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Isomorphic properties of
Banach spaces of continuous functions
by
7. SEMADENTI (Poznan)

One of the most important classes of Banach spaces is that of the
spaces of continuous functions. The purpose of this paper is to give
a review of new results concerning isomorphic properties of these.spaces
(i. e. properties invariant with respect to linear hicontinuous operations).
Of course, only some questions are chogen from several interesting ones
investigated in last years. )

Kakutani (1939), M. Krein and 8. Krein (1940) and others have
established various characterizations of the spaces of continmous fune-
tions in terms of a lattice, ring or in purely linear metric terms. Assuming
these results as well known, we shall treat the space m of bounded se-
quences, ity subspace ¢ of convergent sequences and the space L., of
essentially bounded measurable functions as spaces of continuous func-
tions. B.g. m is equivalent to C[B(N)], where §(N) is the Stone-Cech
compactification of the set N of integers. In the sequel 8, 84, Sy, .-
will always denote compact Hausdorff spaces and C(8) will denote the
gpace of all real-valued continuous functions defined on S. However,
the term “a space ((8)” will stand also for spaces isometric to spaces o(8).

Among Banach spaces, spaces (8) have especially interesting  iso-
morphic properties, and the results are mnot complete. Many general
problems concerning Banach spaces, including some problems raised by
Banach in his book, have been solved negatively by suitable counter-
examples of spaces C(8). . ‘

On the other hand, some of Banach’s problems concerning spaces
((8) are yet unsolved. B.g. it is not known whether the spaces O(J)
and ¢(J?) are isomorphic, J being a closed interval. We do not know
whether ((J)~ 0(2%) either. The well-known Banach-Stone theorem
establishes that § is topologically determined by isometrical properties
of the space C(8), but two spaces C(8,) and C (8,) may be isomorphic
although §; and §, are not homeomorphic: We have no general criterion

“for isomorphism of such spaces, and proofs of isomorphism. or non-igo-

morphism of two conerete spaces of continuous funections are often dif-
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ficult. It has been proved, however, that all separable and infinite dimen-
sional spaces are homeomorphic (Bessaga and Pelezynski, 1960).

The structure of conjugate spaces is simpler. The space conju-
gate to a space C(8) can be represented as a space L(u) of all functions
integrable with respect to a measure (Kakutani, 1941). However, this
measure is finite or o-finite if and only if S is countable (in this case the
space conjugate to C'(S) is equivalent to the space 1). The space L(J)
of funetions integrable with respect to the ordinary Lebesgue measure
is not isomorphic o the econjugate space of any Banach space (Gelfand,
1938). If 8 is not countable, then (by Kakutani’s theorem) this measure px
may be considered as a Radon measure defined on the diserete union of
an uncountable family of compact spaces and, by a theorem of Maharam
(1942), any finite measure on such a compact space may be represented
uniquely by product measures on a countable union of Tychonov cubes.
This representation does make it eagier to prove some properties of L-spa-
ces; however, it has been used in few papers only and it does 1ot seem to be
exploited enough; e.g. it could be used to establish a classification of
the conjugate spaces of spaces C(§).

The content of the paper is divided into 5 parts. The first concerns
simultaneous extensions of continuous functions i. e. extensions which
are linear and positive operations from the space of continuous functions
on a closed subset to that on the whole topologieal space; we discusse
generalizations of Borsuk’s extengion theorem and typieal applications.

Section 2 deals with the spaces C(8) in the case where § is dispersed
L. e. if no non-empty subset of S is dense-in-itself. These spaces of continuous
functions have special properties and are considerably different from the
other spaces C(S). Their isomorphical properties are rather gingular
and some general problems have been solved negatively by suitable examples
of spaces C(8) with dispersed -S.

Section 3 is devoted to Schauder bases. There are considered only
separable spaces O(8) (separability of ¢'(8) is equivalent to metrisability
of §), although some slight results concerning uncountable bages have
been published. The original Schauder basis {g, (t)} of polygonal functions
defined in [0, 1] is there discussed especially, as congtructions for other
spaces have a similar idea. After Schauder had proved that this system
is ‘a basis for 0[0, 1], few mathematiciang investigated its properties,
and only some first functions are usually written in books on the subject.
However, in recent years some interesting papers were published and
Schauder functions-were applied e. g. in the theory of Brownian motion.

