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Introduction

Various mathematiciangy (M. H. Stone, S. Kakutani, M. Krein
and 8. Krein, I. Gelfand and M. Naimark, and others) have established
certain criteria for a space X to be equivalent (in an suitable sense) to the
space 0(R2) of all real- or complex-valued functions on a eompact Haus-
dorff gpace Q. They investigated general properties of such spaces and
created an important method in functional analysis. It enables us to
reduce the proofs of several properties of certain Banach spaces to the
cage of spaces C'(L2). Tho space 2, corresponding to such a Banach space
X, is determined by X uniquely (up to homeomorphism). If X is an al-
gebra satisfying certain conditiong, then 2 may be defined as the set
of all non-zero linear multiplicative functionals over X; if X is a Banach
lattice, then real lattico homomorphisms are considered. If X is merely
a Banach space, some other constructions of £ are known (cf. e. g. [5];
in this case points of 2 are represented by some sets of elements of X or
X*), Thus, in general the definition of 2 depends on the speecific structure
of X. Assuming that a vepresentation of X is established, the points
of Q may be identified with certain linear functionals (namely with
those corresponding to evaluations at points of 2), so we may always
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consider points of 2 as linear functionals over X. No name for elements
of 9 seems to be completely satisfactory. There are many terms
in use; some of them (lke “non-zero real-valued homomorphism”)
refer to a special structure of X and may not be acceptable if we
express X in terms of another theory. The term “point functional”
ig good, but we prefer to reserve it for funetionals which are really
values at some points. B. g. if X is the space C*(T) of all bounded
real-valued continuous funetions on a completely regular space T, then
Q may be identified with the Stone-Cech compactification SI. We
have pT = T'w (BTN\T); functionals of £ corresponding to points of T
are considered as point functionals, but those of FI\T' are not. We
wigsh to have a short generic term to be used for convenience of refe-
rence, which does not assume any special structure of X; we introduee
the term spot fumctional for any element of Q.

Given 2, an element @ of X is represented by the function «(£) =
= E(z) defined for £ ¢ 2. This method, used first by Banach and Mazur
([1], p. 188) in their representation of abstract Banach spaces (defined
axiomatically) as concrete Banach spaces (subspaces of certain spaces
of eontinuous functions), has become one of the most important methods
of functional analysis.

In case the space X ig a space of functions defined on a topologi-
cal space 7T, the following natural question arigses: What are the relations
between elements of £ and points of T'% The purpose of this paper ()
is an answer to this question. The basic notion is that of a localization
point.

A point ¢t of T will be called a localization point of a linear func-
tional ¢ over X if, for any neighborhood U of t and for any pair , y of
functions of X, the condition
(%) oty =y(t) foralliel
implies £(zx) = &(y). If this is the case, then £(x) depends only on the
local behavior of # at ¢ and is actually determined by the germ of # at
t in the sheaf generated by X.

This definition may be introduced for any class of funetions, but
it seems to be particularly appropriate for spaces admitting a C(£)
representation.

The definition of a localization point admits an obvious gemerali-
zation to the case when X is a quotient space obtained from a class of
Tfunctions ¥ by neglecting their values on sets belonging to a fixed ideal

. (91) 9Thesixa presented at Adam Mickiewicz University in Poznat on November
11, 1959.
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2 of subsets of 7. # represents an ideal of “negligible” sets (like sets
of measure 0, or sets of the first category); in thiy case equation (x)
is meant Z-almost everywhere. The case of a quotient space is of course
more general because if Z# is the trivial ideal @ consisting of the empty set
only, then we get the preceding case.

The notion of localization is closely related to that of a generalized

limit abt a point ¢; by & generalized limit at ¢ we mean here o linear fune-
tional £ over X such that

lim # (u) < &(a) < Lm 2 (u)
[T Ut
holds for all # ¢ X'. If we consider X = Y/%, then both lim and Lm are
R-essential limits dofined in a way analogous to that in meagure theory.
In this paper Y is supposed to be a linear subring of the space m (')
of all bounded real-valued functions on T and the constant function 1
is supposed to be in Y. The quotient space ¥/ is a normed space with
the norm
lloll = 51T1P92|m(t)|

where supg denotes the #-essential supremum. If Y iy closed in m(T)
with respect to the uniform econvergence, then ¥/# i equivalent (as
a Banach space, ring and lattice) to a space O(Q).

L(t) denotes the set of all spot functionals over ¥/Z which are local-
ized at #. The First Localization Theorem states that L(f) is always
non-void and

sup {£(0): & ¢ L(t)} = limgo(u)

for all & ¢ ¥ /%, where lim} denotes the #-essential limes superior at ¢
in which the c¢age % = % iy admitted (we assume that 4 ==t in the defini-
tion of limg @ (u); for the details see 1.2).
The Second Loealization Theorem states that if T is compact, then
2 = L(t)
tal'
which means that every spot funcetional has at least one point of locali-
zedion. It noed not be unique (e. g. if ¥ consists only of constant fune-
tions, then L(#) == @ for ocach ¥e7). In order that L(i,) ~L(t,) = @
it ig necessary and sufficient that the space Y /% separate the points
t, and £, in the following senge: there exist neighborhoods U, and U,
of ¢, and #,, respectively, and a function # ¢ ¥/% such that ¥ = 20 on
U, and @ == 41 on U,, where = 5 meang equality Z-almost everywhere.
If T is compact, then every spot functional has a unique localization
point if and only if ¥/# contains (7)) in the sense that every continuous
function on 7' is #-equivalent to some function of ¥.
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The Third Localization Theorem deals with criteria in order that
the set L(T) = J{L(#):t<T} be dense in £; it turns out that this
depends on the following localization property of #: If a subset A of T
belongs to & locally at each of its points, then A 2.

