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STUDIA MATHEMATICA, T. XXIIL (1963)

On the differentiability of weak solutions
of certain non-elliptic equations II

by

H. MARCINKOWSKA (Warszawa)
Introduction

In the first part of this paper (which will be quoted here as [I])
a theorem was given concerning the periodic weak solutions of certain
partial differential equations of non-elliptic type. The differentiability
properties of such solutions were described with the aid of some Hilbert
spaces, which have been defined in the first chapter of [I]. In the present
paper we are going to prove some further properties of these Hilbert
spaces and to study the differentiability of weak solutions of the mentio-
ned equations under some special boundary conditions.

We recall some definitions and notations of [I]. Let 2 be the pro-
1 2

duet of two domains: £ of the space B¥, and @ of the space ES (R+8 =
= N), and let (3°(2) be the class of all complex-valued functions which
are infinitely differentiable in 2 and whose all the derivatives are square
summable in 2. We denote by B a linear subset of the class 0&°(2) con-
taining the class 07°(£) which has the following properties:

1 2

1° for each function peCf(Q) or peC0y (L), and for each ueB, the
functions gu and yu are also in B,

2° for each ueB all the derivatives of u are also in B.

B, .. denotes the subset of the class B consisting of all functions

1 2
(@, y) which vanish for zeQ2—K and yeQ, when K is a compaet con-
1

tained in £ (depending on «). B_ , has the same meaning when the roles
of # and y are interchanged. Let especially 2 be the N-dimensional cube;
80 B, denotes the class of all functions infinitely differentiable in BV
which are periodic with 2 as period-parallelogram.

We have defined in [I] the two-indices norms for w05 (£2) as follows:

““”%Ic == IIDZuH}z a)?
(@)
otk
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lulfe = > IDsulfg,
osjoj<m
[() ) g
||“||—m,41 = sup__’,_)bf_(ﬂ)_
veB ”’U“m,—a

(p, g arbitrary integers; m, & non-negative integers). The corresponding
Hilbert space H,,(2, B) has been introduced as the completion of B
in the norm || llpg. If weHy _1(2, B), the sirong derivative of w in the
norm |f |jp— with respect to » of order « (0 < la| < m) has been defined
ag the limit in the norm || |jp - of the sequence {Dzu,}, {u,} being the
gequence contained in B which tends to w« in the norm | |lm .

Our paper deals with the differential operators of the form (for suf-
ficiently differentiable u)
Iu = (=1)"*" D2} (Guuwpy D DY )

oialJo’| <m
0<18), 18I
gatisfying the following conditions:
1° Goepp are complex-valued functions infinitely differentiable in
Q and having all the derivatives bounded in £,
2° Qourppr (@) Y) = Guraprp(@, y) for |a| = |a'| =m, |B] = [f'| =n, (z,y)Q,
3° there is some positive constant d, such that

> Gy (@,9) Ll =0 Y [Lagl?

t!""|=m \a|=m

|
{Bl=|f"|=n |Bl=n

5
for all (z,y)e2 and all systems of complex numbers {{,,} (la] =m,
|8 = n). The class of all such differential operators was denoted in [I]
by 4. We have proved for such operators the inequality

0 [(Zrpw, )] 2 ¢ |wlffninnro

agsuming that the functions Re ay, (|a| = m), Reag, (18] = n), R aym,
have positive sufficiently large lower bound, and the function w is smooth
in Q and satisfies such boundary conditions that after the integration
by parts the boundary integrals vanish (here I,, denotes some of the
operators ALA3L, ARLAY, ASLAL, LALAS, A being the identity opera-
tor minus the Laplacean).

‘ In the sequel we ghall deal with the spaces H,, belonging t ]
different domains of the Euclidean space EII‘; and tg’qthe d?éle?fintoefﬂ];ls-
ses Bj; accordingly the corresponding norms will be denoted, by ll Iz
(mstfaad of the brief notation | ,,) when it will be necessary to 7;)%'1]3
& misunderstanding. In such cases the bilinear form (,) considered on
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the product H,,(R2,B)XH_, o(2,B) will be denoted by (,)es)-
Different positive constants which do not depend on the function u,
will be denoted by the same letter e.

All the bibliographical references are given in [I].

1. Some properties of the spaces Hy4(2,B)

1.1. The spaces H,,(2, B) have been defined in such a way that
theorem 1 [I] holds, but there is of course a defect in this definition:
when in the definition of the norm || |lm _x (m, & > 0) the roles of » and
y are interchanged, we do not get the norm || {|_zm- Therefore the defini-
tion of the spaces H,.(2,B) in the case when p and ¢ have different
signs seems to be asymmetric with respect to # and y. We ghall prove
that in the case of some special boundary conditions the space
H_,, (2, B) can be identified with the completion of B in the norm
i -mxe,p (When

s = > 15wl yam
o<k

for ueB), so that in this case there is in fact no asymmetry.
1 2
Tet © — £ x0Q be a domain of the Euclidean space B¥ with s being

the R-dimensgional cube and o being an arbitrary domain of the space
ES (R+8 = N). We denote by By, the class of all functions ¢ satisfying
the following conditions:

(Cy) peO™(B"x Q); .