There are also diseussed: Waher’s proof of existence of a basis in any -

separable space C(S) and unconditional bages.
Section 4 concerns Grothendieck’s and Bartle-Dunford-Schwartz’s
theorems on weakly compact operators in the spaces C(8), and Seection 5
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iy devoted to projections from spaces C(S) onto their subspaces and pro-
jeetions onto spaces C'(S). Several interesting questions in this subjeet
are unsolved and seem to be rather difficult.

References: Banach [1]; Bessaga and Pelezynski [4]; Day [2]; Dieudonné [1];
Dunford and Schwartz [1]; Eilenberg [1]; Gel'fand [1]; Kakutani {11, [3], [4]; M. Krein
and 8. Krein (1], [2]; Maharam [1]; Pelezynski [4]; Stone [1].

f. Simultaneons extension of continuous functions

There i8 a natural question whether a smaller space § corresponds
to a gmaller space 0(8), both notions “smaller” being suitable defined.
The term “a smaller Banach space” will mean a’'space which is isomorphi-
cally contained. in the comparized one. From the topological point of
view, “smaller” may mean e.g. topological embedding or existence
of a continuous map. The second case ig clear by the following theorem
of M. H. Stone (1937): in order that §; be a continuous image of §, it
is necessary and sufficient that C(S;) be isometric and ring-isomorphie
to a subalgebra of C(S,). However, the case of topological embedding
is not go simple, and neither implication between both embeddings is
true in general.

However, one of the implications holds for metric spaces. Namely,
Borsuk (1933) has proved the following deep theorem, being a modifi-
cation of the clagsical Tietze extension theorem. with the requirement
that the operation of extension be linear.

Let By be a separable closed subset of a metric space B. To every
bounded real-valued continwous function x(t) defined on B there corres-
ponds a bounded continmous function x'(t) defined on E and satisfying

" the following conditions:

(1) @t (t) = a(t) for tel,,

2) (@+9)t =2t +yt,

(8) if =0, then o' > 0 (which means that if w(t) =0 for tek,,
then o1 (1) = 0 for 1eB),

(@) ot = lll, _

(B) if w(t) =1 for teBy, then o' (t) = L for teH.

Any extension satisfying conditions (1)-(3) is called a simultaneous .
oxtension., o .

If such an extension exists, then the space O(ﬁ(E‘,,)) is 1_somorphm
to a subspace of C(8()). In particular, if §,C 8 are metrisable and
compact, then €(S,) is isometric to the subspace of C(8) consisting of
the extended functions:

X, ={wec0(8): a2 =z2t, 2e 0(8,)}.
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Moreover, the transformation y = Px, where y{-) iy the extension
of the function »() restricted to J,, is a linear lattice-homomorphism
projection of X = ((8) onto X, i.e.

P(X)=X,, Pr=P, [Pl=1, Plavy) = (Po)V,(Py)

where VvV, means the relative supremum in X,.
The complementary subspace consists of all funetions such that
P(a) =0, i. e. such that x(f) = 0 on S, So we may write (if &, C8)

C(8) ~ G (S) X C(N (| &)

where the sign ~ denotes an isomorphism and (8, || §,) denotes the
set. of all functions of ¢(S,) vanishing on §,, i.e.
(8,18, = Q{xe()’(b‘l): r(u) = 0}.
el

Similarly, if 8§, C8,C8;, then C(8; | 8s) = C(8, || 85) xC (8, || S5)-

Such formulas are the starting point for the method of algebraic
calculations in proofs of isomorphisms of certain spaces. This method.
was used first by Borsuk and developed by Pelezynski. As an example
of this method. let us show that if §; and S, are metrisable and uncount-
able and if either space differs by a countable set from the other, then
C(81) ~C(8,). 1t is enough to prove this when §,C 8, and S, 8, is
non-compaet. Let §; = (8, 8,) o1, be the one-point compactification
of the difference §, 8, and let §, be a subset of &, homeomorphic to 8
(it exists because §, contains a subset homeomorphic to the Cantor
set). Then

C(81) ~ O(8) X (8, || B4) ~ [C8,) X C(8)TXO(S, || 8,)
~ O18) X[C(82) X C(8y | 8)] ~ €Sy | 1) X O(8,)
~ O(8, || 8) X C(8,) ~ C(8,).

