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On Fourier transforms of rapidly increasing distributions
by

G. TEMPLE (Oxford) and Z. ZIELEZNY (Wroclaw)

L. Ehrenpreis [2], [3], J. M. Gelfand and G. E. Silov [4], [5], and
B. Malgrange [6] have introduced Fourier transforms of rapidly increa-
sing distributions as functionals on a space of entire functions. Their
definition is based on the Parseval equation and agrees with L. Schwartz’s
concept of distributions.

The present paper is an attempt to discuss this problem from the
standpoint of the sequential theory of distributions, as developed by
J. Mikusifiski and R. Sikorski in [7]. For simplicity’s sake we restrict
ourselves to distributions of one variable. The paper deals mainly with
distributions of finite order. The case of all distributions involves a slight
modification of our basie definitions, which is given in section 5.

We recall briefly the notions and principal results of [7]. A sequence
{fn(®)} of econtinuouns funetions on the real line R is an F-sequence (or
a fundamental sequence), if there exist an integer % >0 and a sequence
{Fa(x)} of functions such that FP(x) = f,(») and {Fn(z)} converges
almost uniformly, i. e. uniformly in every finite interval. Following
[7], we shall write F,(w)Z F(x) (resp. Fn(z) ) if {F,(z)} converges
almost uniformly to F(x) (resp. to some function). Two F-sequen-
ces {fa(w)} and {g, (2)} are equivalent, it f;(c), g:(a), fo(@), ga(a), ... is an
F-sequence. Distributions are classes of equivalent F-sequences. The distri-
bution determined by the F-sequence {f,(2)} is denoted by f(z) = [f,(2)].
A continuous function f(z) may be identified with a distribution deter-
mined by the F-sequence {f(»)}, all of whose terms are equal to f(«x).
The algebraic operations on distributions, such as addition, subtraction,
multiplication with a function and translation are defined in a matural
way by means of operations on their representing sequences.

Each distribution f(#) may be represented by a sequence {f,(z)}
of indefinitely differentiable funetions. Then, for every integer m > 0,
{fi(x)} is an F-sequence and the m-th derivative of f(x) is_defined as
(@) = [ff™ (x)]. Thus each distribution has a derivative of any order.
On the other hand, distributions are derivatives, of some orders, of con-
tinuous functions.
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A sequence {f, ()} of distributions is said to converge to f(«), if there
exist an integer k¥ > 0, a continuous function F(z) and a sequence {F,, ()}
of continuous functions, such that F () = f,(x), F®(») = f(#) and
Fo(2) 3 Fla).

A distribution admitting a representation f(») = [f.(#)], where
all f,(x) vanish outside a finite interval, is said to be of compact carrier.
Then, for an arbitrary distribution g(x) = [ga(2)],

fal@)xga(@) = [ falo—0)ga(t)ds

is an F-sequence and defines the convolution produet f(z)*g(x) of the
distributions f(x) and ¢(=).

Let now {f,(#)} be an F-sequence of integrable functions on R. If
there are integers &, ! > 0 and a sequence {F,(x)} of continuous functions,
such that FP(z) = ful m), (@) and [P (2)] < M(1-+ oY), where
M is a constant, then f(z ['jn(m 1 is a tempered distribution. In this
0age

@’ Puls) = f fal@)e ™= dp

is an F-sequence and represents a tempered distribution ¢(s) — the Fou-
rier transform & (f(x)) of f(x). However, Fourier transforms of rapidly
inereasing functions, such as %, ¢@* ete. cannot be defined in this way,
since they are not distributions. In order to extend the Fourier trans-
form to all distributions we define other “generalized functions”, which
we call ultra-disiributions (following Sebastifo e Silva [9])(%).

Throughout the paper we take for granted the theory of Fourier
transforms in the space L? of square integrable functions on R. The limit
in the L2 norm is called limit in mean. We also use Hadamard’s “finite
part” of an improper integral as given in [8] or the equivalent “regulari-
sation of functions” developed in [5]. If, for example,.f(z) is a k—1
times continuously -differentiable function on R and f(w) = O(lof*?%)
a8 |o| - oo, then we put

@ ffm)dm lim

{f%(af_)dm__ r0) 1

501 k—1 &1
__ro 1 rB0) 1 D0 m}
Nh—2) & F—2)L & o1t

() In Sebastido e Silva’s paper ultra-distributions are Fourier transforms
of distributions of “exponential type”.
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)

~f %{f(m)—r(or-%wm—..,_ r-(0)

(k—2)!
T k—1)
= f(@)+(—1ff(—2)

and H (z) iz Heaviside’s unique function:

r("“l’(O)H(l—x)} dz,

where
7(z)

) 0 for z<O0,
) =
1 for 2 >0.

Using the complex plane one can express (2) in the following form:

f 3 r
i {_N G i'(wf—(?)" .

For the m-th derivative of a function f(=
™ (z) and D™f(x).

Let now 2 = &4i5n be a complex variable with £ and % as real and
imaginary parts respectively; and let 4 >0. An entire function f(=) is
of exponential type < 4, if, for every & >0,

If()] < M@+,

@) Fp [

e

we shall use both symbols

M, is a constant.