(Cy) p(—,¥) is the periodic function of » with O being the period-

-parallelogram for arbitrary fixed ye[s;
2
(C,) there is a compact K C 2 (depending on ¢) such that ¢ vanish
2

on Ffx (Q—K).

The following inequality can be obtained in the same manner as
lemma 4 [I], when we notice that after the integration by parts the
boundary integrals vanish:

@ iz, qo5p0 = D05, o w@Bpe  (WeBrg)-

It is easy to show that in the cage of an arbitrary class B the elements
of the spaces H, (22, B) can be characterized by the following con-
ditions:

1° % is an element of the space H,i(L, B),

2° there is a sequence {u,} C B_ o such that |, — uly, w50 0, and all
sequences {Dgu,} for 0 < |a| < m are fundamental in the norm | |lo,—%-
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The limit of {Dju,} in the norm || ,_x can be called strong
derivative in the norm | |l _, with respect to » of order «. So the space
H,,_(2,B) can be treated as the set of all elements of the space
H,_4(Q, B) which have all the strong derivatives in the norm || |, _, with
respect to @ of order not exceeding m. From lemma 4 [I] it follows
that each element of the space H_,;(L2,B) has all strong derivat-
ives in the norms || [0 with respect to y of order not exceeding %, but
H_,..(2, B) contains in general not all the elements of H_p0(R, B)
having such property.

Let now 2 be the N-dimensional cube. Frori lemma 4 [Y] it follows
that

@) elle iy = D IDjully_yyam,) (weBy),
0<| Bl
and
D5l 0,5 < Dyl o, (weB,)

for ¢ < [yl—|a|. Putting in the last inequality ¢ = k—2n (when n is
fuch an integer that k—2n < 0) and a =28 (0 < 1Bl <n), we obtain

”Diz/ﬁ“”Hhm,k_aﬂ(n,Bp) < ”DZMHH_M,O(:),B”) (weBy)
sor |y| > k—2n-+2(6], and this yields the estimate

®) Ml sniomy < 1Y 1D, a5,  (ueB).

oy <k
) Applying now lemma 13 [I] to the operator A7 and the Schwarz
inequality to the sum on the right of (3) we get
4

2 X
”’M’HH,_m,k(D,Bp) <e¢ 2 ”Diu“va,o(ﬂpr) (%E.B:o).

0<IAi<k
Inequalities (2) and (4) give us the equivalency of the norms
Iz, e By and ||| Hl_m’k,(g’Bp) in the clags B,. From inequality (1) and
lemma 3 (chapter 2 of this paper) it follows that the above reasoning
1 2

?emains true in the case when £ is the cube and Q and arbitrary domain,
]j? ’ch‘e class of all periodic functions is replaced by the class By,
(it will ble only supposed that the integer n is such that n <k < 2n). So
we ca;

1 also conclude that the norms || ]|H_m'k(ﬂ,ﬁp,o) and ||| 1 ,00,8,,0) 8re

equivalent m the class B, .. In thege two cages the definition of the
spaces H,, is symmetric in & and Y.

. 1.2, Tt is easy to show [9] that the convergence in the space D(Q)
111 x§trf)nger than the convergence in each norm | llng- Therefore the re-
striction of each functional on H,,(2, B) to the set 0F(Q) is a distribu-
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tion in the sense of L. Schwartz [9], and thus each space. H,,(2, B)
treated as the adjoined space to H_, (2, B) can be mapped in the
space D' (2) of all distributions. As the set C5°(£2) is in general not dense
in B with respect to the norm || |[_,_,, the same distribution can be
defined by two different functionals on H_,_,(L2, B), and so this map-
ping is in general not one-to-one. We shall study it more precisely. Let
H_, (L2, B) be the closure of C7°(Q) in the space H.,_,(2, B), and
H“fp,_q(Q,B) its orthogonal completion. The adjoined space can be
decomposed as follows:

Hzn,q(‘Q7 B) = HZ,Q(Q, B)G_)ﬁp,Q(‘Q’ B),

where (v, u) = 0 for veH™, o (2, B), uecHZ (Q, B)or,forveH_,_(2, B,
ueH, (2, B). So each element u of Hp,(Q,B) can be uniquely
presented in the form u = u®-#, where u? (the distributional part of u)
belongs to HZ,(Q,B) and % is in H,,(R, B). Consider the mapping
I of H},(Q,B) into D’'(f) defined by the relation

(@, '”'d)rps(ﬁ(g) {p, I'“'d> (uEHp,q(Qy B)).
o

The following theorem describes the differentiability properties
of the distribution Iu?:

TeEOREM 1. 1° For each p, g the mapping I is one-fo-one and com-
pletely continuous.