(We have applied two known theorems: If &, is countable and infi-
nite, then €(8,) is isonorphie to its Cartesian square and. ¢(8,) ~ ¢ 18, | )
for -each iy¢8,.) '
This theorem is not true for arbitrary compact S, and Se; e.g.
it §; = AN and 8, = BN o §,, where §, is the one-point compactification
- of integers and BN and 8, are considered as disjoint, then €'(8,) is not
isomorphie to C(S;) = O(BN)x((S,) because there is o projection of
0(8,) onto C(8,) = ¢ and a projection from C(BN) = m onto ¢ iy impos-
sible (Phillips, 1940; Sobezyk, 1941). \
The original proof of Borsuk gives an integral formula for the extended
function z'(#) and is founded on the existence of a continuous map of
@ set of positive linear Lebesgue measure onto E,. Kakutani (1940),
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Dugundji (1951), Arens (1952) and Michael (1953) discussed and general-
ized the theorem of Borsuk. Dugundji has established that if ¥ is metri-
sable, then the assumption of separability of B, is superflous; Arens has
proved the theorem assuming that F, is metrigable and compact and #
is paracompact. On the other hand, Arens has established that in the
general cage the theorem is not true even if both sets B and B, are
compact. Other examples were found in following years.

The simplest one is the following: the space §(N)'. N does not admit
4 simultaneous extension on A(N). Indeed, if it were 80, there would
exist a decomposition of the space m = ((8(N)} into the direct
product

C(BN) ~ CIB(N) NIXC[B(N)IB(N) N] = C[B(N) N1xa,,

contradicting the theorem of Phillips quoted above.

An interesting example, due to Pelezynski, is a consequence of Day’s
regults on strietly convex gpaces. The space B(N,), where N, is an isolated
set of power X,, is topologically contained in a Tychonoff cube .J%¢
although C[8(N,)] is not isomorphic to any subspace of C(J%), for
({JT%0) is isomorphic to a strictly convex space and O[f(N,)] is not.

"One can prove that if ((8) contains isometrically the space m, then
there exists a closed subset S, of § which does not admit simultaneous

"extensions on §. The negative solution of the general problem of simulta-

fieous extensions yields several particular questions concerning existence
and behavior of possible extensions. )

The conversions of the simultaneous extension theorem concern in-
vestigations of embeddings of C'(8,) into C(8). If C(8,) is isometrically
and isotonically isomorphic to a subspace X, of ¢/(8) (which need not be
& sublattice of O(8)), then a notion of lattice boundary of § with respect
to X, may be introduced; it is a closed subset 8, of § with the following
properties: (1) (#V, y)(f) = max [#(3), y(1)] for each teS,, xeX, and yeX,
(Vo denotes the relative supremum i. e. #V,y is the smallest element of
X, which majorize both  and y), (ii) ¢y(t) = 1 for each teS;, (where £
denotes the relative unit of X, i.e. the smallest element of X, which
majorizes all elements of the unit ball of X,), (iii) sup{z(t)|: te8;) = ||
for each xeX,.

Such an §, always exists but need not be unigue (Geba and
Semadeni, 1959). If X, separates §,, then S, and §, are homeomor-
phic and the given isomorphism ((S,) - X, is a simultaneous extension
from §; to §.

References: Arvens [1]; Bauer [1], p.108-114; Bessaga and Pelczyhski [21;
Borsuk [1]; Day [1]; Dugundji [1]; Geba and Semadeni {13, [2]; Kakutani [2];
Michael [1]; Petezynski [3]; Phillips [11,; Silov [17; Sobezyk [1]; Stone [1], p. 475;
Yoshizawa [1].
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2. The spaces of continuous functions on dispersed compact sets

A topological space is said to be dispersed {= clairsemd) if it con-
taing no perfect non-void subset. Typical examples of dispersed compact
spaces are closed intervals of ordinal numbers )

T, = (& & < o}

provided with the order topology (with. open intervals as neighbor-
hoods). [, is metrisable if and only if it is countable, i. e. if « is smaller
than the first uncountable ordinal w,. Mazurkiewicz and. Sierpidski (1920)
bave proved the following important theorem.: any dispersed compact
metrie space 18 homeomorphic 1o a certain space I, with « < w,. For
non-metrisable spaces this theorem is not valid as the example I, XTI,
shows, and the structure of non-metrisable compact dispersed spaces
is more complicated.

Rudin (1957) has proved that every regular finite Borel measure
on a dispersed compact space S is purely atomic; the converse statement
is also true and this establishes a useful characterization of dispersedness
of a compact space.