Studying the localization of spot funetionals answers similar ques-
tions concerning loealization of arbitrary linear functionals over ¥/z,
for every such funetional & localized at ¢ can be uniquely represented
in the form

o) = [nl@p@n) (0eX/%)
Lity

where 4 is & Radon measure on &; every generalized limit at ¢ can be
weakly approximated by convex combinations of spot functionals local-
ized at this point.

Localization theorems can be used for investigation of topological
properties of Q; e. g. in some cases they yield existence or non-existence
of countable dense sets.

Most of the results of the paper have been published (without proofs
and under stronger assumptions) in [167] (¢f. also [1B]).

The author is indebted to Professors A. Alexiewicz, W. Orlicz,
C. Ryll-Nardzewski and R. Sikorski for many counsels and suggestions
given during preparation of the paper.

Chapter 1. Quotient spaces ¥ /%

1.1. Notation. We shall consider a triple <T', Y, %) in which T
is any topological space (we agsume only that finite sets are closed), Y is
is a linear class of bounded real-valued functions on 7' containing the
congtant functions and elosed with respect to the finite lattice (?) opera-
tions (i.e. # e Y,y « Y imply #v y ¢« ¥ where (#V y)(f) = max [z (), y(1)]),
and 2 is an ideal of boundary (®) subsets of T (i.e. 4 ¢Z# and BCA
imply BeZ; AeZ and B <% imply 4 o B «%; no open non-void sub-
set of T belongs to ).

We will agsume these conditions throughout the whole paper.

# will be called a o-ideal if A, e® (n=1,2,...) implyJd, ¢ Z.

(*) ¥ Y is any closed subspace of m(T) and contains 1, then it is a sublattice
if and only if it is a subring; if it is not closed, then both notions need not coincide.

() Since local #-essential properties are investigated, we have to assume that
neighborhoods of points are not null set. Let us notice that if & is any ideal with
the localization property (cf. 5.1. and [18]), then the union & of all open subsets of
# belongs to 4 and the space Y (&) is equivalent to ¥, /#, where T; = {y « m(T\G):
y = Restrgw, o ¢ ¥} and #, = Restp\ ¢ 2. )
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We shall uge the following notation:

1,4, w, v ete. will denote points of T (we shall write occasionally
t instead of {t}, e.g. AN\ will denote the difference AN{t} of the set
A and the one-point set {t}. Letters =,y,z will stand for real-valued
functions on. T’ and capital Roman letters A , B, ... for subsets of 7.
Rest, # will denote the function # restricted to A.

@ will denote the family of all open subsets of T and @ () ={GZ:
t « ¥} — that of neighborhoods of i.

a, § being real numbers, «V g will denote max (a, g).

%, = the characteristic function of 4;

N = the set of positive integers;

m(B) = the space of all bounded real-valued funections on H;

0 = the trivial ideal consisting of the empty set only;

Rest, # = {4 ~ B : B ¢ #} = the restriction of & to 4;

I'a) ={y:y <a} and Iy(a) ={y:y <a} are sets of ordinals
with the order topology; w, = the smallest ordinal of power X,; o = c,.

T will denote the set of all points ¢ such that {t} « &%, i. e. the union
of all sets of #. Further notation is introduced in next seetions.

1.2, #-essential supremum and limit. The notion of the essential
supremum used in measure theory may be mutatis mutandis formulated
for any ideal £, though some care is necessary if the ideal is not
a o-ideal because some definitions equivalent for o-ideals are not equi-
valent for arbitrary ideals. We begin by listing some of such admissible
definitions of the 2-essential supremum and infimum over a sef,
denoted by s:ilp@ w or supg{z(f):teA} and i]jfg; o or infap{w(t):ted},

respectively. In a similar way we define the Z-essential limes superior
and limes inferior at a point ¢ of 7. Actually, we shall use two notions:
limg #(¢) will denote such a Limit if ¢ = u is excluded and Hmkz(t) will
denote the #-essential limes superior in which ¢ =u is admitted. If
% e T, then both notions coincide; if u¢ T, then

lim o (f) = max [w(u), limg o(f)].
tau )

Two functions o and y will be called equal Z-almost everywhere
on « set A and wo shall write o, = gy if for every & >0 the geb
{ted: |o(t)—y ()| = ¢} belongs to #. This is not the same ag to say that
{ted: 2(t) £ y(0)} ¢ Z, unless & iy a o-ideal and the gecond notion ig not
appropriate. Similarly, we define # < zy on A if 2Vy = gy on 4.

The formal definitions of the Z-essential supremum and limits are
ag follows: Given any z em(T), let

M 0) = {teT:0(t)< a},
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Supge & =jnf{a:Ar\Ma(m) €@}7 lljlfggw == —[supg@(»-m)]
4 4
(if 4%, then supg s = —oo and i}llf‘gg & = oo). Further,
A
— z(t) if ¢ is isolated in T
i u) ==
ulexm( ) inf {supg ®: G ¢ (¢)} otherwise,
-]
— (1) if ¢ is igolated in T,
limg o(u) = | :
Ut inf {supgew: Gec%(t) otherwise,

]Jmm u)—-hmgw(u), Ti;n*m(u) ma.x[hmw ), 2(8)],

Ut Ut
limg #(u) = — limg [—a(v)], limfa(u) = — Lim} [—a(v)].
prmey U=t e wst

1.2.1. The following relations hold for any A ¢ Z and © e m(T):

(1) supgw _misupm,
ANB
(@) hﬁmw( u) =inf lim @(u),

BsR -t

BYz<aqy on A if and only if {teA:2() >y{)+e} R for each

) >04’) if @ is continuous and @ is open, then supg x = sup ®,
(8) supag® =inf{s1jpy:m =gy on 4}, ¢ ‘
(6) i::lfm <iﬂ.‘fg@.’ﬂ < RUPge 2 < supm = sllp@m,
(1) supse(w+@/) Su;sv z+ supw Yy
(8) mf T < gy on A, then supga: < supgg Y,
(9) if BeZ, then supg;m = iugggw == supggm,

(10) #f 2(t mm[w( )y supg; z], then 2=gx on 4,

(11) +f supgm =a, then & < ga on A,

(12) if 2 20, ¥ > 20, then supg (BVy) = (Sups o)V (Sups ¥),
4 4 A
(13) if oAy =20 on A, then supg|z+y| = supglo—y|,
P 4
(14) if @ is a simple function and @ = 4 0 on A, then {t € A : (1) 0},

(18) Timg [#(w)+ 4 (4)] < Timg (x)-Tng y (u),
Ut Ut sl

(16) if ETQ” [y(w)| =0, then Ii—Ir—ltg[w(uH—y(u)] = limg o(u),

Ut
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1) if o =gy and y 2 g2, then 2 =gy,
) ife<ay, y<as then 2 < a2.

