt mapping if a—p >nf2.

The theorem has been established by Maurin in the special case
when o and f are integers; we extend the result to all values. Our method
of proof is quite different from that of [6] which uses the integral charac-
ter of ¢ and S in an essential way, and which moreover depends on a dif-
ficult estimate of Sobolev’s of a certain reproducing kernel.

1. Bessel potentials. The positive funetion G,(x) is defined on the
space R™ by the formula

Guf@) = [20+ P (a)2)] 7 0| T gy (f2]),

the funetion K,(2) being the modified Bessel funetion of the third kind.

For positive « the function G, () is integrable over R", it is integrable
square if a >n/2 and it is continuous if & >mn. Moreover, for all posit-
ive a and B the convolution equation Gy * Gy = G, 5 holds, as well as the
differential equation (1—4)@, = G._;.

The Bessel potential of order ¢ >0 form the space P¢ = P*(R")
of all functions which coincide exeept for a set of 2e-capacity zero with
convolutions of the form u = G, * f where f is in I*; the integral exists,
except, perhaps, for a set of the corresponding capacity zero, and we
write u = @, f. The norm of % in P* equals the I norm of the correspon-
ding f and P° is a Hilbert space which also appears as the perfect func-
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tional completion of the space of all (Bessel) potentials of order 2« of
measures of finite 2e¢-energy. In econtradistinction to Riesz potentials
the Bessel potentials are always I® functions, and we have the following
convenient formula for the norm in terms of the Fourier transform:

fulls = [ @+ [&Pra(8)Pde.

For 0 < 2¢ < n the potentials coincide locally with the Rieez po-
tentials of the same order and have exactly the same exceptional sets,
similarly for 2¢ = n the potentials are locally logarithmic potontials,
and the sets of n-capacity zero are preciscly those of the usual loga-
rithmie capacity zero. For 2a > the potentials are continuous functions
and only the empty set has capacity zero. For a = 0 we have P° = I?
and the capacity is the usual Lebesgue meagure.

If D is an open set in K" we define P;(D) as the space of all potentials
in P* which vanish outside .D except, perhaps, for an exceptional set.
This is a closed subspace of P°. In the special case that a is an even infe-
ger, a = 2k, and . = Gy, the function f belongs to P¥(D), then f may
be obtained from w by the equation f == (1 —4)*u. In this cage, then, the
I? function f vanishes outside D.

We also define the space P*(D) as the space of all restrictions to
D of potentials in P*; this space appears in a natural way as a quotient
space of P° and we take on it the quotient norm. We will be concerned
with P*(D) mostly in the very special case when D is a hypereube Win
R". In this case, as has been shown in [8]in a very general context, there
exists a Lichtenstein extension, that is to say, a linear mapping % - &
of P*(W) into P* such that & coincides with u on W and for which there
exists a constant M so that |[ill; < M |ull, for all u in P*(W) and all § in
the interval 0 < f < a. For any such § then, the Lichtenstein extengion
occurs as a continuous linear mapping of P#(W) into P? (at first defined
only on the dense subspace P*(W)). We may also require that the exten-
sion take its values in P§(W') where W’ is some larger hypercube con-
taining the closure of W in its interior, and if D is an open sot, the closure
of which is contained in W, we may suppose the Lichtenstein extension
80 determined that potentials in PY(D) have extemsions which vanish
outside W.

2. Hilbert-Schmidt mappings. A continnous linear transformation

T which carries the Hilbert space H, into the Hilbert space H, ig called

Hilbert-Sehmidt (abbreviated H-8) if and only if > (T, ;)0|? 18 finite
i7

Where {u;} is some complete orthonormal set in H; and {v;} is sgome com-
Dlete orthonormal set in H,. The definition is independent of the choice
of the orthonormal systems, and we prefer to write the series above in

icm°
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the form '||Tw|j;. Thus the embedding of P§(D) into Pf(D) will be H-S
if and only if ¢ > g and
2 lulfy < oo

where the {u;} form a complete orthonormal system in Pi(D).

It is evident that the restriction of a H-S mapping to a subspace
is again an H-S mapping. We emphasize the fact that the passage in
the spaces H, and H, to equivalent quadratic norms does not change
the class of H-S mappings.

3. Proof of Maurin’s theorem. We remark first that it W is a hyper-
cube containing the closure of D in its interior, the space P%(D) appears
as & closed subspace of P*(W): a sequence of potentials u, in P3(D) con-
verging in the norm of P*(W) corresponds to a convergent sequence of
extensions 4, all of which vanish outside D and which converge to a po-
tential in Pg(D). Thus, if the embedding of P*(W) into P?(W) is H-8,
so also is its restriction to P§(D).

On the other hand, if W’ is a small hypercube with closure eontained
in D, the extension mapping of P*(W’) into P° may be supposed to take
its values in Pg(D). In this way, P*(W’) may be identified with a elo-
sed subspace of P5(D), and if the mapping of the latter space into PZ(D)
is H-8, so is the embedding of P*(W') in P/(W").

Finally it is clear that if the embedding of P*(W) in P#(W) is H-8
for some hypereube W, it must be so for all hypercubes. Thus it is suf-
ficient to prove the theorem for the spaces P°(W).