1. &-sequences of functions. The starting point in our approach is
the family of sequences formed from complex-valued, indefinitely differ-
entiable functions, which are slowly increasing together with all their
derivatives, i. e. the functions and their derivatives increase at infinity
like polynomials. We proceed in a way similar to that given in [7].

Let us write
1 sin2xnlz
K)(z) = — —

™ 2

where 2 > 0. From Fourier’s single-integral formula (see [10], p. 25)
it follows that K,(&) tends to the &-Dirac distribution 6(£), as 1 — oo.

If the function @(x) is k—1 times continuously differentiable and
p(@) = O(j#*") as |2| > oo, then

@ 0,(2) = T f K, o—0) 2 o

is an entire function of exponential type
Furthermore we have

< 4, Bquare integrable on R.
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ProposITION 1. Let k& and 1 be integers >0, and 0 <u < 2. If {p(m
is @ kL1—1 times continuously differentiable fumction such that ¢(x) =
= O(lof*"Y) as || — oo, and if B,(2) is defined by (4), then

@ ()

() Fp fK(z 02 gy prK(z 7) L3t do-+P (D), (2),

where P(D) is a polynomial in D of degree < 1—1, whose coefficients may

depend on A (3).
In particular, for 1= 0 equation (B) takes the form

(6) D,(2) = [ E,(e-—) D) dw.
Proof. By (4) we get for the left-hand side of (5)

Fp f K,‘(Zl—m) {Fp ( Kz(m;,f/)rp(y) dy}dw

—m fz@gy_){ﬁp [Rl=ake-y, oy

—o0

The change of the order of integration is valid; it may be verified
by use of definition (2). To complete the proof of the proposition it suf-
fices thus to show that, for any integer I >0,

[ B, (e—0)E:0—y) ., K,(z—1)
M By [t = 2 —-j—gAzf(y)K(f>(z),
where Ag,(2), A;;1(2), ..., 4;;1(2) are entire functions satisfying for
|&] = oo conditions
(8) Ay(8) = O(&[™), j=0,1,...,1-1.

‘We use induction. Applying formula (3) and the theory of residues
one obtaing for I = 0 and 7 = 1 respectively

) | Fue—0)K;(@—y)do = K, (z—y)

() A polynomial of degree 1 vanishes identically.
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and
(10) Pp f Kﬂ(z_ﬁif(l(w—y) dn — K, (z—y) ~~.K,‘(:?:)COBZ?:}.:I/
~00 - Y y

Suppose now equation (7) holds for some I

can be written in the form
—y)
E { S — 4} ED )

2 (—9y £ (z)}
F=0

and it has a limit as ¥ — 0 (which is an entire function in 2). The first
part of (11) tends to (— 1)K (2)/Il. On substituting in the second part
2 =1/4u one gets a polynomlal of degree I in u, whose coefficients in

= 1. Its right-hand side

(1) {K (e—

#; 42, ..., p! are proportional to y—! times the terms in eurly brackets.
Hence we infer (see [7], lemma on p. 8) that
K, (z—o)K,;(2)
(12) Fp f 2 _ZBlJK(f; 2,
=0
where

—y) )

i _‘A-l,i(?/)}s i=0,1,..,
We now multiply equation (7) with K,(y—#)/y and take the Fp’s

of integrals with respect to y. This leads to equation

1s) 7 sz(Z—-t) frp [Ede=olEila=y oy

&

—1)
no

-1 ) and Bl,l = (

K, (2—y)E,(y— t) K,t—y)4
=Fp f l+ll ZKU)(Z)F f A( t+1 H(y)
By change of the order of integration and in view of (7), (10) and (12),
the left-hand side of (13) may be transformed into

-1 7

R e—t) 1

e — {2 Ay () B (0)+ Foosamat > By, KD (z)}.
j=0 j=0

Consequently

1
K= 1
”tz+1 — 2 4141, (OED (2),

2]

Pp f K, (e— VE@=1) 4,

l+1
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where the functions
© B () Ay ()

Agy(8) = Az,1(i)+Bz,jtlcos 2nit—Tp f Rt W— dy,
j=0,1,...,71—1, and
Agyay(t) == Butlcoshu
are O(|i") as l§ — oo (on R). This means that equation (7), with the

functions 4g;(y), j=0,1,...,1—1, satisfying conditions (8), holds
for 1+1, and thus our assertion is proved.

ProposITION 2. If %, 1, 4, A and @(z) are as in proposition 1, and if

o ()
mk

0.e) = Tp [ Kye—o) L doQ(D)K ),

where Q (D) is o polynomial of degree < k—1, then equation (5) holds with
P(D) a polynomial of degree <k-+1—1
Proof. On account of proposition 1 it remains to prove that, for
any integers m, 1 >0,
1

{(M)_‘fld‘,. _ Z («m IKU

J=0

(14) p f K, (z—m)
where O7, j = 0,1, ..., 1+m, are constants.

For m = 0 and any I, equation (14) coincides with equation (12),
when (%' = By;. Suppose now (14) holds for some m and every I. Then
l+m :

o = 2 ORI+ (2).

f=0

K(’m} (

(15) Pp fK (p—m) 222

But the integral on the left-hand side of (15) may be written in the
following form:

o m)
Fp f K;(z—m)ﬂ#ld

KS_"H' 1] K aln)

dw UFp fK(z—m)—-——,—lT—dw.