2° For mon-negative p, q the subspace HZ,Q(Q,B) is identical with
the whole space Hp,(Q, B), and for each weH,, (2, B) the distribution
Iu agrees, in the sense of the theory of distributions, with the adjoined-valued
Sunction W; the distribution Iu has all the derivatives DDiIu (0 < |o| < p,
0 < Bl < q) belonging to L*(2).
3° For non-positive p, q the distribution Tu® has the form

I = > DiDjp,

0 |ajg—p
0<|fl<—9q

(5)

where vay are in L2(Q).

4° Let p, q have different signs, namely p =0 and ¢ < 0. Thus for
each weH, (2, B) all the derivatives D2Iu® (0 < |a| < p) can be presented
n the form

d
DiIu® = -Dgwuﬁ y
I<|fl<—~a

where waz belongs to L*(£2).
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In condition 4° the roles of x and y may be interchanged (so for an
arbitrary olass B we get the symmeiric characierization of the distributional
parts HZ (9, B) in the casse p, ¢ < 0, although the definition of the whole
space Hy (2, B) is a symmetric in x and y).

Proof. Condition 1° follows immediately from the definition of
the mapping I and from the weak compactness of the sphere in the
Hilbert space. Condition 2° is just as easy to prove, if it is remarked
that I maps the strong derivatives of % on the distributional derivatives
of Iu. To prove condition 3° we apply the Riesz theorem to the space
H_, ,(2,B). So for weH,,(2,B) there exist some veH_, . (Q,B)
such that for ¢<Cf(£2)

(6)

(p,u®) = 3 (DD} g, DiDio).

0gfal<—p
o<lpl<—a
Equation (5) is obtained from (6) when we put vy, = (—1)®+¥p2pip,
We shall now prove condition 4°. Let p <0, ¢ >0, and ueH, (2, B).
From Riesz theorem applied to the space H_, _,(2,B) follows the
existence of such weH_, _o(2,B) that for 90 (Q)
(0

(s '“'d) (Dze, Dgw)o,—q:

0<lol<~p
where D7 denotes the strong derivation in the norm Il llo,~q- So Dgw
belongs to H,_,(2, B), and theorem 1 [I] enables us to present inequal-
ity (7) in the form
(8)

(@, u®) (Dso, 2,)

0<|ej<~p

where 2,¢H, ,(2, B). Putting in (8) w,

(peOF (),

(—1)%%, we get

(9) Iv?

DzIw,
0<fal<—p

with Z:?eHo,q(Q,B) and from this and from condition 2° it follows
that 4 ig true in the case p <0, >0. Let now be p >0, q < 0. So for
ueH, (Q, B) the strong derivative in the norm || llog, denoted by Dgu,

is an element of H,,(2, B) and condition 3° gives us

I(Diu)? = Dijw,,

0<ifl<—q
With w.;eL2(Q); condition 4°
verified that I(Dgu)® = Dfu?
distributional sense), q. e. d.

is thus proved, because it can be easily
(the derivative on the right taken in the
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2. Some further applications of the spaces Hj4(2, B) to the
study of differential operators of class A

2.1. In the present section we are going to define the product of
an element of some space H,,(Q,B) with an infinitely differentiable
funetion. The following two lémmas prove that under some supplementary
assumptions the multiplication by such a function is a continuous oper-
ation.

Lemuma 1. Let f be a complex-valued function of class O%(RQ) with
all the derivatives bounded in Q. We suppose that for veB all the products
oD°f and qu—“f (la| =0,1,...) are also in B. So

(10) “fu”p,q < 3“’”/”10,41

for ueB.

Proof. In the case p, ¢ > 0 it is sufficient to estimate the expres-
sion f[D;Dﬁ(fu)[le(m with 0 < la| < p, 0 <|B| < g. The derivation of the
product fu gives

(11) IDED5 (fw)llya gy < D) WDEDSFDE DY o s

‘where |a”| and 8] do not exceed p and g, respectively. Thus we obtain
the estimation

D20 ()l sy <UD 1DEDE(@,)| 3 1D DY

0<laj<p
0<|BI<¢

(12)

and from this follows (10), when the Schwarz inequality is applied to the
sum on the right-hand side of (12).
In the case p, ¢ < 0 the application of these results to the inequality

(Fuy )] < ltllp glifoll-n, ¢ (%, veB)

yields
[(fu, v

— sup L < ol

(Ifullp,q
Y s [llop,—g

To derive (10) for p >0, ¢ <0 consider at first the expression
1Dz (fu)llog (0 < la| < p). It can be presented in the form

| 2 (DEFDY u, v)|

[[vllo, ¢

and so it is evident that

(13) IDa(fulog < )11 D% FD ullog

sup

(0 <o, la"] <p)
veB

(0 <laff, |o"] <p).
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From inequality (10) with p = 0, ¢ <0 it follows that the sum
on the right-hand side of (13) is not greater than

D ID2ufog-
o<lyl<p

(14) | ¢

Applying the Schwarz inequality to the sum in (14) we get
estimate (10).

The proof of (10) for »p <0, ¢ >0, is similar ag in the cage
P4 <0.