In the special case when a is an even integer, o = 2k, it is quite
easy to give a direct proof of the theorem for the spaces Pi(D). The
potentials » in this space are of the form « = Gy f where f belongs to
a certain closed subspace .# of I?(D). This may be written u =GsGuip],
whence |lully = ||Gar_pflls. A complete orthonormal set {u;} in P¥(D)
can be obtained from any complete orthonormal set {f;} in .#, whence

2lully = Y6 pfills = )| [ [ Gapla—y)fi(@fym)dody[ .
ij DD

The sum on the right is finite, since the function Gar—_pl@w—y) is
square integrable over the product space D XD because D has finite
Lebesgue measure and Gy_ps(2) is I? when 2k—f > n[2.

Let k be a large integer and consider the Hilbert space P¥(W).
The square of the I’ norm appears as a positive definite continuous
quadratic form on this space, and is therefore represented by a positive
bounded operator H, i.e. |ul} = (Hu, u)y. We introduce a family of
quadratic norms by the equation

luly = (' u, w)y, = [ 2R By, wy,
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where B, is the resolution of the identity associated with H. The lelorms
[4]e, 0 < a < 2k, form an interpolatory sequence on the space P (W),
as has been shown by Aronszajn [1], Lions [5], and Stein and Weiss [7].

The gpaces P* themselves also form an interpolation sequence in the
gense of those authors.

The restriction mapping, which carries a potential in P* into one
in P*(W) is clearly a continnous transformation of bound 1 for any «
and in particular for the values e = 0 and « = 2k. By the interpolation
theorem then, |ul, < |/#], for all « in the interval 0 < « < 2k. Similarly,
the extension mapping from P*(W) into P° i3 & continuous linear trans-
formation for all such « with a common bound M, and in particular for
the values ¢ = 0 and a = 2k. Again invoking the interpolation theorem
we conclude that ||@], < M|ul, for all a in the interval. Thus we have

lule < [[#la < Hulq

while we already knew |lul, < @[l < M |ull,.

It evidently follows that the norms |u|, and |||, are equivalent
on P¥(W) for such a. We can therefore prove our theorem making use
of the interpolation norms, since the passage to equivalent norms does
not affect the H-8 character of the embedding.

Since % is large, the mapping of P*(W) into P"(W) = L*(W) is
H-S by what has already been shown, in particular, the operator H in-
troduced above is completely continuous, and its eigenfunctions form
a complete orthonormal set in P*(W). This system of eigenfunctions
is particularly convenient for our purposes, since it is a complete ortho-
gonal system for all of the norms |ul,, 0 < a < 2k.

Let {u;} be the set of those eigenfunctions and 4; the corresponding
eigenvalues; we have (Hu;, 4;)g = |[uslf = ;. Thus we obtain a complete
orthonormal system for the norm |u|, by taking the sequence of functions
v = Mgy Accordingly

foily = (B0, vy = 2P
and the series Y'|vj|} converges if and only if the series 3 A"~ does.
‘We already know that the last series converges if a—p >n/2, since
we know it in the special case o = 2k. This completes the proof of the
theorem.

4. Remarks. Our argument shows that the condition a—pg > n/2
is @ necessary one gince the asymptotic distribution of the eigenvalues A;
has been given by Gérding [4]. If u; = 1/4; then N(u), the number of
#; which are <, is equivalent to x™*, and the sum Y 4f is finite if and
only if the Stieltjes integral

[ (u—&)an(p)
0

icm
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converges. The integral evidently diverges if & < n/4k and hence the
embedding is not H-8 if a—p < n/2.

A review of our argument shows that the proof that the Maurin
theorem holds for the spaces P*(W) depends only on the fact that those
spaces have a Lichtenstoin extension, or more precisely, that there exists
a linear mapping # — & of P*(W) into P* for which # =% on W and
which is continuous simultaneously for all ¢ in the interval. Subsets
of R" with this property are said to be of class &[0, 2k] in [3] where
they are investigated at length. We may therefore state the following
theorem, a slightly weaker form of which is stated in [6] for integer
values of the parameters:

THEOREM. If D is a bounded open subset of R" belonging to the class
&[0, pl, then the natural embedding of P*(D) into P*(D) is H-8 for a < p
if and only if a—p >nf2.

Even in an indirect way our argument has not made use of the the-
orem of Rellich, given in an extended form in [2] which guarantees that
the passage from P§(D) to Pj(D) is completely continuous if a > B.
Using the machinery which is here set up it is easy to obtain a some-
what unnatural proof of that theorem as follows.

On the space P™(W) the passage from the quadratic norm [jujl, to
llulls is completely continuous if and only if the passage from |ul, to |uls
is. For the second pair of norms the functions {«;} form a complete set
of functions, and the form ||} is represented on the completion of P*(W)
in the norm |u|, by an operator which has the {u;} as eigenfunctions.
The eigenvalues are then easily seen to converge to 0, and the embedding
of P*(W) in P?(W) is completely continuous. Restricting this embedding
to the subspace Pg(D), where the closure of D is inside W, we obtain the
Rellich theorem.
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