= Fp fK,‘(z—m

Hence equation (14) holds for m-1 and every I, with
0m+1 I Um l+1
0m+ll Oml +Zoml+1

j=1,2, ..., 14+m+1.

icm

Fourier transforms 125

Thus, by induetion, it holds for every integer m, and the proposition
is proved.

We also need a more general result, namely

ProrosTiON 3. Let k, 1, ¢() be as in proposition 1, and a(2) an entire
Junction of exponential type < v, such that on R,

a(§) = 0|, as & oo,
If w <2 and
B1sl®) = T [ Hppole—0) 22 G QDI (),

then

D
Fp | O ) L Cr L Py
where ¢ (D) and P(D) are polynomials of degree <k—1 and <k+I-—-1,
respectively.

Proof. Using the same argument as in propositions 1 and 2 we need
only to prove that

" Ky z—a)a(0)K,,, (@)

a7 Py ' .7;1 dx
_Elemel) 1N e
P yl,éoJ 1 ()KL (2),
where A“,( s A71(2), ..., Af1.1(2) are entire functions sueh that, for

1§ -

A (&) = 0(EY, §=0,1,...,1—1.

In fact, i a(0) =a'(0) =... = «"D(0) = 0, then by methods
of the theory of residues it is easy to verify that

o

Y K, (z—z)a(a)K,,,(z— K, (z—1)al
(18) 1 ul? m)a(g wl®—y) o p(z“y)a(y).
o Y
In the general case consider
zl—l
a*(2) = a(2)—a(0)—...— ) a1 (9).

We have o*(0) = ™ (0) =... = o**7(0) = 0 and, on R,

(&) =0(1E"h  as

|&] — oo.
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Therefore, by (18),

P E(e—n)d* @)K (a—y) . K,(z—y)d{y)
[ B : in = K9 W)
i Yy
It follows that
L]
7p f Kp(z—w)a(ZZ)Kz+»(w~y) i
Llog ] by , —
_ Kule—y)aly) _ZM{%ZT_@ —m | gf"(ﬁfﬂf%‘r’iﬂ,.:"’) ol
v &g v’ : @ f
i

and, by (7), the terms in curly brackets are of the form stated in equa-
tion (17). .
Let now {P,(D)} be a sequence of polynomials of degree <k—1,

P'n(-D) = Qno+ an,1D+ ot a/n,k—-le~1 .

‘We have

PrOPOSITION 4. If the sequence {P,(D)E;(2)} converges for Ik o?z‘ffe-
rent values 1 =23 >0 and 2 =14k, §=1,2,...,k, then the limils

limay, =a,, p=0,1,....,%~1,

N=300
exist and thus the limit of the sequence in question is of the form P(D)K,(z),
where P(D) = ag+a,D+...+4ap_ D1,

Proof. The substitution z = 1/44 in P,(D)K,(z) leads to polyno-
mials in 1 of degree <%, whose free terms are zero and the coefficients
in 4, 42, ..., A% are proportional t0 @ayg, ..., G _1. For the proof it suf-
fices thus to apply the lemma on p. 8 in [T7].

‘We shall now congider sequences of functions which, unless otherwise
stated, are indefinitely differentiable and slowly increasing together
with all their derivatives.

A sequence {p,(s)} is said to be a P-sequence, if there exist an inte-
ger k > 0 and a sequence of polynomials P,(D) of degree < k-1, such
that

(19) eu(8) = O(s"™") a8 |s| > o0
and, for every 1 >0,
(20) Ouid) =Fp [ Kile—6) 22 a1 (DI (0)

converges uniformly in every strip —N <5< N (2 = £4in).
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For brevity we shall write Dy(Ay2) = B(4,2) (resp. D, (2, 2) =)
it {@n(4,2)} converges to B(4,z) (resp. o some function) uniformly in
every strip —N <y < ¥,

Remark 1. From proposition 2 it follows that the integer % in (19)
and (20) may be replaced by any greater one. In faet, if {D,(4, )} con-
verges uniformly in every strip —N < n < N, then so does

(21) Bihy2) = Fp | Eﬂit%%ﬁ is.

Moreover, since, for every 4 > 0, the functions D, (4, &) are uniformly
bounded on R,

. M
(22) [D5(2, ) < E

where A; is a constant, and so {@}(i, &)} converges in mean.

Remark. 2. According to a theorem of 8. Bernstein (see [1], chapter
II), if f(#) is an entire function of exponential type <4 and |f(&) < M,
then |f'(&)] < MA. Therefore (4, 2) = implies @y (4,2) =.

The limit @(1,2) of (20) is an entire funetion of exponential type
< 4, tending to 0 as 2 tends to co on R. By remark 1 it satisfies con-
dition (22), if % is sufficiently large.

I {pu(s)} and {y,(s)} are D-sequences and a,d complex numbers,
then {ag,(s)+by,(s)} is a P-sequence; if a,b are real numbers and
@ # 0, then also {p,(az+b)} is a P-sequence.

It {pu(s)} is a P-sequence, then, for any integer m=0, {s"p,(s)} is
a O-sequence.

More general, if {p,(s)} is a ®-sequence and a(2) an enbire function
of exponential type, slowly increasing on R, then {a(s)p, (8)}is & d-gequence
This follows from proposition 3.