1 2 1
Levma 2. Let us consider two domains Q = L2x 0 and Q' = .Q’x.(f},

the

1 1

Q' being a subdomain of Q, and denote by B, B’ the corresponding classes
of smooth functions satisfying the assumptions formulated in the iniroduction.
When ¢ s an infinitely differentiable function of w with compact support

contained in !5’, then
(15)
(16)

(ueB'),
(weB).

”‘Pu“Hp,q(.r),B) <¢ “u“Hp'q(ﬂ',B')
lpteller, yor,my < € llullz,, g5

The roles of @ and y may be interchanged.

Proof. For p,q > 0 both inequalities (15), (16) are an immediate
consequence of lemma 1, when we consider the equation

(p,g>0)

f?r weB or ueB'. To congider the case p, ¢ < 0 we estimate first the expres-
sion (pu, '”)L2(n) with #¢B’ and veB: ‘ ‘

lowlay, 0,5 = loulle, y@,m

[(pu, ”)Lz(g)| = |(u, 5@)1}(9')]< “'““H,,,q(ngB') HE’UHII_,,__Q(Q',B')-
Applying inequality (16) for p, ¢ >0 we get

(@1, ©) 2 < elltller, geor, 5y 0z, g0,y
and this yields

9w 0) 2000

< ¢fju "B,
B e

Thus (15) is proved in the case p, ¢ < 0. The proof of (16) is simi-
}ar. The prfjof in the remaining cases, when p and ¢ have different signs
is equally simple. For p >0, ¢ < 0, we apply inequality (13) in the space
Hy4(Q, B) or H,,(2,B') and inequalities (18) or (16) with p =0,
¢ <0. In the case p <0, ¢ >0, the proot is analogous ag in the case

Py q d<0, when we apply inequalities (15) and (16) for p > 0 and ¢ <0,
q.e. d.
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2.2, Let M be the differential operator in £ defined for sufficiently
smooth by formula
Mu = E daﬂD;D;;u

0<lal<k
o<t

and let d,; be the complex-valued functions of » and y satistying all the
assumptions concerning the function f in lemma 1. So from lemma 4 [I]
and lemma 1 of this paper follows the inequality

an

(18) 1Ml o @, < ellilla, 40,8y
where

B for p>=k,q>=1,

we B, _ for p<k,qg>=1,

B_, for p>=k, ¢g<l,

0r (L) for p<k,g<l.

In the periodic case (2 being the cube and B = B,) inequality (18)
holds for all ueB,, when we suppose that the coefficients d.s belong to
B,,. So from lemmas 13 and 14 [I] together with (18) follows

THEOREM 2. Let 2 be the N-dimensional oube and L an operator of
class A with coefficients belonging to B,. We suppose that inequality (0)
is true and denote by L the olosure of the operator L treated as the mapping
from Hy (R, By) into Hy smg an(Q, Bp). Then I mapps continuously
the space H, ,(2, B,) on the whole space Hy_smg on (2, By) and possesses
the continuous imverse L. :

Let u be the periodic weak solution of the equation

(19)

where L is an operator of class A with coefficients belonging to B, sati-
sfying inequality (0) and veH,, (2, B,). By theorem 3 [I] » is an
element of the space Hy omgran(R, By) and %, gi“lwl must be equal
to w, because it is also the periodic weak solution of (19) with the same
right member ». So Lu =nv and we see that each periodic weak
solution of (19) is also a strong one in the following sense: there
exists some sequence {u,} = B, such that. |jus—ulpiamgson 0 and
(1 L%~ 0lp g ~= 0 @8 n — co.

Lu =,

1. .
2.3. Let £ be a product of two domains: £ of the space ER and

é of the space B® (R+8 = N), and let B be a class of smooth. functions
satisfying all the agsumptions formulated in the introduction. Consider
a differential operator I defined in. Q and satisfying the assumption:
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for all geB the function L'e is also in B. We say that an element
u of a space Hy 4 (2, B) is a weak solution of equation (19) with respect
to the class B (v being an element of a space Hy, (2, B)) if the identity
(20) (Ltp, u) = (p, v)

holds for all peB. In [I] we have examined the periodic case, 2 being the
N-dimensional cube and B the class of all periodic functions with Q as
period-parallelogram. Now we are going to study some other examples
of boundary conditions and the corresponding weak solutions of equation
(19).