Proof. We shall prove (2), (6) and (18) only. (18) follows from (3)
and from the inelusion ’

{d:2(t) >20)+e CE:20) >y@)+ et o 9@ >20)+Fe);
(6) follows from the fact that if infps > a; > a; > supgw, then {f ¢ 4 :
4 4

) <o}eZ and {fed:2() >ay ¢Z, whence A e#. In order to
gshow (2), let us assume that ¢ iz not isolated and choose £ > 0. There

exists G ¢ #(t) such that '_th z(u) > supg{r(v): ¥ @, u # t}—e. There

exigts, in turn, & B % sueh that supg{m wy:uel@, u ;ét} > sup{x(u) :
% e(N\B, ¥#t}—e >1unm( )—e& whence hmg;w(u) > inf hmm( )—2¢. In
' u!B ut B2 Eg
order to prove the converse inequality, let us choose A ¢# such that
inflime(u) >limz(u)—e and choose G c%(f) such that lim o(uw) >
Be® st Ui u—i
ufB utd o udd
sup {@(u): v e 4, u £ 1}—s. Thenggm(u) >sup{w(u):uw e\ A4,
u¢B

U F 1} —2e Zsupg{w(u): u e AN\A, u # 1}—2¢ > limg 2 (u) —2e.

Thus, (2) is proved.

Since the inequalities above are analogous to those in the usual case
(when £ = @ or % is the ideal of sets of measure 0), we ghall use them
without any referring.

1.2.2. Let A be compact, z e m(T) and supg 2(t) = 1; then there ewists
A
i, e A such that limj »(u) = 1.
Uty

Proof. If lim} # were smaller than 1 for all ¢ ¢ A, then, for every
w e A, there would exist an open set &, and 8, >0 such that u Gy
and 7 < g1— 8, on G,,. Since |Gy D A, there would exist points %,, ..., %,
such that 4 CGy, u ... u G, Whenee z < g1 —min d; and Blipgz 2<1.

1.3. The space Y /%. The relation 2 ~ g if # = gy on T is obviously
symmetric, transitive and reflexive, whence it determines a quotient
space Y /%. The coset corresponding to 2 function #(-) will be denoted
by @/ or shortly by =; conversely, if # is any coset of Y /%, #(-) will de-
note any function belonging to the coset and x(f) will denote the value
of a fixed representative x(-) of the coset # at t. Relation # >y will mean
that #(-) >« y().

The set J = {xe ¥ : 2 ~ 0} is a linear lattice ideal, i.e. yeJ, med
imply #+yed, and zed, |y < |#| imply y eJ. Consequently, the quotient

Studia Mathematica XXIII z. 1 5
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space Y/# =Y/|J i8 a vector lattice (cf. Birkhoff [2], p. 222).
Moreover, J is closed in ¥ with respect to the uniform convergence.
Next, let us write |z = supa{|l@(u|:ueT}.
Tt is a pseudonorm on ¥ and J is exactly the set {y « Y: |ly|| = 0},
whence Y /% is a normed space. Let us notice that condition (5) of 1.2.1
means that supg|e| is equal to |lz|| =in£{sgp [y :e—y e}, i.e to

the standard quotient norm in a normed linear space considered modulo
a cloged linear subset. If Y is cloged in m (T) with respect to the uniform
convergence, then ¥ /% is complete, whence it i8 a Banach lattice satis-
fying the condition |lzVyll = [V Iyl for » >0, y = 0. The cosets
#Vy and wAy contain the functions max[2(t), y(f)] and min[a(2), y(8)],
respectively, so there is mo confusion in using symbols aVy, (aVy)(t)
and so on; similarly « >y if and only if #(-) Z a2y ().

Thus, if Y is closed in m(T), ¥ /# is an M-space in the senge of
Kakutani [7] and 1/ is the unit (*); if ¥ /% is not complete, then its com-
pletion is an M-space. Similarly, if ¥ is a subring of m (T), then J is a ring
ideal in Y, Y/# is a ring and the coset zy corresponds to «(-)}y(:).

& will denote the Banach gpace conjugate to Y /%; it is a Banach
lattice with the usual order: £ > 0 if &(x) > 0 for all » > 0. (5, Y /%)
will denote the *-weak topology of 5 with neighborhoods of the form

V(Eo5 @1y ees Tns €) =kol{§ € Q&0 () — ()| < €}

Throughout the paper 2 or Q(Y, %) will denote the set of all linear
functionals on Y/# satisfying the following conditions:

(i é=0,
(i) E(1) =1 (equivalently, ||&)| = 1),
(i) wAy = 0 implies £(x)E(y) = 0.

It is well known that if ¥ is also a ring, then ©Q coincides with the
set of all multiplicative linear functionals on Y/# excluding the trivial
functional 0. 2 is compaet in the topology o(Z, ¥/%); in the sequel, all
topological notions concerning 2 will refer to this topology. The functio-
nals of Q sabisty the conditions £(xVy) = &(@)V &(y), (@A Y) = E@AE(Y),
|&(w)| = £(lo]), and conversely, each of these conditions is sufficient
in order that a linear functional on. ¥/# of norm 1 belong to £.

