

On a theorem of K. Maurin

bу

W. F. DONOGHUE, Jr. (Lawrence)

In a recent paper [6] K. Maurin has shown that the embedding of certain functional Hilbert spaces in one another under certain circumstances is a Hilbert-Schmidt mapping. This result he applies to obtain significant results in the theory of generalized eigenfunction expansions. Our interest is in the Hilbert-Schmidt character of the embedding, and we consider Maurin's theorem in the context of the theory of Bessel potentials, where it reads as follows:

THEOREM. Let D be a bounded open set in \mathbb{R}^n and $P_0^a(D)$ the space of all Bessel potentials of order a vanishing outside D. The natural embedding of $P_0^a(D)$ in $P_0^b(D)$ is a Hilbert-Schmidt mapping if $a-\beta>n/2$.

The theorem has been established by Maurin in the special case when α and β are integers; we extend the result to all values. Our method of proof is quite different from that of [6] which uses the integral character of α and β in an essential way, and which moreover depends on a difficult estimate of Sobolev's of a certain reproducing kernel.

1. Bessel potentials. The positive function $G_a(x)$ is defined on the space \mathbb{R}^n by the formula

$$G_a(x) \, = \, [2^{(n+\alpha-2)/2} \pi^{n/2} \varGamma(\alpha/2)]^{-1} |x|^{(\alpha-n)/2} K_{(n-\alpha)/2}(|x|) \, ,$$

the function $K_{\nu}(z)$ being the modified Bessel function of the third kind. For positive a the function $G_a(x)$ is integrable over \mathbb{R}^n , it is integrable square if a>n/2 and it is continuous if a>n. Moreover, for all positive a and β the convolution equation $G_a*G_{\beta}=G_{a+\beta}$ holds, as well as the differential equation $(1-\Delta)G_a=G_{a-2}$.

The Bessel potential of order a>0 form the space $P^a=P^a(R^n)$ of all functions which coincide except for a set of 2a-capacity zero with convolutions of the form $u=G_a*f$ where f is in L^2 ; the integral exists, except, perhaps, for a set of the corresponding capacity zero, and we write $u=G_af$. The norm of u in P^a equals the L^2 norm of the corresponding f and P^a is a Hilbert space which also appears as the perfect func-

tional completion of the space of all (Bessel) potentials of order 2α of measures of finite 2α -energy. In contradistinction to Riesz potentials the Bessel potentials are always L^2 functions, and we have the following convenient formula for the norm in terms of the Fourier transform:

$$||u||_{\alpha}^{2} = \int (1+|\xi|^{2})^{\alpha} |\hat{u}(\xi)|^{2} d\xi.$$

For 0 < 2a < n the potentials coincide locally with the Riesz potentials of the same order and have exactly the same exceptional sets, similarly for 2a = n the potentials are locally logarithmic potentials, and the sets of n-capacity zero are precisely those of the usual logarithmic capacity zero. For 2a > n the potentials are continuous functions and only the empty set has capacity zero. For a = 0 we have $P^0 = L^2$ and the capacity is the usual Lebesgue measure.

If D is an open set in R^n we define $P^a_0(D)$ as the space of all potentials in P^a which vanish outside D except, perhaps, for an exceptional set. This is a closed subspace of P^a . In the special case that a is an even integer, a=2k, and $u=G_{2k}$ the function f belongs to $P^{2k}_0(D)$, then f may be obtained from u by the equation $f=(1-\Delta)^ku$. In this case, then, the L^2 function f vanishes outside D.

We also define the space $P^{\alpha}(D)$ as the space of all restrictions to D of potentials in P^a ; this space appears in a natural way as a quotient space of P^a and we take on it the quotient norm. We will be concerned with $P^{a}(D)$ mostly in the very special case when D is a hypercube W in \mathbb{R}^n . In this case, as has been shown in [3] in a very general context, there exists a Lichtenstein extension, that is to say, a linear mapping $u \to \tilde{u}$ of $P^a(W)$ into P^a such that \tilde{u} coincides with u on W and for which there exists a constant M so that $\| \widetilde{u} \|_{\ell} \leqslant M \| u \|_{\ell}$ for all u in $P^a(W)$ and all β in the interval $0 \le \beta \le \alpha$. For any such β then, the Lichtenstein extension occurs as a continuous linear mapping of $P^{\beta}(W)$ into P^{β} (at first defined only on the dense subspace $P^{a}(W)$). We may also require that the extension take its values in $P_0^a(W')$ where W' is some larger hypercube containing the closure of W in its interior, and if D is an open set, the closure of which is contained in W, we may suppose the Lichtenstein extension so determined that potentials in $P_0^a(D)$ have extensions which vanish outside W.