Each uniformly convergent sequence {,(s)} of indefinitely differen-
tiable functions, bounded on R, is a P-sequence (with & — 1).

It @u(8) % and |pa(s)] < M(14[s]) for some integer 7 >0 and
a constant M, then {p,(s)} is a O-sequence. In fact, we can decompose
the sequence as follows: {p,(s)} ={§zn(s)}+{<’pn(s)}~, where ,(3), $.(s)
are indefinitely differentiable functions, such that ¢,(s) = 0 for Is] >2,
Fu(8) = 0 for |s| <1 and §,(s) =, Ha(s) ==. Since the sequences {g,(s)}
and {#.(s)s™""'} converge uniformly on R, they are ®-sequences, and
from what we have said before it follows that {p,(s)} is also a P-sequence.

‘We prove

PROPOSITION 5. If {p.(s)} is @ D-sequence and if for some k, the deriv-
atives g, (s) satisfy condition (19), then {p(s)} is also a P-sequence.
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Proof. We may always choose % sufficiently large so as to be the
corresponding integer for the P-sequence {p,(s)} in (19) and (20). Then
@,(4, #) = and, by remark 2, also D,(4,2) = for every 4 > 0. We prove

n

that, for ¥ > 1,

- n(s) =
(23) k@;(l,z)—l—@;(l,z) = Fp fK;(z»—s)q;s,;—ds—f—Pn(D)Kl(z),

where @} (4, 2) are defined by (21) and P, (D) are polynomials of degree
<k—1. In fact

- Pn(8) g
& ds

n(8) K (s
P askTp | Ki(e—s)

o0

kFp sz(zws)

= Fp f]{,l(zws)——————(psi ) ds.

Furthermore, by (20),

o [ Eie—n P ds = 02,2 DPLD)K ),

—00

and, by proposition 2,
i Pul8) 2o — WL, 2)—Qn(D)Es ()
Wy [ K- By ds = 10101, 9~ u(D) (o),
—00

‘where the polynomials DP,(D) and @,(D) are of degree < k. But from
(16) and (12) it follows that

Py (D) = DP,(D)+@Qu(D)

is a polynomial of degree < k—1. Hence equation (23) is valid and this

gives the required resulf. _ N
A P-gequence does not in general converge in the dlstmbutlo.nal sense,
i e. it is not an F-gequence. For illustration we give the following
Example. The functions
8in2nn (84 'i)v
m(s+1)]

(24) Pn(8) = Kn(s+14) =

satisfy condition (19) with &k = 0. Moreover, since for n > 1,

Eye+i) = [ Kye—s)Ka(s+i)ds,

-—00
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it is a &-sequence. However, for (s) = F[(sinnz/z2)**], &k =12, ..,

| fm‘Pn(@)wk(s)dsj > My,

where M >0, and therefore {pa(8)} is not an F-sequence.

2. Ultra-distributions and operations on them. We say that two
P-sequences {p,(s)} and {pa(s)} are equivalent, if there exist an integer
k > 0 and sequences of polynomials P, (D) and @u(D) of degree <k—1
such that

Pa(s) = O(Js*1),

and for every 12 >0,

¥als) =0(Is]*) a8 5] > 0o, n = 1,2,..,

29 = Fp [ Kie—) ™ s 1 p, ()i, (o

—o0

and
ok ) =Fp [ Kyle—0) 2 35 0,0,

converge to the same limit, uniformly in every strip —N < 7 <N.
We denote this relation between D-sequences by ~, ie. we write
{Pn8)}~{pnu(s)}-

By proposition 2, the integer k¥ > 0 can be replaced by any greater
integer.

It is easy to show that the above definition of equivalent d-gequen-
ces can be expressed briefly as follows: Two P-sequences {p,(s)} and
{pa(8)} are equivalent, if gnl(s),wl(s),%(s),%(s}, vy I8 & @-gequence.

PROPOSITION 6. If {p,(s)} is @ D-sequence, k the corresponding inte-
ger in (19) and (20), and B(A,2) the limit of (20), then

{([J,L(S)} ~ {skqj(”; S)}-
Proof. We have
on(s) = O(ls®),

for » =1,2, ..., and by proposition 2, the functions Dr(A, #) defined
by (21) are of the form

D, s) = 0(lsf"), as s} — oo
D,(2, 2) = Fp fKa(%s)%gldHP:(D)Kj(z),

where P;(D) are polynomials of degree < k.

Studia Mathematica XXIIT 9
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On the other hand, by proposition 2, for every = > 1,
~ D, (n, s
@41, 2) = Fp f Kyz—s) ‘--"i(ﬂlvt ). as
and hence, as m -> oo, ) .
D(n,s)
@*(2,2) = Fp fKA(z—s)-—-(—Qle.e.
—00

Since @%(A,2) = ®*(1,2), the proposition is proved.