Let first 2 be the R-dimensional c¢ube and consider the class By,
defined in 1.1. By means of Fourier expansion we can construct for each
function geB,, a function ¢, also lying in B, and such that Alp, =
(r being a fixed natural number). So the same arguments as were uged in
the proof of lemma 13 [I] together with inequality (1) yield

Lemva 3. Let L be an operator of class A with the coefficients satis-
Jying the conditions (0,) and (C,) (see section 1.1) and suppose, that inequal-
ity (0) 48 true. So

(21)

lullz, 0,250 < Ol Lt ity gy g a8y, (WeBpo)

for ¢ =mn.
The same reasonning as was used in the proof of lemma 14 [I] gives

Leyma 4. Denoto by I, 4 the closure in the space H) (2, By, of the
linear set {Lp: eB,,}. Then, under the assumptions of lemma 3, the sub-
space Iy q 48 ddentical with the whole space Hy (92, Byy) for p < —m,
4 < —n tn the case n >0, and for arbitrary p, q in the case n = 0,

By means of these lemmas the following theorems can be stated:

TeroREM 3. Leét L be an operator of class A with m , 0 > 0 satisfying
the assumptions of lemma 3. Then

1° for each veH, (2, B, o) (with ¢ < —n) there ewists a weak solution
o of equation (19) with respect to the class By, lying in Hy o 100 (2, Byp);
if veHy, (2, Byo) with p > —m, this weak solution is unique;
) 2° when q > —mn, the dlosure T, of the operator L (troated as the map-
ping from Hp,omgion(2, Byg) into Hyo(R2, B,,)) maps continuously the
§pace Hp,omgim (2, Byo) on the subspace Iy, of the space H, ,(Q, Byo)
a.md Dossesses a continuous inverse; if especially p < —m, then Ty, —n is
identical with the whole space Hy _(Q,B,,). ,

Proof. To prove 1° let us consider the linear functional I(y) £ (p;0)
(¢e].3,,,0), W?lere v = L¥p; it is well defined on the get Ly _am,gon because
of inequality (21) and continuous in the norm .

So by Banach-Hahn theorem it can be prolonged” T G T

on the whole space
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Hy_gmg-an(82, Bpo), therefore by theorem 1 [I] there exists some
weHp amain(82, Bpo) such that (L*p, u) = (p, v) for all ®eByo. In the
case p >"—m, ¢ = —n lemma 4 assures the unicity.

2° follows immediately from lemma 3 and 4 together with inequal-
ity (18) applied to the operator L (according to (1) and to our agsumptions
concerning the coefficients of I, inequality (18) holds for all %eBy, with-
out any restriction concerning the support). The proof is complete.

In the same way can be proved

THEOREM 4. Let L be an operator of class A with n = 0 (so it is ellip-

tic in [12 with the coefficients depending on the parameter ys!Z.?) and suppose
that the assumptions of lemma 3 hold. Then

1° for each veH, o(2, By ) with g < 0 there emists only one weak solu-
tion of equation (19) with respect to the class B, 5 this weak solution is in
Hm.zm,q(-Qr Bp,0)7 -

2° if ¢ = 0, the operator L maps continuously the space H, yamg( 2, Bpyo)
on the whole space H,,(2, B,,) and has continuous inverse.

According to lemmas 7 and 8 [I] the above thecrems assure the
differentiabilify in the classical sense of the weak solutions of equation
(19) with respect to the class B,,, provided that p, ¢ are positive suffi-

2

ciently large numbers and £ satisfies the assumptions formulated in
section 2.1 [I].

2.4. In this section we shall apply the differentiability theorems
proved above to the study of weak solutions of equation (19) in the case
n = 0 with more general boundary conditions. Following the method
used by Lax [7] we are going to prove the differentiability properties
of the product Pu, @ being an infinitely differentiable function of the

variable 4 with compaet support contained in !5 This will give ns some
information about the differentiability proi)erties of win 4 x.é, A4 being
an arbitrary (proper) subdomain of !5

TuBorREM b. Let Q = leé, [5 being a bounded domain of the Bueli-

2
dean space B™ contained in the R-dimensional cube ,éo and Q being an ar-
bitrary domain of the Euclidean space ES. Let B be the olass of smooth fun-
ctions in Q satisfying the assumptions of the introduction and the condition
B = B_,. We consider in the domain Q a differential operator L satisfying
the following suppositions: 1
1° L is an operator of class A with n = 0 (so 4t is elliptic n Q with

2
the coefficients depending on the parameter ye£);
2° for all peB the function LtpeB;
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3° T can be extended to an operator L, defined in the whole domain

2, L !120><522 is such a way that

(a) L, is of class A in the domain @ with n = 0,

(b) the coefficients of Ly satisfy conditions (C;) and (C,) (see section
1.1),

! (¢) inequality (0), adapted to the operator Ly and the domain £y, holds

Jor weB,o ().

Let v be an element of Hy (2, B) and suppose that ue| ) Hy (2, B)

P<0

is o weak solution of equation (19) with respect to the class B. So for each
B0P(9) the product Du is in Hoyyome(Qoy Byg)-

Proof. We suppose first ¢ < 0. Let &, be a function of clags 03°(!5)
equal identically to 1 on a compact 4, containing the support of &. Iden-
tity (20) with ¢ = @,9, p being an arbitrary function of the class B,
yields

(22) (I’E'l—(dslw’}“)(ﬂﬁ) = (D1, Vom (peBpy).