Dispersedness of § may be also characterized by isomworphic pro-
perties of C(8). Each of the following conditions is necessary and suffi-

cient in order that a compact space S be dispersed (Petezynski and Se- -

madeni, 1959):

(L) C(8) does not contain igomorphically the space I,

(2) Any infinite dimensional subspace of C(S) contains a subspace
isomorphic to ¢, :

(3) C(8) is conditionally weakly compact.

Banach has raised the following problem: Is every infinite dimensional
Banach space isomorphic to its Cartesian square? Bessaga and Pelezyiski
have established that a well-known non-reflexive space constructed by
James is a counter-example and the question arose whether the relation
X ~ X? wag true for more special classes of Banach spaces, e. g, for the
spaces C(8). In this case the answer is also negative, namely the space
C(I'y,) is not isomorphic to its Cartesian square O X C(Iy,) = O(T, .2)
(Semadeni, 1960).

The proof is founded on the following notion: X being a Banach
space, X, will denote the set of all linear functionals @** in the second
conjugate space X** which are sequentially continuous with respeet to
the weak topology o(X*, X), i.e.

Xy = {o™ e X*: if a(ax) > 0 for all weX, then #**(w) — 0}.

Of course, »X C X, C X** where x»X denotes the canonical itmage
of X in X™. Now, if X = ((I,,), then the codimension of »X in X,
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turns out to be equal exactly to 1; of ‘course, for the Cartesian square
the corresponding codimension is equal to 2, whence these spaces cannot
be isomorphic.

Another of Banach’s questions was: are the spaces C(I",) isomorphie
mutually for o < a < «;? Pelozyfski has answered it in the negative;
he proved that the space ((I',), whick is obviously equivalent to the
space ¢ of convergent sequences, is not isomorphic to the space (1)
Some other proofy of this theorem are algo known now; one of them is
founded on the following theorem due essentially to Schreier (1933):
there exists a weakly convergent sequence x, in C(I',») such that the
sequence

L et

Y = ‘ .

is not strongly convergent for any sequence Hy < g <... of indices;
such a sequence cannot exist in O(I,). Bessaga and Pelezyriski (1960)
established the following classification theorem: in order that ¢ (I'y) be
isomorphic to ¢ (I'yy), Where o <o, < ay < w,, it is necessary and suffi-
cient a, << af’. Thus, the numbers w, w®, ( ®")”, ... determine the successive
isomorphic types.

Banach also raised the question whether the linear isometry of con-
jugate spaces X, and X, implies isomorphism of X, and X,. The quoted
theorem. of Pelezyriski gives the negative answer. Indeed, the spaces
C(l,) and C(I',e) are not isomorphic although their conjugate spaces
are equivalent to the space I. Moreover, the spaces C(I,) with o < a < oy
form ¥, different isomorphic types with the same conjugate space.

Two questions are still open: 1° Is any separable infinite dimensional
space C(8) isomorphic to its square? 2° What are necessary and sufficient
conditions for C(I,) and O(I}) to be isomorphic?

References: Banach [1], p. 194; Bessaga and Pelezynski [1], [2], [3]; James [1];
Lindenstrauss [1]; Mazurkiewicz and Sierpinski [11; Petezynski [3]; Pelezyhiski and
Semadeni [17; Phelps [1]; Rudin [1]; Schreier [1]; Semadeni [1].

3. Bases
Any separable space C(§) possesses a. basis (Waher, 1955). The

Schauder polygonal basis for C(J) consists of the infinite integrals of the
Haar orthogonal functions

4
Plt) =1, g0) =1,  pwlt) = [ zamu(w)du,
0

for 0 <t <1, n=0,1,..., k=1,...,2% Assuming standard normal-
ization of Haar functions we get |pgm af = 271,
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Tvery continnous function #(¢) on [0, 1] can be uniquely expanded
into & series

y U 97m

m

and the partial sums of this series are polygonal functions interpolating
the values of x(¢) at a suitable division of the interval. By the addition of
a new function @, 9, we obtain one new angle point, and the coeffi-
cient agn,; depends only on values of the function x(1) at the three cor-
responding a.ngle points of g, namely

ol 2k 1/ (k k41
Aoy g = — f 'll (Zj{nﬂ [T V') { (W) - 2~|-Z‘(EE) . ( )Il

for all eoefficients with the exception of the first two. These formulas,
written. explicitly by Ciesielski (1959), show that the Haar functions
m form a gystem biorthogonal to the Schauder systemn. The coefficents
give a measure of the deviation from linearity, e. g. if a function » is
concave, then a, > 0 for n > 2.