The relation ~ is reflexive, symmetric and transitive. The abstrac-
tion classes of P-sequences with regard to this relation will be called
ultra-distributions. We denote the ultra-distribution represented by the
®-sequence {‘Pn(s)} by @(s) = [pa(s)] (®)-

We shall show later on (see section 4) that the ultra-distribution
determined by the sequence (24) may be regarded as a translated 4-Dirac

distribution with the singularity at the imaginary point s = —i/2x, i. e.
) sin2znn(s+4
s (g+ __) - [_L“_(_i_)]
27 n(s+1)

It was proved in section 1 that & sequence of indefinitely differen-
tiable funections ¢,(s) such that

(25) Pu(s) 3 on(8)] < M (1+s]')

for some integer ! > 0 and a constant M, is a P-sequence. Let ¢(s) be
the limit of {@,(s)}. All d-sequences satisfying conditions (25) and having
@(s) as limit are equivalent. On the other hand, sequences of that kind
having different limits determine different ultra-distributions. This one-
to-one correspondence between ultra-distributions represented by sequen-
cey with the property (25) and continuous, slowly increasing functions
(the limibs of those sequences) enables us to identify both notions. Ultra-
digtributions may therefore be regarded as a generalization of continuous,
slowly increasing funections. We ghall show later on that this general-
ization includes also all tempered distributions.

Let now ¢(s) = [¢,(s)] and 9 (s) = [p,(s)] be two ultra-distributions,
a, b rveal numbers (¢ 7= 0), and o(2) an entive function of exponen-
tial type, slowly increasing on R. We define

and

(26) @(8) £9(8) = [on(s) Lyals)],
(27) plas+d) = [pn(as+b)],
(28) a(s)p(s) = [a(s)pa(s)].

(3) Similarly as in the case of distributions, the “variable” s in ¢ (s) is purely
symbolic and, in general, one cannot substitute for it any number.

icm

Fourier transforms 131
The sequences in square brackets are ®-sequences. To prove the
consistency we need only to show that in each case the new ultra-distri-
bution does npt depend on the choice of the @-sequence representing
p(s) or }U(S) 11} other words, if {7n(8)} ’j{(l’n('s‘)} and {"./"n(s)} ~ {pn ()},
then~ {‘Pn(s)i%t(*‘?)} ~ {(Pn,(s)i'/’n(s)}’ {‘Pn(“s‘f"b)} ~ {fpw(a"g"‘b)} and
{a(s)@u(8)} ~ {a(8)@n(s)}. We restrict ourselves to the third item.
Suppose that
Pa(8) = O(Js/*1),
‘;711('9) = 0(|slk”])7

as  |8] »> oo

and that there are polynomials P,(D) and 13n(D) of degree

<k—-1
such that for every 1 >0,
— N Pn(8)
Dy(4y2) = Fp Kz(z'—s)Tds-I-Pn(D)Kl(z)
) -~ (2, 7).

duiye) = Fo [ Kye—0) = as s p Dk,

If

a(s) =0(s"") as |5 > oo,

we infer that for every 4 >0,

a(s) Pn(4, s)

Fp sz(z~ 8)

Y ds .
| ‘ &(h, 8
o0 é :Fp fK;_(z——g).‘.l.(_g)_;l_(f_‘qlds'
A —00
Fp sz(z—s) _SS_)_:T(__,_E)_ is
Hence

{a(s)‘;’n(s)} ~ {a(8)pa(8)}
by proposition 3.

From propositions 5 and 6 it follows, in view of remark 2,-that every
ultra-distribution admits a representation @(s) = [pa(s)], such that
{@n(s)} is a d-sequence. We define the derivative of ¢(s) by ¢’ (s) = [gn(8)].
The consistency of this definition can be easily verified by use of equa-
tion (21). We have thus

TuEOREM 1. Hach ultra-distribution has a derivative of an arbitrary
order.

If an ultra-distribution is a function having a continuous (and slowly
increasing) m-th derivative, then its m-th derivative in the above sense

" coincides with its ordinary sm-th derivative.
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Ultra-distributions are not in general derivatives of gome orders
of continuous (slowly increasing) functions. There is a one-to-one cor-
respondence between derivatives (in the sense of ultra-distributions)
of some orders of continuous, slowly inereasing functions and tempered
distributions. We shall identify both notions. In this way ultra-distribu-
tions are a generalization of tempered distributions. .

3. Sequences and series of ulira-distributions. For every @-sequence
{on(s)} and every integer k >0 sufficiently large, the sequence of fune-
tions @,(4, ) defined by (20) converges uniformly in every strip —N <
<7< N. The limit &(2,) depends on the @-sequence representing
a, given ultra-distribution ¢(s), say, but by proposition 4, it iy determi-
ned up to a term of the form P(D)K,(z), where P(D) is a polynomial
of degree < k—1. Conversely, by proposition 6, @(4,2) determines ¢(s)
entirely. Each ®(4,z) is said to be a regular function corresponding to
the integer & and the ultra-distribution ¢(s).

Two ultra-distributions p(s) and y(s) are equal if and only if for
every k>0, the corresponding regular functions @(4,z2) and ¥(4,z),
if they exist, differ by a term P(D)K,(7), where P(D) is a polynomial
of degree <k—1.

We say that a sequence {p,(s)} of ultra-distributions converges to
@(s) and we write ¢, (s) -~ p(s), if there exist an integer & > 0 and regu-
lar functions @,(1,2), D(4, #) corresponding to &k and ¢.(s), ¢(s), respec-
tively, such that for every 1 >0, Pu(4,2) = D(4,2).