2. Hilbert-Schmidt mappings. A continuous linear transformation T which carries the Hilbert space H_1 into the Hilbert space H_0 is called Hilbert-Schmidt (abbreviated H-S) if and only if $\sum_{ij} |(Tu_i, v_j)_0|^2$ is finite where $\{u_i\}$ is some complete orthonormal set in H_1 and $\{v_j\}$ is some complete orthonormal set in H_0 . The definition is independent of the choice of the orthonormal systems, and we prefer to write the series above in

the form $\sum_{i} ||Tu_{i}||_{0}^{2}$. Thus the embedding of $P_{0}^{a}(D)$ into $P_{0}^{\beta}(D)$ will be H-S if and only if $a > \beta$ and

$$\sum_i \|u_i\|_{eta}^2 < \infty$$

where the $\{u_i\}$ form a complete orthonormal system in $P_0^a(D)$.

It is evident that the restriction of a H-S mapping to a subspace is again an H-S mapping. We emphasize the fact that the passage in the spaces H_1 and H_0 to equivalent quadratic norms does not change the class of H-S mappings.

3. Proof of Maurin's theorem. We remark first that if W is a hypercube containing the closure of D in its interior, the space $P_0^a(D)$ appears as a closed subspace of $P^a(W)$: a sequence of potentials u_n in $P_0^a(D)$ converging in the norm of $P^a(W)$ corresponds to a convergent sequence of extensions \tilde{u}_n all of which vanish outside D and which converge to a potential in $P_0^a(D)$. Thus, if the embedding of $P^a(W)$ into $P^b(W)$ is H-S, so also is its restriction to $P_0^a(D)$.

On the other hand, if W' is a small hypercube with closure contained in D, the extension mapping of $P^a(W')$ into P^a may be supposed to take its values in $P^a_0(D)$. In this way, $P^a(W')$ may be identified with a closed subspace of $P^a_0(D)$, and if the mapping of the latter space into $P^s_0(D)$ is H-S, so is the embedding of $P^a(W')$ in $P^s(W')$.

Finally it is clear that if the embedding of $P^{a}(W)$ in $P^{\beta}(W)$ is H-S for some hypercube W, it must be so for all hypercubes. Thus it is sufficient to prove the theorem for the spaces $P^{a}(W)$.

In the special case when a is an even integer, a=2k, it is quite easy to give a direct proof of the theorem for the spaces $P_0^{2k}(D)$. The potentials u in this space are of the form $u=G_{2k}f$ where f belongs to a certain closed subspace $\mathscr M$ of $L^2(D)$. This may be written $u=G_pG_{2k-p}f$, whence $||u||_{\beta}=||G_{2k-p}f||_{\theta}$. A complete orthonormal set $\{u_i\}$ in $P_0^{2k}(D)$ can be obtained from any complete orthonormal set $\{f_i\}$ in $\mathscr M$, whence

$$\sum \|u_i\|_{\rho}^2 = \sum \|G_{2k-\rho}f_i\|_0^2 = \sum_{i,j} \left| \iint\limits_{DD} G_{2k-\beta}(x-y)f_i(x)\overline{f_j(y)}\,dx\,dy \right|^2.$$

The sum on the right is finite, since the function $G_{2k-\beta}(x-y)$ is square integrable over the product space $D \times D$ because D has finite Lebesgue measure and $G_{2k-\beta}(x)$ is L^2 when $2k-\beta > n/2$.

Let k be a large integer and consider the Hilbert space $P^{2k}(W)$. The square of the L^2 norm appears as a positive definite continuous quadratic form on this space, and is therefore represented by a positive bounded operator H, i. e. $||u||_0^2 = (Hu, u)_{2k}$. We introduce a family of quadratic norms by the equation

$$|u|_a^2=(H^{1-a/2k}u,\,u)_{2k}=\int \lambda^{1-a/2k}d\,(E_\lambda u\,,\,u)_{2k},$$

where E_{λ} is the resolution of the identity associated with H. The norms $|u|_a$, $0 \le a \le 2k$, form an interpolatory sequence on the space $P^{2k}(W)$, as has been shown by Aronszajn [1], Lions [5], and Stein and Weiss [7].

The spaces P^a themselves also form an interpolation sequence in the sense of those authors.

The restriction mapping, which carries a potential in P^a into one in $P^a(W)$ is clearly a continuous transformation of bound 1 for any a and in particular for the values a=0 and a=2k. By the interpolation theorem then, $|u|_a \leqslant ||\tilde{u}||_a$ for all a in the interval $0 \leqslant a \leqslant 2k$. Similarly, the extension mapping from $P^a(W)$ into P^a is a continuous linear transformation for all such a with a common bound M, and in particular for the values a=0 and a=2k. Again invoking the interpolation theorem we conclude that $||\tilde{u}||_a \leqslant M|u|_a$ for all a in the interval. Thus we have

$$|u|_a \leqslant ||\tilde{u}||_a \leqslant M|u|_a$$

while we already knew $||u||_a \leq ||\tilde{u}||_a \leq M ||u||_a$.