Applying the differential operator L to the product &,y we get

(23) L (D1p)= O L p—Nyy,
where
(24) Nyy = Pa@a D5y

oglo|<am~—1
with <pae03°(!5) and d, satisfying conditions (C;) and (C,) (see section
1.1). From lemma 2 it follows that the products @, and &,v are well
defined; D ueH, o(2y, By,) with some sufficiently negative p, and
D veH, ,(82y, By,). So from (22) and (23) we get

@8)  (Ify, Prwaym, g = (N19; Wam+ (¥, Piv)ays,y  (VeBpo).

In virtue of lemmas 1 and 2 the first member on the right-hand
side can be estimated as follows:
(N, u)oml < -“N1"P||H_,,°'_q(n,B) ||“HHpo,q(9,B)
<e

IDgvlm_., o008y ¥, 2,5
1<t Sm1 po—1?0.5p,0) pya(@,B)

So, from inequality (1),
26
(26) (N 19, w)o,m| < cnunﬂpn,q(“ﬁ)iW”H—poum—l,—4(90-37?,0)'
(') This is certainly fulfilled, when the real parts of the coefficients a
(Ja| = a;u) and boy of operator I have a sufficiently large positive lower bound and

when £ satisfies all the agsumptions of section 2.1 [I].
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Thus from theorem 1 [I] follows the existence of an element
wyeHp _ami1,0(2; Byo) such thab

(27) (Nay, wa,m = (¥, W)@y Byp  (WeBpo)s

and (25) together with (27) yields

(28) (L v, 451’“)(.00,31,,0) = (y, ws+ 451"’)(90,19,,’0) (peBpy)-

Applying the first part of theorem 4 we conclude from (28) that

D ueH, 142, Byy) (). Let now &, be a function of class 0‘.;”(.(12)
vanishing on the complementary of A; and equal identically to 1
on some compact A, containing the support of @. Putting in (20)
@ = Doy (peBy,), we get, in the same manner as above,

(L§ v, gz52“)(90,151,,0) = (N,p, u)(.Q_B)‘|‘('{’7 ¢2‘7’)(90,Bﬁ,,¢, (v EB;n,o)-

But

(e, “:)(D,B) = (Npy, g151"4)(.00,)!?1,,0) (peBp,)

and similar arguments as used above show that

(L5 vy Pat)iay By = (¥ WatPav)g, 5,9 (weBpo)

with wyeHp amis,4(20; Bpo); thus PopueHy 1o 4(2, By

Repeating % times the described procedure (where k = p - 2m—p,)
we obtain OueH omq(20, Bp,y) When we put @ = @;. So the theorem
is proved in the case ¢ < 0. It can be also proved in the case ¢ >0
by the use of the same procedure, if we apply the second part of
theorem 4 and notice that each strong solution of equation (19) is also
a weak one.

Similar reasoning as in the proof of theorem 5, together with the-
orem 3 [I], yields '

THEOREM 6. Let !12 be a bounded domain of the Buclidean space B
1 2
contained in the R-dimensional cube Q, and let Q be the S-dimensional

1
cube; we write Q = .Qx!z?. Consider the class B of smooth functions in Q
satisfying the assumptions made in [I] and containing all the products

Dy, where ¢*e0§°(!§') and y is a function infinstely differentiable in BY and

(%) It can be assumed without loss of generality that p, < p+2m—1.
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1 2
periodic with O 8 D, %2 as period-parallelogram. We suppose that each
function ¢ belonging to B satisfies the conditions

1
(0,) for arbitrary fived x<Q the funetion p(x, —) i8¢ periodic with
5 being the period-parallelogram;
: 1
(C;) when ¢ is prolonged on the domain QXE° by the condition of

periodicity, pe0™(QXE°).

Let L be a differential operator defined in Q and satisfying the assump-
tions:

1° L is an operator of class A with n = 0 and with the coefficients
satysfying conditions (0,) and (C;);

29 for all peB the function L*peB;

3° L can be extended to an operator L, defined in the whole domain £,
in such a way that

(a) Ly s of class A in the domain 2, with n =0,

(b) the coefficients of L, belong to By,

(¢) inequality (0), adapted to the operator Ly and the domain £y, holds
for weB,.

If v is an element of H,,(R2,B) and uwel) H,, (&2, B) is o weak

<

solution of equation (19) with respect to the dlass B, then for each function
1
B0 (Q) the product Du is in Hy, omq(2y, Bp)-
Let % be the weak solution of equation (19), considered in the last
1
two theorems, and let ©' be an arbitrary subdomain of !12; write £’

1 2 . . 1
L Q'xQ. I & is a tunction of class (L) equal identically to 1 on .(3’
and {u,} a sequence of smooth funetions approximating w in the norm
I HHpo,q(n,Bn then

(29) (¢ Pun) = (@, Un)
for all p<Cp (L") and (29) yields in the limit
(30) (p, Du) = (p, %) (peOF(2).