Schauder’s congtruction can be generalized by a triangulation method
to n-dimengional cubes (n = 2,3,...) and to the Hilbert cube. In the
general cage, Waher’s proof is founded on Urysohn’s embedding of the
congidered metric compact space S into the Hilbert cube and uses finite-
dimensional triangulations of the cube. However, as it was remarked
by C. Bessaga, her proof is valid only for uncountable spaces 8. The case
of countable § must be considered separately; in this case § is homeo-
morphic to a compact set @ of dyadic numbers of the unit interval such
that if a number te @ satisfies 27" <t < (k-+1)27", then %2 "< and
(k+1)27"e@, and C(8) is equivalent to the space Y of all funetions con-
tinuous on @ and linearly extended on the interval. The set of Schauder
functions with the angle points in @ is a basis for Y.

A Dbasis is called unconditional if the expansion of any element of
the space is unconditionally convergent. The unconditional (strong)
convergence in O(8) is simply characterized by the following theorem
of Sierpifiski (1910): a series Y , of elements of ((8) is convergent for
any arrangement of its elements if and only if the series Y |a,| is strongly
convergent. Here |r,| denotes the function |x,(t)| belonging to O(8)
ax well.

Karlin (1948) has proved that if S is uncountable, then ¢(8) cannot
possess an unconditional basis. Bessaga and Pelezyfski (1960) have proved
that the space 0'(I,») cannot be isomorphic to a subspace of a space with
an unconditional basis. Consequently, any separable space €(S) with
an unconditional basis is isomorphic to the space ¢ (or is finite dimen-
gional).
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References: Bessaga [1]; Bessaga and Pelezyfiski [2]; Ciesielski [1], [2]; Day [3],
p. 58-76; Ellis and Kuehner [1]; James [1]; Karlin [1]; Kaczmarz and Steinhaus
[17; Orlicz [2]; Pelezynski and Semadeni [1]; Schauder [1}; Sierpinski [1]; Wabler [1].

4. Weakly compact linear operators

A linear operator 7' from a Banach space X to Y is said to be weakly
compect if it maps bounded sets into weakly compact sets, i.e. if the
weak closure of the image of the unit sphere is weakly compact in Y.
An equivalent formulation says that 7' is weakly compact if and only if
its second adjoint 7™ maps X** into the canonical image of ¥ in ¥™**
ive, T: X - xY.

- One may assume other definitions of weak compactness of a linear
operator, but the above one is the most appropriate. Investigations of
such operators

T:0(8) —~ Y

have led to some excellent results.

Some representation theorems for weakly compact operators in
(*(8) are due to Gelfand (1938) and Sirvint. Dunford and Pettis (1940)
have established the main properties of weakly compact operators defined
in an L-space, and Grothendieck (1953) and Bartle, Dunford and Schwartz
(1955) have proved analogous theorems for operators in the spaces C(8).
By a theorem of Gantmacher, an operator is weakly compact if and only
it its adjoint is weakly compact, so the Dunford-Pettis thedrem and
those concerning the spaces C(S) are closely related.

The proofs of two basic theorems concerning weakly compact ope-
rators in C(8) are founded on the following representation theorem:

The general form of a weakly compact linear operator from a space
O(8) to a Banach space Y is

To = j s)duls), wxeC(8),
where p is o vestor measure defined on the Borel subsets of S with values
in the space Y, and the norm of T is equal to the semivariation of u, 1. ec.

i) = aup{ug wu(B)l: By~ By = 0 for j b, o <1}
=1

First basic theorem may be formulated as follows:

A linear operator T: C(8) — Y is weakly compact if and only if it
maps weakly convergent sequences onto strongly convergent ones.

Sufficiency follows from. the Lebesgue theorem on bounded conver-
gence which is also valid for vector valued measures. Indeed, weak con-
vergence in O(S) means uniform boundedness together with pointwise
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convergence which imply convergence in mean, i. e. strong conver-
gence in Y.