The set 2 does not differ if we congider the completion of the space
Y |#; indeed, all linear functionals can be uniquely extended to the com-

pletion and the *-weak topology is finer for the completion, but on the
compact set £ both topologies are equivalent.

(*) We shall denote 1/ simply by 1 if it does not cause any confusion. If # ¢ ¥ /2
then 0 < <1 will stand for 0< o< %l on 7.
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The paper is founded on the following theorem due to S. Kakutani
[7] and to M. Krein and S. Krein [9]:

1.3.1. The map = — (), where x(&) = &(z) for &2, establishes
a one-one, linear, isometric, laltice-isomorphic and ring-isomorphic cor-
respondence between the dlements of Y| and elements of C(Q) and trans-
forms Y [# onto a (strongly) dense subset of C(82); if Y[R is complete, then
it 98 mapped onto C(LQ). :

The functionals of 2 will be called spot functionals.

Now, we recall two well-known theorems:

1.3.2. (Stone’s Continuous Image Theorem). Given two compact Haus-
dorff spaces Q, and Q,, in order that there exist a continuous map from Q,
onto 2, it is mnecessary and sufficient that C(L2,) be linearly, isomeirically
and ring-isomorphically embedded in C(£,) so thei the unit of C(L,) is
mapped onto the unit of C(Q,). If it is so, the mapping 2, — 2, may be
established as the restriction of spot functionals from C(£2,) to C(2,). The
passing from the map X, — X, to £, — Q, is o contravariant functor.

1.3.3. Given any set AC Q, in order that A be dense in £ i is ne-
cessary and sufficient that sup {&(x): & e A} = |@| hold for every = ¥ |Z.

If ¥,, Y, are two linear subrings of m(T) and ¥,CY,, then Y,/2CY,/#
2nd the units in both spaces coincide. Hence, by 1.3.2, we infer

1.34. If Y, C X,, then there exists a natural continuous map o from
Q(Y,, &) onto Q(Y,, &), established by restriction of spot functionals
from Y,[% to Y[R

Another situation occurs, when we consider a fixed Y with various Z.

1.35. If #,C s, then 2(¥, )G Y, ).

Proof. Let X = Y/Z,J = {&: 5 ¢ X, © = 4,0}, then X/J is equiv-
alent to Y /%,. Any funetional £ « 2(Y, %,) may be considered as a real
non-zero lattice-homomorphism on X/J; let &;(x) = &(w-J) for # ¢ X,
x+dJ e X[J. Then &; ¢ 2(Y,%,) and the map & — &; is one-one bicon-
tinuous from Q (Y, %,) onto the set {ne2(Y,#):2e¢d = 5(2) = 0}.

1.3.7. Evidently, the spaces ¥ and Y /Z% do not determine # uniquely,
but there exists a minimal ideal #y such that ¥ [# = Y /%y, which means
that o = gy is equivalent to & = g,y for all #,y¢Y and if ¥/2 =
= Y/, then # D Ry for any ideal # of boundary subsets of 7. Namely,
Ay is the intersection of all such ideals 4.

1.4. Examples. We shall consider two typical classes of spaces Y /2.
1.4.1. Let & be any algebra of subsets of ¥ (the union and com-
plement of any two members of .« are assumed to belong to &), let ZC.o/
be any ideal of boundary subsets and let ¥ be the class of all simple
functions on & i.e. linear combinations of characteristic functions of
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gots of o, Denote Y /% by A(T, o, #). It is well knowri (cf. Kakutani [7])
that Q(Y, 2) is the Stone space of the quotient Boolean algebra o2 |#, i.e. Q
iy a 0-dimensional compaet Hausdorff space such that the algebra of all
open-closed subsets of 2 is isomorphic to the algebra of cosets of the form

AR = (B esl : (A\B) v (B\A) < Z}.

1.4.2. Let # be any c-ideal of boundary subsets, of 7' and Y be the
clagy of bounded funetions with the set of point of discontinuity belong-
ing to %&. The spaces # (T, %) = Y /% are considered in [18]. A typic-
al guch space is the class of Riemann integrable functions considered
almost everywhere and the corresponding set 2 iy the Stone space of the
quotient Boolean algebra of Jordan measurable subsets considered up
to sets of meagure 0.

1.5. Point functionals. Let t, e T\ T'». Then condition # = zy im-
plies #(%,) = y(t,). Thus, the symbol (%) is well defined for all » ¢ ¥ /Z,
and the functional & (%) = @(ty) belongs to £2:, such functionals Wlll
be called point functionals. Obviously, if £ < ng, the symbol & (as a func-
tional on Y /#) is meaningless.

L3.1. If # = 0, then set the Q, of all point functionals is dense in
Q=9Y,0). ‘

Indeed, o = sup{|e(t)|:¢eT} = sup{|&(»)

1.3.3. -

Now, we shall say that the values x(t,) of funoctions ® e ¥ |Z at o point
ty € TNT do not depend on the behavior of @ on a subset A of T'if there exist
functions #,y ¢ Y/Z such that » = 5y on A and (%) # y(f,). A point
ty e TN\ T will be called free (with respect to ¥ /%) if the values of functions
of Y[Z at ¢, do not depend on their behavior on I™\{, (i. e. if there exists
a function 2 ¢ ¥/Z such that z =5 0 on T\, and 2(t,) = 1).