From identity (30) it follows that the distributions I(Du)? and Tu®
are equal in the domain ', and therefore have the same differentiabi-
lity properties (described by theorem 1). If especially p-+2m and ¢ are

. s . 2
nontnegatlve and sufficiently large, and (2 satisfies the assumptions of
sectlon' 2.1 [I], then in view of lemma 7 [I] the distribution Iu* congi-
dered in the domain Q' is identical (in the distributional sense) with some

ﬁ.mcmon having a certain number of continuous derivatives in the clas-
sical sense.
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2.5. In the present section we are going to study some more exam-
ples of boundary conditions and to prove the differentiability theorem
for weak solutions of equation (19) in the case when the operator L is
of a special form.

Consider a domain Q = .(].l?x.é, 2 being the cube defined by the
inegualities 0 <#; <1 (i =1,..., F) and Z) being an arbitrary domain
of the space T%. Liet O, be the cube —1 < @ <1 (i =1, ..., ) and write
£2, u énx!s. If u is & funetion defined almost everywhere in @, we puf,

1 2
for zeQ, and yeQ: (vu)(®1, .oy TRy Y1y -++5 Ys) £ w(laq], ...y lerly ¥y . oes
...y ¥s). Let BY be a class of smooth functions in (2 satisfying the assump-
tions of the introduction, and suppose that each function ueBY
satisfies the following conditions:

2
(C,) each derivative of u is, for fixed yef2, the continuous function

of o in the closed domain 2;

(Op) if @ = (&g, 5.y @g) With @; 5 0 (1 < j < R), then the deriva-
tive DZu vanishes for @; =0 or #; =1 when 0 <&, <1 (k=1,...
venyj—1,§4+1,...,R) and yeQ.

Each function u belonging to BY can be extended on the domain
£, by means of the operation 7, and v is algo a smooth function on account
of condition (C;); we denote by vB® the class of all such extended fun-
ctions and consider the class B® of smooth functions in @, satisfying
the assumptions of the introduction and such that «BY C B®, It ecan
easily be verified that

(31) (v, )0, 5) = 2°(, D)apm) (1w, veBY)
and
= 2R’2”’“”H (2,B(M) for p,0>0,
32 U 2,2 weBM).
(32) Iz “Hp,q(no,B(ﬁ)) > 2RIZ”“HHP’Q(D,B(1)) for p,g<0 (ue )

We shall study the weak solutions of equation (19), I Dbeing an ope-
rator of class A defined in Q with the coefficients satisfying conditions
(C,) and (C,) and the following additional assumptions:

1° a,.pp vanish identically except the case a--a’' being of the form
2y (y = (71, .-, YR), ¥; Don-negative integers);

2° write a+a’ s (8 being not of the form 2y) and let Biyy oees Bip
be all the odd numbers in the sequence (&;; ..., 6g); 80 bawpy vanish
if @ =0 or ; =1 for some j (1 <j <P),when 0 <a <1 (k=1,...,

§—1,i;41,..., R) and ye@.
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The above assumptions are satisfied for example if L is an opera-
tor of class A having the form (for sufficiently differentiable w)

In = (—1)"*PLDL DY (a4 DA DY ) +
|p}=mm
1Bl=|p[=n
+ ) (= )" DD} (b, DL DS )
o<lyl<m
0B, 18'<n
2]+ 181+ 16| <2 (m+n)

with the coefficients a,,s and b, belonging to B®Y. Consider now
the differential operator M defined in 2, as follows:

Mu= N (=1)" P DEDE (0ypp DL DY w),
0<[a1,|u'|<m
0B, 1871 <n
where
Thogpp for |a] = |a'| =m =[f|=mn
(33) =( » ol = m 1f= 1] =,
Thowpp Tor ol o'+ Bl + 18] < 2(m-+n), a-t+a =2y,

and in the remaining case, when |a|+|a’|+ |8+ 18| < 2(m-+-u) but
a+a’ i8 not of the form 2y, we put

(34) ouu'ﬁﬁ'(mly vevy TRy Y1y -"yf'/»S’)
zlbau,ﬂﬂ,(lmll,...,|mR|,;1/1,...,ys) B o@c @, >0,
—bawgp (|B4]y ooy @R, Y1y o0y yg) it By et By < 0.

Notice that, on account of the assumptions concerning the coeffi-
cients of L, all the functions ¢e.m are smooth in ©,. From the defini-
tion of the operator M it follows also that it belongs to the class A in
0, and is related to the operator L by the identity

(35) Lty = M*rp  (peBW),

Suppose now that for all peB™ also LtgeBM, and consider a weak
so}ution % (belonging to some space H, . (2, B™)) of equation (19)
With respect to the class BY, v lying in the space H,,(2, BY). We say
that equation (19) is weakly ewtensible on 2, with réspect to the class
B®, if the following conditiony are fulfilled:

1° there exists a sequence {u,} ({v,}) C B tending to u (v) with res-
g:zg to thell?orm I ”Hpn.qo(n.li(l)) (I llz, o(2,p0) -Such that {vw,} {(zv.}) is

amental in the norm || ”Hro, aolag, 2y (I, (ay50)) and for all sequen-
ces ‘{u,,} ({v.}) with the above property the sequences {ru,} ({zv,}) are
equivalent with respect to the norm I ’

. y:) (@) Uz (9 ,B(M))&
the corresponding limit shall be denoted by Poa(40 2 na

Tﬂo.qou’ (TP,H ,D) H
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2° the identity

(M* 9, Tpoay¥)a,,B®) = (%5 Tp,a)(ayB0)

holds for all yeB®,

Condition 1° is always satisfied when p,, g, and p, ¢ are non-negative
numbers, thus the right-hand side member of equation (19) and the
considered weak solution are functions square-summable in 2. From the
construetion of the operator M it follows, in view of (31) and (35), that

(MFp, Tpn,qnu)(ﬂo,B(z)) = (T, Tp,g?) (52,,82))

for p e B™, thus condition 2° is a little stronger than the supposition,
% being the weak solution of (19) with respect to B™.