Consequently, if this is the case, then 7' maps eonditionally weakly
compact sets into strongly compaet sets and if the operators

Ty:C(8,) = 0(8:) and Ty C0(8,) — ¥

are weakly compact, then their product 7',7, is compact (i. c. comple-
tely continuous). Indeed, in this case 7', maps bounded sets into weakly
compact sets which are transformed, in turn, into strongly compact
sets. In particular, if 7: C(8) - 0(S) iy weakly compact, % is compact.

The second theorem completes the first:

If T: 0(8) — Y is an arbitrary linear operator and if Y is weakly
complete, then T is weakly compact.

Pelezyniski (1960) has generalized the latter theorem agsuming only
that the weak and strong unconditional convergence of a series are equi-
valent in Y. This assumption is essentially weaker than that of weak

- completeness, by a theorem of Orliez (1929), but it is equivalent to the
assumption that Y does not contain isomorphically the space ¢. A par-
tially converse result is alse true: If ¥ is separable and contains iso-
morphically the space ¢, then there exists a linear operator 7' from a space
C(8)"to ¥ which is not weakly compact.

References: Bartle, Dunford and Schwartz [1]; Bessaga u.nd']’eluzyﬂski [17;

Day [3], P 108; Dunford and Pettis [1]; Dunford and Schwariz [1]; Gelfand [1],:
Grothendieck [1], [2]; Lindenstrauss [2]; Orlicz [1]; Pelesyhaki [1], [2]; Pettis [1];
Siryint [1]. .

5. Projections and injective Banach spaces

‘ A subspa,ee X, of a Banach space X is said to be complemented in X
if there exists a projeetion of X onto X,; if this is the case, then

X~ Xox X, = {0: Po = o) x{z: Pr = 0}.

‘ Banach and Mazur (1933) established the first example of a non-
cgrrilpleomented subspace, namely they proved that L is not complement-
ed in C.

A Banach space is said to be injective if it iy complemented in any
Banajey space containing it. Phillips (1940) has proved that this property
Is equivalent to the following one: For every linear operator 7': Z, -+ X
from a subspace Z, of a Banach space Z, there exists a linear extension
Tt of T. to t.he whole space Z. If [|T!|| = |7 is required additionally,
then X is said to have the property P,; this property, called also the
property of Nachbin, is equivalent to existence of a projection of norm. 1
- from every Banach space containing X, ‘
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Nachbin (1950), Goodner (1950) and Kelley (1952) have established
the following fundamental theorem:

A Banach space has the property Py if and only if it is equivalent to
a space C(8S) with 8 extremaly disconnected.

In particular, the spaces m and L. have this property.

Every Banach space can be embedded into a space with property P,
namely into the space of all bounded functions on the unit cell of the con-
jugate space. Further, any complemented subspace of an injective space
is injeective. Consequently, a space has this property if and only if it
complemented in the space of bounded functions on the unit cell in X™*.

Unfortunately, no characterization of the injective spaces is known
and the problem of existence of an injective space non-isomorphic to
a space C(8) is still open.

Grothendieck (1953) has proved that if X is injective, then both weak
topologies in the conjugate space are sequentially equivalent, 1. e. if z} (x) — 0
for all z¢X, then 2™ (x}) — 0 for all #** ¢ X**. Thig is a very interesting
consequence of a lemma of Phillips. By Banach theorems on regularly
clogsed linear sets it follows that a separable Banach space has Grothen-
dieck’s property if and only if it is reflexive. Thus, though spaces C(8)
are quite different from the reflexive ones, some properties of injective
spaces do resemble reflexivity. On the other hand, if a reflexive space
is injective, it is finite dimensional. Indeed, suppose that X is a reflexive
subspace of an injective C(S8) (e.g. of a suitable space of all bounded
functions) and P: C(8) — X is a projection onto X. By the latter of two
theorems quoted in Section 4, P is weakly compact and, by the former
one, P? iy compact. But P2 = P characterizes projections and P maps
the unit cell of X onto itself. Hence this cell must be strongly compact
and X must be finite-dimensional. In such a way Grothendieck has proved
that neither a reflexive nor a separable space can be injective unless it
ig finite-dimensional.

In particular, the space ¢, is not injective; nevertheless it has a re-
stricted projection property, namely for each separable Banach space X
containing ¢, there exists a projection P: X — ¢, with the norm ||P|| <2
(Sobezyk, 1941).