1.5.2. If t, is free, then &, is isolated in Q.

.Indeed, then Y/# = B'x Y |%,. where %, = ZV{t}, and we apply
a theorem of §. Eilenberg ([5],.p. 579). On the other ha.nd if & is isola-
ted, then it need mot be free (e. g. lot ¥ = {w e m(T): u(t,) = a(h)},
thén’ 551 =&, is isolates and wneither point is free).

|1 £} and we apply

)

Chapter II. Points of Ioculization and generalized limits

2.1. Definitions and examples. A point ¢ of T is said to be a lo-
calization point of a linear funetional & over Y/# it the following con-
dition ‘is satisfied: If , y are any two elements of Y|% and # = gy on
& neighborhood of 7, then &(z) = £(y). S(f) will denote the set of all
linear funetionals over Y/.% loca.hzed at ¢; L(t) will denote Z(f) ~ 2 and
L({4) = U{L{E) :t e A}. : :
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A funectional & over Y /% is said to be a generalized limit at - point
t of T if the inequalities

]lmszm () < é(@) < hmgm(u)

hold for every » ¢ Y/%#. K (f) will denote the set of all generalized limits
at tand Ly(t) = K (1) ~ 2. Obwously, KE({#)CE(t), Ly(f) CL(X). If & e K (1),
then [[£]] =1 and & = 0.

2.1.1. The sets Z(t) and K (1) are closed in E with respect to the *-weak
topology o(E, Y |R); consequently, L(t) and L.(t) are compact subsets ‘of
Q. E(t) is l'inea,r and K (t) is convew for each tel.

We omit the easy proof. The point funetional & corresponding to
a point t e TN Tg (cf. 1.5) always belongs to L(t). It may belong to L,(t)
(e. g. in the case ¥ = C(T), T compact, Z = @), butb it may also belong
to L(t)\L,(t), e. g. if ¢ is a free point (ef. 1.5.2).

If 7 = N and if Y is the class of convergent sequences {#(n)}, then,
for each % ¢ N, L(n) consists of one point functional &,; &.(x) = lima(n)
has no localization point in N (it would have one if we considered the one-
point compactification I'(w) of N = I'y(w)).

7T =1I(o0), ¥ =m(T) and if # consists of two sets {w} and 9,
then L(w) consists of 2° generalized limits (cf. Cech [3], p. 831, M. H.
Stone [22], Mazur [13], Kelley [8]).

2.2. Equivalent conditions. Let us write
=UJUwiy=a aon T},
Ued(i)

U {y:y=g aon U\i}

U ()

I(t,a)
Iu(t7 a) =

2.2.1. Let & 2. Bach of the following conditions is necessary and
sufficient in order that t be a localization point of &:
“ (1) for each y « Y[R, y e I(¢, 0) implies &(y) = 0,

(2) for each y ¢« Y|, y e L(t,1) implies £(y) =1,

(8) for each y « Y[R, yeI(t,0) and 0 <y <1 imply £(y) =0,

(4) for each y «e Y|Z, yeI(1,1) and 0. <y <1 imply E(y) =1.

If we replace I(t, a) by I,(t, a), we obtain characterizations of the
Sfunctionals of Ly(2).

Proof. We prove only that (4) =
and Ue¥(f). Let 2 =1—
whenee, by (1),

0 =1—¢(z) = E(1)—&(2) = £(1
and 0 = &(lyl) = £()]-

(1). Suppose that ¥y = 50 on U
(lyJALl). Then 2 =41 on U and 0 <2 <1

—a) = E(JyIAL) = E(lWHAL
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9222, Lot Ec5. Then £eE(3) if and only if
& < &l Supa !
holds for any y Y| and U e (1).

Proof. Necessity. Let £e¢B(t), yeY/%, Ue%(t) and let 2z =
supg {ly(#)|:4 U} (2 is a constant function on T). Then zAly| = |y|
on U, whence

& < 1E1yD) = [&1eA ly]) < [€l(2) = (|4l SUpa vl
where |&] = £V(—¢&) in the lattice Z.
Sufficiency. Let y = 0 on U, then 0 < [£(y)| <|\&]|supaly| = 0.
U

223. Let £e¢B, £ >0, ||& =1. Then the following conditions are
equivalent:

(1) &eE(),

@) Ued(t) and o <ay on U imply £@) < £y),

(3) igfgy < E(y) < supgy for cach y e Y& and U e %(1),

U
(4) &(y) <Lmgy(u) for each y e Y|,

Ut

(5) limpy(u) < £(y) <lim}y(u) for each y <¥ |2,
i Url

Ut

(6) fuﬂt;‘,m(u)«a[ =0 implies E(z) = a.

The proof is analogous to that of 2.2.2.

224, Let £e8, £ 20, £ =1 and let t be an acoumulation point
of T. Then the following conditions are equivalent:

(1) £ K(1),

(2) Ue%(t) and © =gy on UNI imply &(x) = E(y),

B)Y Ue¥d(t) and 5 220 on U\ imply &£(x) >0,

4) Ue F(t) implies £(w) < supg{z(u):ue U}

(8) &(m) glj:allggm for any x < Y|4.

Ut

Proof. We prove only that (2) = (3). Let @ > 40 on U\t and let

2=0V0, then ¢z =gz on U\Z, whence 0 < £(2) = £(»).

2.3. First Localization Theorem. Tt concerns exigtence of loealized
functionals and generalized limits and relations between them.

THEOREM 1. The sets L(tumd Ly(t) are not empty, and
(i) sup {£(@): & e L(8)} = limpa(u),
)
(i) sup{&(w): & e Lo(t)} = limg @ (u)
st
hold for all x < Y|%. Analogous statements hold for inf and limg. The sets
L(t) and Ly(t) do not coincide if and only if ]i—ﬂl_j, 2 (w) #Ti?nmvm—(u) for some
Ul Ut
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we Y. If L(t) # Ly(t), then t ¢ Ty and L(t)\Lo(t) consists of ezactly
one functional £,(z) = x(1). Thus, L,(t) is always open and closed with
respect to L(t).