Let especially the domain Q and the class B™ be chosen so that
7B% is a subset of the class B, or B,,; thus theorem 3 [I] and theorems
3 and 4 of this paper can be adapted to the study of weak solutions of
equation (19) and so we get the following theorems:

THEOREM 7. Let Q be the N-dimensional cube and let B satisfy
conditions (C,) and (C;). We suppose also that the coefficients of L satisfy
conditions (C,), (Cs) and that inequality (0) holds for the operator M when
weBy, (). If under all the assumptions of the present section equation (19)
is weakly emtensible on Q, with respect to the class By, then ty g i in
-Hp+2m,’l+2n(‘QM -Bp) .

TEEOREM 8. Suppose that all the assumiplions of the present section
concerning the domain Q, the class BY, and the operator L, hold and that
B® = BW,. We suppose also that inequality (0) holds for the operator
M with weB,,, and that equation (19) is weakly ewtensible on Q, with res-
pect to the class Byo. Thus if veH, (2, BY) with p > —m, ¢ = —n,
then Tpg% 18 0 Hpismgion (@0, Bpg). If especially n = 0, this resuli holds
for all p, q, without any restriction. )

It is easy to show that if p, and g, are non-negative, then v, o % is
equal almost everywhere in 2, to the function zu. If also p+ 2m and ¢+2n

are non-negative and sufficiently large and !22 satisfies the assumptions
of section 2.1 [I], then from lemma 7 [I] it follows that 7w is equal almost
everywhere in £, to some function having a certain number of conti-
nuous derivatives and thus « has the same differentiability properties
in 2.

2.6. Finally, we give an example of the boundary value problem,
to which the method described in the preceding section can be applied.

(*) This supposition is certainly fulfilled when the functions Rebaao (jal= m),
Reboogs (|8] = n), and Re bgooo have a sufficiently large lower ‘bound.


GUEST


102 H. Marcinkowska

Let 512 be the open interval 0 < o <1 and 522 the square defined by the
inequalities 0 < y; < 2w, 0 < ¥z < 27 (s0 &2 is a three-dimensional cube,
R =1 and § =2). Let us consider in £ the differential operator L defi-
ned as follows:

Iu 0% ( 0% )+ 02 (a 0% )
YT " owdy.] T 9moy, \ " 0zdy,

] ou 9 ( Bu) 6( Gu)
0 e, 2 T [, ) — L (0, 2 p
o0 (b‘ zm) FR G B v e i B

with
a, = (a(e)+7)(2+5ing,),  a, = (a(e)+ 7)(2+singy),
b, = a(w)+e6, by =1-+4c¢4siny,,
by*=1+c--giny,, b, = 0-+1CORY;CORY,,
where
[ ( 1 ) for <er<l—e
ale) =1 TP \e@—D)Fe(e—1) ¢ 6
0 for O<w<<eorl—e<gao<l,

7 being an arbitrary positive constanht, ¢ some positive number less
than } gnd ¢ a positive constant exceeding the number #, given by lem-
ma 10 [I]. So L is an operator of class 4 with m = # = 1 and satisfies
inequality (0).

Let BY be the class of all infinitely differentiable functions p defi-
ned in Q which satisfy conditions (C,), (C;), and the following additional

e . 1
condition: there exists a eompact K (depending on ¢) contained in 2

“such-that ¢ is not depending on & in (!3-—1{ ) x!g.?. It is clear that the class
B defined in this way and the coefficients of the operator I satisfy all
the assimphions of section 2.5, 8o that theorem 7 is applicable to the boun-
dary value problem under eonsideration. Let v be an arbitrary function

belonging to L*(2) (so p = ¢ = 0), and let us consider a weak golution
4 of the equation

Lu = o

also belonging.to L*(2) and having the property that equation (19) is
weakly extensible on €, (defined by the inequalities —1 <a<l,
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0 < y; < 2m, 0 <y, <2rm) with respect to the class B,. From theorem 7
it follows that zu is in H, ,(£y, B,), and lemma 7 [I] yields that 7u can
be identified with some function lying in P“°(£,). This implies that the
function % can be treated as belonging to P“*(Q) (so % is continuous in
2 and has the derivative of the first order with respect to # also conti-
nuous in £2).

Regu par la Rédaction le 19. 6. 1962


GUEST