The limit g(s) of a convergent sequence of ultra-distributions g, (s)
is unique.

In fact, if @n(s)~>—@(s) and @u(s)->wp(s), then there are integers
k,1>0 and regular functions @,(1,2), P(4,2) and ¥,(4,%), V(2 2)
corresponding t0 %, p.(8), @(s) and I, p.(s), p(s) respectively, such that
for every A >0,

DA, 2) = D(A,2) and  W,(4,2) = P(4,r).
We may assume that % < 1. Then

© L 3 &, (A p
B, (4, %) = Fp f (o —s) m--”qﬁ_,; ) ds = B2, 2),
—00

8§

where 5,,(l,z), d;(l,z) are regular functions corresponding to 7 and
on(8), @(8) respectively. Moreover, by propositions 2 and 4,
(4, )= ¥ (1, 2) = Py(D)Ex(2) = P(D)K;(2),

where P, (D) and P(D) are polynomials of degree < I—1. Consequently
P(2,2) and ¥(1, z) correspond to the same ultra-distribution, i. e. ¢p(s) =
=p(s).
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If ¢(s) is an indefinitely differentiable function on R, such that

lp(s) = O(ls/*™") as [s| = oo,
then

B3, 2) = Fp J Ky(e—s) i’;(ki) ds

is a regular function corresponding to %k and ¢(s). Hence we get
PRrOPOSITION 7. A sequence {g,(s)} of indefinitely differentiadle and
slowly increasing functions converges to an ultra-disiribution @(s) if and
only if {@,(s)} is a D-sequence, and @(8) = [p,(8)].
If {@.(8)}, {wa(s)} are sequences of ultra-distributions, a, b real
numbers (@ 54 0), and «(2) is an entire function of exponential type,
slowly increasing on R, then

gu(s) = ¢(s) and  yu(s)-—wp(s)
implies

@n(8)+pu(8) ~ @(8)+v(s),
pn(as4-b) -~ p(astb),
a(8)@a(8) ~ a(s)p(s).

Similarly as for distributions we have the useful

THEOREM 2. Each convergent sequence of ulira-distributions may be
differentiated term by term.

In other words, if {p,(8)} is a sequence of ulira-distributions and p,(s)—>—
> g(s), then, for every integer m =0, @i (s) - ™ (s).

Proof. There exist an integer & > 0 and regular funetions @,(4,2),
@ (4, 2) corresponding to k and ¢, (s), ¢(s) respectively, such that for every
A >0, ®,(1,2) = D(4,2). Putting

S, =1 [ Ke—s T2 g,
—00 s
we get
(29) kDL, &)+ Bh(h, 2) = b (2, 2)+ B (4, 2).

But from the proof of proposition 5 it follows that kPjy(A,2)+ (4, 2)
are regular functions corresponding to % and ¢, (s). Similarly k®*(1, 2)-+
+@'(4,2) is a regular function corresponding to % and ¢(s). Therefore
(29) implies gy, (s) = @(s) and this argument can be repeated any number
of times.

A sequence {p,(s)} of tempered distributions is said to converge,
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if there exist integers k,l > 0, a constant M, and continuous functions

®,(s) on R, such that
(30) ¢£Lk)(8) = %(3)?

This convergence is stronger than in the sense of ultra-distributions,
i. e. if a sequence of tempered distributions converges in the above sense
then it converges as a sequence of ultra-distributions, but not conversely.

A series > @,(s)
n=1

partial sums

@,(s) 7 and | B,(s)] < M1+ 5.

of ultra-distributions converges if the sequence of

2%

converges. Its limit ¢(s) is called the sum of the series and we write

P (8)

9(s) = D pals).

From theorem 2 one gets immediately

TaEOREM 2'. Fach convergent series of ultra-distributions may be
differentiated terms by term, 1. e.

( n;: Pn 3))
s - S 5

In fact, regular functions corresponding to & = 0 and 6™ (s) are

KM (2). But
i\ N\ EP R
Kz(Z-F —é;) —g(%) PR

and the convergence is uniform in every strip —N < 5 << N. Since
K,;(s+1/2n) is a regular function corresponding to k = 0 and (s -14/2x),
this proves (31).

2 n(s)

We show that

(31)

4. Fourier transforms of distributions of finite order. Let f(x) be a
continuous, rapidly decreasing function, that means, for every integer
m 20, f(x) = O(|#[™) as |©| - co. Then the Fourier transform

o) = #(f@)) = [ 6™"™f(2)dw
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is indefinitely differentiable and bounded on R together with all its
derivatives.

Now, for a positive integer k, consider

it is a continuous, slowly increasing function, such that F®(z)
We asgert that

= f(@).

(33) F(F(2)Uy(2)) = bp f](l(s~t q”;,f) ai
where
. ‘1 for |@ <2
Uy(w) = -
0 for |of >12.

In order to prove it we write for ¢ >0,

7 y ~‘7ﬁs1j
- — )d
(&, @) Of 1)1 fle—y)dy

and
0 k-1

F(e,0) = — [ gy d ey

On account of (32),

@) = ${F(0+, o)+ F_(0+, )}

(34)
Moreover, ¥, (e, @) is a convolution product of f(z) with
(kwi—ll)! o H @),
where H(s) is Heaviside’s unique function. Therefore,
o 9(s)

F(F (e, 2) = F (f(2)) F r( 1) fme(w)) (2mi) (s — i)t

and since #(U,(w)) = K,(s), we infer that

dt.