Proof. First we prove that L,(f) is non-empty, whence so is L(t)
a8 L(t) D Ly(d). By 2.2.1, Ly(t) = N {P(»): 2 € Z}, where ®(zx) = {£ ¢ 2:
Eo)=1} and Z={r<Y/%:0 <z <1}, vel,(t,1). Since all sets
&(z) are non-empty and compact in Q and since ®(z,) ~ ... » Da,) =
= P(wA...A%,) # @, L, is non-empty, too. Now, let us consider the
following cases:

1° t e Ty, then clearly L(t) = L(f).

2° ¢ ig isolated in 7', then also L(#) = Ly(?).

3° t e TN\ T# and is not isolated. Let %, be the ideal generated by #
and i. Let P(z) = x/%, for x « Y/Z (to each coset 2(')/# we assign the
coset #()/%), let Q(z) = (P(z), #(t)) e Y/%, X B*. Then P: Y[R — Y |4,
is onto and Q: Y/# — Y |®,x F* need not be onto (it depends on the
behavior of funetions of ¥; ¢f. 1.5.2). Thus, the adjoint P* maps the
conjugate of Y /%, into Z and maps the set I, (?) of all spot functionals
over Y /%, localized at t onto L,(f). Since P is onto, the deficiency of
Q(Y|%) in Y%, x B is at most one (because @ composed with the natural
projection w of Y /%, X E' on Y [#, is onto), hence the image of the con
jugate of ¥ /%, under @* has also deficiency at most one. Since P = =@,
P* = @*z*, whence the only functional in L(t) which is not in the image
of L,(t) is &.

The proof of equation (ii) will consist of a number of steps; (i) is
a trivial consequence of (ii) and of the foregeing argument.

Let Z, = { e Y/#:0 <o <1, limge(u) = 1}. We shall prove that
ud

for each y &Z, there exists &, e L,(t) such that & (y) =1. Fix y,eZ;.
Let # be the family of all sets Z contained in Z, with the following prop-
erties: y, <%, and if 2,,...,%, €Z, then z;A...A%, «Z. # is non-empty
because the one-point set {y,} belongs to #. Standard application of
the maximum principle (°) yields existence of a set Z, maximal in 4,
i. e. such that Z, e.# and conditions Z C Z, and Z < .# imply Z = Z,.
The family of sets ®(z) with # « Z, has the finite intersection property
whence there exists &, in all sets @(z), # € Z,, simultaneously.

We now prove that & eLy(t). Let Ue%(t), 2¢Y|#, 0 <z <1
and 2 = g1 on UNU Let Z, = Z, w {¢} U {gA 5 : 2 « Zi}. Clearly, if o « Z,,
then 2Ay,A® ¢ Z;, whence Z,C Z,. Since the minimum of any finite
family of elements of Z, belongs to Z,, Z, belongs to .#. Since Z,, i8 maxi-
mal, Z, and Z, coineide. Thus, we have shown that z < Z, whence £, ¢ D(z),
i.e. £4(2) = 1. By 2.2.1, & e Ly().

(%) Cf. Hausdorff [6], p. 140, and Kuratowski [11].
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In the sequel El’g.gg will refer to our fixed point ¢.

Suppose that @ is any element of ¥ /Z and a = sup{&(x) : £ € L,(2)}.
We are going to show that a = Elgg 2(u). The inequality « <Engm(u)
is obvious, and we suppose that the equality did mn_ot oceur. Let y = oA a;
then limgz y = a. Evidently, if we prove that limg|z—y| = 0, then we
shall be through, so suppose that f —hmg —y} >0 and consider
7= (@—y)|ALl. Since 0 <z <1 and limg 2 =1, by the preceding
part of the proof, there exists £, ¢ Ly(¢) such that & (z) = 1. This yields
a eontradiction

1= &) = (87 E(l—y)IAL = [B7 & (@) — & ()|IA L ==

a8 &(y) = &y (2)A a = &,(»), and this ends the proof of Theorem 1.

It yields existence theorems for generalized limits (in the case # = @
such theorems have been proved by Mazur [13] and Sikorgki [19]).

2.3.1. Let ACQGCT and let G be open. If & belongs to the closure
(in Q) of L(A), if 2« X[ omd if 2 < ga on G then £(z) < a.

We omit the proof.

2.3.2, Let £ Q. Then & el}( if and only if the conditions 2 « Y |4,
0<2<1 and &£(2) =1 imply 111'[).322( ) =1.

Proof. Necessity follows from Theorem 1. In order to prove the
sufficiency, assume that £ satisfies this condition and # ¢ Y/, 0 <o <
and # =40 on U, Ue%(f). If £(z) were positive, we would eonsid.er
y = [(§w)” 2JAL and get 0 <y <1 and £(y) = 1, whence Himjy(u) =1
and lim} z(u) = é(z) > 0 contradicting the choice of .

Some applications of Theorem 1 are gshown in [18]; e. g. it yields
easily the proof of existence of a countable dense. set in the Stone space

of the Boolean algebra of Borel subsets of [0, 1] modulo sets of the first
category.

Chapter IIl. Uniqueness of a localization point

3.1. Separation of T by ¥/#. Uniqueness problem for the point
of localization can be stated in the following way: What are the neces-
sary and sufficient conditions in order that L(u) ~ L(v) = 0 for u = 0%
‘We shall also consider a related problem: When does L(u) # L(v) hold?
In both cases some separation properties are involved.

The space Y /% will be gaid to separate points u and v of T if there
exists 2z in Y /% such that
(%) hmg, o(t) < lim} w(i).

Py
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In the case e.g. when u ¢ T4 and v ¢ Tp this means existence of
y € Y/% such that '

limg y(t) <limey(f) < y(v)
e =

and so on. Y /Z is said to separate T if it separates each pair of distinet
points.

3.1.1. Y /% separates w and v if and only if there exisiz ¢« ¥ |&, U ¢ ¥(u)
and V e 4(v) such that 0 <2<1,2=900n Uandz=g1lon V.