Pelezyriski (1959) has proved that the spaces m and L, are isomor-
phic. His proof is very simple and is another good example the calculation
method mentioned in Section 1. Namely we apply well-known facts:
Dy ~LoXLy, mCLy,, Lo,Cm
(inclugions mean isemetric embeddings) and either space is complemented
in the other. So we can write m ~ X XLy, and L, ~mXx Y, whence
Ly ~mXY ~(mxm)XY ~mx (mxY)~mxX Ly~ (XX Lg)X Ly ~
~ XX (Lo X L) ~ X XLy, ~ m.

M~ WX,
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A quite analogous method can be used to show that the space of all
Baire functions on an interval considered up to sets of the first category
is also isomorphic to . However, both proofs apply the axiom of choice
(using the Hahn-Banach theorem) and the problem of effectivity of iso-
morphism between IL,, and m is still open (it might be true that if an iso-
morphism T: L, — m i3 given, we can construct effectively a non-mea-
surable subset of the interval). The calculation method can be used,
after some modification, to several proofs of isomorphisms (or homeo-
morphisms even) of Banach spaces whenever we can find suitable iso-
morphisms onto complemented subspaces.

The theorems quoted above enable us to conjecture that every space
with property P, is isomorphic to the space m(4) of all bounded funetions
on & set 4, but this is not true. K. g. the space L (J™) of essentially
bounded functions on a Tychonov cube, meagurable with respect to the
product measure, has the property P, and is isomorphic to a strietly
convex space whence it cannot be isomorphic to m(4) if 4 is uncoun-
table; on the other hand, if = is large enough, L, (J*) cannot be isomorphic
to m = C(fN) either.

Let us notice that Ciesielski (1960) has proved that a continuous
function 2 on [0, 1] satisfies the Holder condition with an exponent o
(0 < a << 1) if and only if its Schauder polygonal expansion (cf. Section 3)
is of the form

2(t) > D) g™ g (1)

where (a,) is a bounded sequence. Hence, the map « — (a,) is an iso-
morphism from H, onto m which shows that H, is injective for each
0 < @ < 1. Another example of a space with property P, is the space
of bounded harmonic functions on an open relatively compact subset
of a Green space. (The method of superharmonic majorants gives us the
least harmonic funetion majorizing the given family of uniformly bounded
harmonic furictions.) The same is true for solutions of the heat equation.
Finally, let us recall two problems.

1° Let X De an injective Banach space. Must X be isomorphic to
a space with property 9P,?

2° Let X be complemented in a space (/(§). Must X be isomorphie
to a space O(S8,)?
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Interpolation in Hilbert spaces of analytic functions
by

H.8 SHAPIRO and A.L, SHIRLDS (Ann Arbor, Mich.)

Let H be a separable Hilbert space and let @, be a sequence of unit
vectors that span H. We wish to know when the sequence =, will have
the following two properties. ,

(1) Xl(w, m,)2 < M|w|? for some constant M and all z in H.

(ii) For each sequence {¢,} in I, there is an o in H with (2, 2,) = ¢,
and [jo|* < m 3 [0,|2, where m is a constant.

Let ay = (a, 2,) and let A be the infinite matrix (ay). Then it is
not difficult 4o prove the following lemma: _

LmMma. Property (i) is equivalent to each of the following two statemenis.

1. Given any orthonomal basis e, , there is a bounded operator T: H —H
with T(e,) = @y (all n).

9. The matriz A is a bounded transformation from ly to dself.

Property (i) is equivalent 1o each of the following two statements.

1. Given any orthonormal basis 6, , there is a bounded operator T: H —H
with T(m,) = 6, (all n).

9. The matriz A 48 bounded below on ly.

Suppose now that H is a Hilbert gpace of analytic functions in some
domain 1 of the complex plane. For example:

I. H ig the set of f = Za,¢" with Zla,[? oo (this is the Hardy
space H,). A

II. H iy the seb of f with Y|a,[*/(n-1) < oo (thig is the Bergman
gpace of f analytic in the unit circle for which [f|fl*dwdy < oo).

IIT. H i the sot of f with 3ja,|*n! < oo ‘

We assume that I has a reproducing kernel, that is, a function K. (2)
(2, ¢ in D) such that (f, K) = f(¢) for all f in H and ¢in D. In the three
examples we have:

I. K = 1/(1-—{2).

I1. K = 1/(1—{=)>

TIT. K = exp (). ) .

Let 2, be a sequence of poings n D, and form the unit vecto.ri% Ty
= K, /| K, where K, = K, (2). We now seek necessary and suificient
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