1 f“" E(s—1)p(t)

Z(Ble, )Ta0) = o (t—de)*
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Similarly
1 F K(s—)oelt
F(F_(e,0)Us () = i) j J(*(:Hs)jf()

—00

Hence, letting & tend to zero and applying (3) and (34) we obtain
equation (33).

We now prove

ProPOSITION 8. Assume that f,(x) are continuous, rapidly decreasing
functions and @, (s) their Fourier transforms. Then {fn(x)} is an F-sequence
if and only if {g.(8)} 18 & P-sequence.

Proof. If {f,(x)}is an F-sequence, then there exist a positive inte-
ger k and a sequence of polynomials P, () of degree < k—1, such that

1 f(@—y) [ o=y z
(35) Fylz) = ?{_i (k_l)!‘-fn(/y)dywwf T]T::L)T‘f“(?’)dy} +Pu(w) 3.
Since D
P, (_2:&_) KA(S) = ﬂ'(Pﬂ(m) U}.(m))7

it follows from (33) and (33) that for every 2 > 0,

D\
dt—f—Pn(En—z)Kl(z) =

@n(t)
tk

(36) L m J K, (z—1)

(2nd)*

i e. {p,(s)} is a P-sequence.
Oonversely, for sufficiently large %, the sequence (36) converges

in mean on R. Hence, for every 1> 0, {F,(»)U,(x)} converges in mean.

Consequently

Fuo) = [Faly)iy 2  and  FED (@) = fu(0),
and thus {f,(x)} is an F-sequence.

It is easy to see that in proposition 8 equivalent F-gequences cor-
respond to equivalent P-sequences. There is therefore a one-to-one cor-
respondence between distributions of finite order and ultra-distributions.
We call ¢(s) = [pn(s)] the Fourier transform of f(w) = [fo(x)] and we
write @(s) = # (f(«)} or f(z) = F~(p(s)). We have thus

TemorEM 3. Hach distribution (of finite order) has a Fourier tramsform,
which is an ulira-distribution. Conversely, each ulira-distribution is o Fowrier
transform of & distribution (of finite order).

The Fourier transform in question is a linear operation and coinei-
des for tempered distributions with that mentioned in the introduction
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(equation (1)). In particular, for integrable and square integrable functions
it is the usual Fourier transform.
Also the following properties arve valid:

(87) Z(f' (@) = 2misq(s), .
(38) F (—2minf(2)) = ¢'(s),
(39) 7 (f(a)g (@) = Z (f(@) # (g(@)),

where ¢(s) = Z(f(#)), g(x) is a distribution with compact carrier, and
the produet on the right-hand side of (39) is well defined, since & (g(w)}
is an entire function of exponential type, slowly increaging on R.

It p(s) = #(f ()}, then for & sufficiently large, each regular function
@(4, #) corresponding to & and ¢(s) is a Fourier transform of F(a)U,(z),
where F(z) is a continous function such that F®(z) = f(x).

TuworEM 4. Suppose that fu(x) and f(z) are distributions (of finite
order) with ¢,(8) and @(s) as Fourier transforms respectively. Then

In(@) = f(@) if and only if g,(s)-—o(s).
In other words, the Fourier transforms F and F-1 are continous oper-
ations.

Proof. If f,(x) - f(x), then there exist an integer ¥ > 0 and con-
tinuous functiony F,(x), F(2) such that

40)  FP(@) =ful@), FO@)=fla)
Write
Dy (2, 8) = F(F, (@) U,(2)) D(2, 8) = F(F(x)U,(w)).
From (40) it follows that for every 2 >0, &,(4,#) = &(4,2). Bub
D, (A, #), D(4,2) are regular functions corresponding to % and g,(s),
@(8) respectively. Consequently ¢,(s)-p(s). ) )
On the other hand, agsume that g,(s) - ¢(s). There exist an inte-
ger & >0 and regular functions @,(4,2), ®(4,z2) corresponding to %
and ¢,(8), ¢(s) respectively such that @,(2,2) = &(4,2). Now for sui-
ficiently large %,
F D, 8)) = Fp(@)Uslw), F-1D(2,5) = F(o)Uyw),
where F, (), F(x) ave locally square integrable functions such that
F (@) = f(@), (@) = f(@) and {F,(®)U,(x)} converges to F(x)U;()
in mean. Tt follows that

and  Fu(r) 3 F(a).

and

o

To(@) = f'.p,l(y)dyz ﬂf Ply)dy = F(a),

[]
where {0 (a) = f(a), F*(0) = f(a), and thus fu(o) > f(a).
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Comparing proposition 7 with theorem 4 we conclude:

COROLLARY. If {f,(x)} is an F-sequence representing the distribution
fl®), then F(fy(x))— F(f(z)).

Similarly, if {p,(s)} is a D-sequence representing the ultra-distribu-
tion g(s), then F=p,(s)) — Fp(s)).