Proof. Sufficiency being obvious, let us assume (++). Let ¢; = ]j_E; (1),
o

¢, = limy o () and b = (c,—¢,). Then, by the definition of lims and
t—>u

limg, there exist neighborhoods U and V of u and v, respectively, such
tha,t 2 >gc—bonVand 2 <gc,+bon U. Lety = b~ (z—ecy-1-0) and

= (LAY)VO. Then y < g0on U,y >zl onV,0<z<1land 2=40
0nl’andz=5,00nT :

3.1.2. Given w and v in T, L{u)~ L(v) =@ if and only if Y|
separates w and 9.

Proof Sufficiency follows from 3.1.1; assume that L(u) ~ L(v) = O.
By 2.1.1, there exists & continuous funetion f on 2 such that 0 <f <1,
f=0o0n L(u) and f =1 on L(»). By 1.3.1, f corresponds to some zx in
Y/® and £(x) = 0 for &eL(u) and £(x) = 1 for & e L(v), whence ¥ /Z#
separates « and v by Theorem 1.

3.1.3. If Y /% separates T, then T is a Hausdorff space.

3.14. If %, &, and Y |#, separates T, then so does Y [Z,. If Y, C ¥,
and Y ,|% separates T, then so does Y,[%.

The proofs of 3.1.3 and 3.1.4 are trivial.

3.2. Partial separation. Y /% is said to separate partially u and v
if there exists #e Y/# such that

Hm} 2(t) # Lmj»(5).
t-u v

It u ¢ Tq and v ¢ Tq, this separation may be « obtained by different
values at % and v, or by different values of limg efe.

3.2.1. L(u) % L(v) if and only if Y|R separates partially w ond v.

We omit the easy proof.

Similar conditions may be stated for uniqueness of Lg(f).

3.3. Examples. If Y contains only the constant functions on T,
we have no separation and L(¢) = Q for all ¢ <7 (2 has one.element
only).
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If T is completely regular, then C*(T) separates T'; if T is a Haus-
dorff space, then m(T) separates T.

3.3.1. Let 7 = [0, 1], let ¥ be the class of all functions such that
{t: () 0} is countable and let ¥ = {w+-const: @ enX}. Then ¥ = Y /0
does not separate any pair, but it does separate all pairs partially.

33.2. Let T, =1, and T, =TI, and let ¢: T, - T, be defined
as follows: @(w) = @, ¢(0) = w2, @(2m) =m—1 for 1 <m < w and
e(@m—1) = o+m. Let ¥ = {wlpt)]:2 < C0(Ty)}. If y<¥ CO(T,) and
9 = 0 in a neighborhood of w, then 4 (0) = 0 ag well, so the points 0 and
o are not separated by ¥ = Y /@, but they are partially separated and
L(0) C L(w).

3.3.3. Let T = [0, 1], let Y be the class of all functions on 7' which
are uniformly continuous on the open interval (0, 1) and such that z(0) =
= lim #(¢), (1) = lim x(¢).

i1 =0

Let & = 0. Then L(0) = L(1) and both sets consist exactly of two
funetionals &,(z) = 2(0) and £,(z) = «(1). Thus, existence of » ¢« Y /%
guch that «(u) # #(v) does not imply the partial separation.

3.3.4. Modify example 3.3.3 assuming that # is spanned on 0 and 1.
Then Y /% separates 7. This shows that in the definition of separation
we may not require that there existy a representative #(-) « ¥ of a coset
# such that »(u) <limga(t) < limgn(l) < #(v).

s t—v

3.3.5. There exist <T, ¥, Z) and ¢ such that ¢ is isolated in T, ¥ /%
separates T, L(t) = {&} and & is not isolated in Q.

Indeed, let T be I'y(w,) together with an isolated point %, let
Z = 0 and Y be the class of all functions continuous on 7 with #(t) =
= lim z(a).

ooy
3.4. Continuity of the localization point. If Y /# separates T, then
each & ¢ Q has at most one localization point (by 3.1.2); let us denote
it by 1(&). Thus, it is a function defined. on a subset of 2 and is onto
T, and L(B) = I-Y(B) for each BCT.

34.1. If T is completely regular and C*(T)C Y, then 1 (T) - T
8 continuous (I iz well defined by preceding remarks).

Proof. We have to show that L(F) is closed in L(T) whenever F
is elosed in T (of course, L(T) need not be elosed in £2). Let & ¢ L(T)N\L(F).
Then ¢ = 1(&) ¢ I'\F', whence there exists z ¢ 0*(T') such that 0 <z <1,
# =1 on a neighborhood U of t and # = 0 on an open set G containing 7.
Hence £(z) = 1 and 5(2) = 0 for 5 « L(F), whence £ is not in the *-weak
closure of L(F).

3.4.2, Suppose that ¥, and Y, are two subrings of m(T) and ¥,C Yy,
and let o: Q(Y,, &) — Q(¥,, Z) be as in 1.3.4. If t is a localization point
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of a functional £eQ(Y,R); then it is a localizaiion point of o(&). If T
is completely reqular and C*(T)C Y,, then the converse is also true.

Proof. First part is obvious. In order to prove the converse, let us
assume that ¢ is the localization point of o(&), z ¢ ¥,/#, 0 <o <1,
Ue%(t) and £ =40 on U. There exists 4 ¢« C*(T) such that ¥y =1 on
IN\U and y =0 on V for some V e« #(t). Hence y =g vxon T and ye ¥,
‘whence

0 < &) < &(y) = (cd){y) =0,

and we apply 2.2.1.
Chapter IV. Localization when T is compact

4.1. Second Localization Theorem. We shall prove that if T' is com-
pact (not necessarily Hausdorff), then L(7) = 2 which means that every
spot functional on ¥ /# has at least one localization point. If T = T,
then this means that any spot functional is a generalized limit at a point.
If Y /% contains enough continuous functions, then the converse theorem
is also true, i.e. 2 = L(T) implies the compactness of 7. \

Before the formulation of the Second Loealization Theorem we prove
the main part of it in a very simple and suggestive case when we con-
gider the space L, of essentially bounded measurable funections.