It evidently follows that the norms $|u|_a$ and $||u||_a$ are equivalent on $P^{2k}(W)$ for such a. We can therefore prove our theorem making use of the interpolation norms, since the passage to equivalent norms does not affect the H-S character of the embedding.

Since k is large, the mapping of $P^{2k}(W)$ into $P^0(W) = L^2(W)$ is H-S by what has already been shown, in particular, the operator H introduced above is completely continuous, and its eigenfunctions form a complete orthonormal set in $P^{2k}(W)$. This system of eigenfunctions is particularly convenient for our purposes, since it is a complete orthogonal system for all of the norms $|u|_a$, $0 \le a \le 2k$.

Let $\{u_i\}$ be the set of those eigenfunctions and λ_i the corresponding eigenvalues; we have $(Hu_i, u_i)_{2k} = ||u_i||_0^2 = \lambda_i$. Thus we obtain a complete orthonormal system for the norm $|u|_a$ by taking the sequence of functions $v_i = \lambda_i^{(a-sk)/4k} u_i$. Accordingly

$$|v_i|_{\beta}^2 = (H^{1-\beta/2k}v_i, v_i)_{2k} = \lambda_i^{(\alpha-\beta)/2k}$$

and the series $\sum |v_i|_i^2$ converges if and only if the series $\sum \lambda_i^{(\alpha-\beta)/2k}$ does. We already know that the last series converges if $\alpha-\beta>n/2$, since we know it in the special case $\alpha=2k$. This completes the proof of the theorem.

4. Remarks. Our argument shows that the condition $\alpha - \beta > n/2$ is a necessary one since the asymptotic distribution of the eigenvalues λ_i has been given by Gårding [4]. If $\mu_i = 1/\lambda_i$ then $N(\mu)$, the number of μ_i which are $\leqslant \mu$, is equivalent to $\mu^{n/4k}$, and the sum $\sum \lambda_i^{\ell}$ is finite if and only if the Stieltjes integral

$$\int\limits_0^\infty \left(\mu-\xi\right)dN(\beta)$$

converges. The integral evidently diverges if $\xi \leqslant n/4k$ and hence the embedding is not H-S if $a-\beta < n/2$.

A review of our argument shows that the proof that the Maurin theorem holds for the spaces $P^a(W)$ depends only on the fact that those spaces have a Lichtenstein extension, or more precisely, that there exists a linear mapping $u \to \tilde{u}$ of $P^a(W)$ into P^a for which $\tilde{u} = u$ on W and which is continuous simultaneously for all a in the interval. Subsets of R^n with this property are said to be of class $\mathscr{E}[0, 2k]$ in [3] where they are investigated at length. We may therefore state the following theorem, a slightly weaker form of which is stated in [6] for integer values of the parameters:

THEOREM. If D is a bounded open subset of R^n belonging to the class $\mathscr{E}[0,p]$, then the natural embedding of $P^a(D)$ into $P^{\beta}(D)$ is H-S for $a \leq p$ if and only if $a-\beta > n/2$.

Even in an indirect way our argument has not made use of the theorem of Rellich, given in an extended form in [2] which guarantees that the passage from $P_a^a(D)$ to $P_b^b(D)$ is completely continuous if $a > \beta$. Using the machinery which is here set up it is easy to obtain a somewhat unnatural proof of that theorem as follows.

On the space $P^{2k}(W)$ the passage from the quadratic norm $\|u\|_a$ to $\|u\|_\beta$ is completely continuous if and only if the passage from $\|u\|_a$ to $\|u\|_\beta$ is. For the second pair of norms the functions $\{u_i\}$ form a complete set of functions, and the form $\|u\|_\beta^2$ is represented on the completion of $P^{2k}(W)$ in the norm $\|u\|_a$ by an operator which has the $\{u_i\}$ as eigenfunctions. The eigenvalues are then easily seen to converge to 0, and the embedding of $P^a(W)$ in $P^s(W)$ is completely continuous. Restricting this embedding to the subspace $P^a(D)$, where the closure of D is inside W, we obtain the Rellich theorem.

References

- [1] N. Aronszajn, The Berkeley Conference 1960.
- [2] N. Aronszajn and K. T. Smith, Theory of Bessel potentials, Part L, Ann. Inst. Fourier 11 (1961), p. 385-475.
- [3] Theory of Bessel potentials, Part II, to appear in Annales de l'Institut Fourier.
- [4] L. Gårding, Dirichlet's problem for linear elliptic partial differential equations, Math. Scand. 1 (1953), p. 55-72.
- [5] J. L. Lions, Espace intermédiares entre espaces Hilbertiens, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine 50 (1958), p. 419-432.
- [6] K. Maurin, Abbildungen vom Hilbert-Schmidtschen Typus und ihre Anwendungen, Math. Scand. 9 (1961), p. 359-371.
- [7] E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), p. 159-172.