Let {f,(x)} be an F-sequence representing the distribution f(x),
and a(z) an indefinitely differentiable funection, which vanishes outside
a finite interval. Then the “scalar products”

(41) ' [ f(@)a(@)da

converge. The limit does not depend on the choice of the F-sequence in
(41). Tt is said to be the scalar product of the distribution f(x) with a(z)
and we denote it by

f(®)a(z)de.

é%g

Now, the Fourier transform «(s) of a(x) is extendable to an entire
function of exponential type, rapidly decreasing on R. The scalar pro-
duct of the ultra-distribution @(s) = #(f(#)) with a(s) is defined so as
to preserve the Parseval equation, i. e.

(42) [ o) as)as = [ fl@)a(—a)do.

Equation (42) is the essential point in the theory of Fourier transforms
of distributions given in [2], [3], [4], [5] and [6].
As an example consider the ultra-distribution

oo o) = rests— 1,

where b is a complex number. For every function a(s) having the stated
properties
~ b b
13 f 8ls— ) a(s)ds = a—).
(43) J (8 27T)a(s)ds a(Zn)
If b= —if (B is real), we get

&
0 for

K, (s+18) = g?(fn(m)), where  f,(x) = { for ol <n,
@] >mn,
and therefore
5( ﬁ) — F (e
s+ o] = (e™). ’

a3
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5. The case of distributions of infinite order. The following modi-
fications of our definitions are required to enable us to define Fourier
transforms of all distributions, in particular of distributions of infinite
order.

A sequence {p,(s)} of indefinitely differentiable, slowly inereasing
functions is called a P-sequence, if to every A > 0, there exist an integer
k >0 and a sequence of polynomials P, (D) of degree < k—1 such that

(1) pals) = 05 a5 ol > oo
and
W) o =y [ Ee—9 " ip, e

converges uniformly in every strip —N < 5 < N (%).

Two &-sequences {¢,(s)} and {y,(s)} are said to be equivalent, il to
every ) there exist an integer ¥ > 0 and sequences of polynomials P, (D),
Qn(D) of degree <k—1, such that

gals) = O0s/),  wu(s) = O(sI*Y) a5 sl >0
and
Out, ) = Ty [ Eyle—s) P a2 (D)),
%00 =1 [ Be-90 610,050

—00

converge to the same limit, uniformly in every strip —N < 5 < N.
Classes of equivalent &-sequences are called wulira-distributions.
The new definitions differ essentially from those used before, since

now the integer k depends, in general, on A. If in particular one can choose

to all 2 > 0 a common %, then the ultra-distribution obtained can be iden-
tified with an ultra-distribution in the earlier sense.

Operations on the new ultra-distributions, such as addition, sub-
traction, linear substitution, multiplication by a function, ean be defi-
ned in the usual way.

The property of @-sequences expressed in proposition 6 is now
lacking. Yet one can represent every ultra-distribution by a sequence
of entire functions of exponential type, bounded on the real line. If
7(8) = [ga(s)] is such a representation, then {g,(s)} is a @-sequence
defining the derivative ¢’(s).

(%) Condition (44) may be satisfied for some %, independent of i; then it is
satistied for every &’ > k.
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Given an ultra-distribution ¢(s). For every 1 and % the limit @ (1, ¢)
of (4B), if it exists, is said to be a regular function corresponding to A, k
and ¢(s).

A sequence {g,(s)} of ultra-distributions converges to ¢(s), if to
every 4 >0 there exist an integer % and regular functions @,(1,z),
@(A, z) corresponding to A, & and ¢,(s), ¢(s) respectively, such that
@, (4,2) converges to D(4,#2) uniformly in every strip —N <5 < N.

All properties of section 3 remain valid for the new convergence.

The theory of ultra-distributions extended in this way is equiva-
lent with the theory of funetionals on a space of entire function defined
by authors mentioned in the introduction.
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Properties of the orthonormal Franklin system
by

Z. CIESIELSKI (Poznan)

1. Introduction. The purpose of this paper is to present some pro-
perties of the orthonormal Franklin set and to indicate similarity of this
system to another bases of the Banach space €'<0,1) of continuous
functions on <0, 1. It was proved [6] a long time ago that the Franklin
set forms & Schauder basis for ¢ (0, 1. Not many more properties of these
functions are known to be published. The other bases have been investi-
gated in [6], [7], [1], [2] and [3]. Some applications of the author’s results
are given in [4]. Using the results of this paper one can get the same
kind of applications for the Franklin functions. Some of these results
were announced on the Conference of Functional Analysis held in War-
szawa-Jablonna in September 1960. Theorem 1 has a very simple proof.
This theorem together with the Banach-Steinhaus theorem for sequences
of linear operators gives a very simple proof of the Franklin result. The
proofs of that result presented in [6] and [7] (p. 122-125) are very tedious.

2. Preliminaries and notation. The Haar functions are defined
as follows:
n{f) =1 in 0,15,
Z2n+1(1) = “‘VZTI:
—_ . k—1 2k—1
I VT in < i g ),
1) Lanoz(l) = | YV s 2k—1 k-
2n+1 ? on ?

0 elswhere in <0, 1),

where n =0,1,...; k =1,2,...,2"
We shall define the Schauder functions using the Haar functions

a8 follows:
¢

() = [ ta(0)dz,

[

(2) te0,1y, n=1,2,...
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