Let T = [0, 1], let # be the ideal of all sets of Lebesgue measgure 0
and let ¥ be the class of bounded measurable functions. Then Y/# = L.
For any & e Q consider two intervals 4, = [0, 3] and 4, = [}, 1] and
their characteristic functions @, and x,. Since x, +2, = 1 and , -, = 0
(almost everywhere), &(z,)4 &(x,) = 1 and £(=z,) &(2,) = 0. Hence either
E(x,) =0 and &(x,) =1 or &(z;) =1 and £(»,) = 0. Consider this in-
terval for which £ is equal to 1 and eontinue the argument. We get a de-
creasing sequence of closed intervals A®, A®, .. such that &(y,m) = 1.
Tt is easy to check that the common point of these intervals is the local
ization point of £.

THEOREM 2. Let T be compact. Then:

(i) L(T) = 82, i.e. each &2 has at least one localization point;

(ii) If Y/|% is complete and separates T, then it contains C(T) in the
following sense: For each fumclion 2z continuous on T there exisis ye Y
such thatz = gy on T;

(iii) If Y /% separates T, then the map 1 (cf. 3.4) is a continuous map
of 2 onto T corresponding in & natural way to Stone’s continuwous map of
the structure space of Y [% onto that of C(T).

We shall prove this theorem in a number of steps.
41.1. If FCT and F is compact, so ts L(F).
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Proof. Let F be compact; we have to show that f(lﬂ) is closed

i Q2 Let EcL(F), Z="{ccX/#:0<2<1, £(z) = 1} and A(s) =
= {ieF: lim}2(u) = 1}. By upper semicontinuity of Limj, all sets
U—t

A(z) are closed for z¢Z. We s}lall show that A(2) @ for ze¢Z. If
some A (z) were empty, then for each ¢ < F there would exist & > 0 and
o neighborhood U, of ¢ such that ¢ <gl—eg on Uy Let Ty,..., U,
be a finite subcovering of F; then 2 <gl—eon ¢ = U, w ... v Uy,
where ¢ = mineg,, whence &(2) < 1—e by 2.3.1. This contradicts z<Z.
Hence A(2) # @ for any 2 ¢Z. Since A (=) ~ ... ~A(2,) D A(#A ... A%,)
and A ...A#, ¢ Z whenever 2 ¢Z%,...,%,¢Z, the family {4(2)},z<Z,
has a non-empty intersection. By 2.3.2, any point of this intersection
is a localization point of £, whence & e L(F). This concludes the proof
of 4.1.1.

Now, if T is compact, then by 1.2.2 and by Theorem 1, L (7T) is dense
in @, whence L(T) = Q by 4.1.1; thus, condition (i) of Theorem 2 has
been proved. The other two will be proved in 4.2.

4.1.2. Let. T be completely regular and let O*(T)C Y. If L(T) = Q
then T s compact.

‘This is & trivial consequence of 3.4.1. Of course, the condition I(T) =
= ( itself does not imply the compactness of T (e. g. if ¥ congists of
congtant funetions only).

)

4.2. Approximation of &ontinuous functions by functions of ¥/Z.
If T'is completely regular and O*(T)C ¥, then Y/# separates T'; the
converge theorem is obviously false (e.g. T locally compact and ¥ con-
sisting of functions vanishing at infinity). We shall show, however, that
if T is compact, then this converse is true in a certain sense, stated in
condition (ii) of Theorem' 2. It is a generalization of the Stone-Weier-
strass theorem which follows from (il) by substituting & = 0.

4.2.1. Let T be compact and Y (% separate T. For cach pair By and
Fy of disjoint closed subsets of T there emists 2z ¢ Y such that 0 <z <1 ,
2=g0 on F, and 2 =41 on F,. .

Proof. Fix v e F,. For each u ¢ F', there exist (by 3.1.1) open neigh-
borhoods U; and V, of u and », respectively, and # ¢ ¥ such that
(] gz,(w) Sliorall weTl, =40 on U, and 2, =41 on V,. Take
a finite covering T,,...., Uy, of P, and consider V = Vo oon ¥y,
and § = z; A...A#% . Then Ved(),ye ¥,y =40 on Fyand y =41
on V. Let 4, =y.

Now, consider all possible v e Fy; a similar argument yields our
lemma.
From lemma 4.2.1 we deduce conditio

n (ii) applying ciaséieal argu-
ments and completeness of ¥/2. ‘ ’
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4.2.2. There exist a compact space T and Y[R separating T such
that C(T) is not contained in Y.

In other words, in condifion (ii) of Theorem 2 we cannot replace
2 =gy by 2 =1y, cf. example 3.3.4. )

Condition (ii) of Theorem 2 means that each z¢C(T) determines
a coset of ¥/# and in this sense we have a natural embedding of ¢ (T)
into Y /Z which is & linear isometry, a ring and lattice isomorphism and
transforms 1 of C(T) onto 1 of ¥/#. Thus, by 1.3.2, there exists & con-
tinuous map p: 2 — T defined as follows: Take & « Q; then &, = Restgr) &
is & non-zero multiplieative linear functional on C(7) whence &y(x) =
= (1) for all ¥ « C(T) and a certain i ¢ T'; define ¢ = p(£). Let I(£) be
the localization point of £ By 3.4.2 applied to the subrings ¥; =Y and
Y, =C(T) (¢f. 3.1.3), we infer that ¢(&) = I1(&) and this concludes the
proof of Theorem 2.

By condition (iii) of Theorem 2, the decomposition

2 = UL

is semicontinuous. Tt need not be continuous, as the following example
shows: Let T = {¢®:0 < ¢ < 2x}, let ¥ be the elass of all functions
y on' T which are continuous at z 7 1 and have one-side limits at 2 = 1,
let % be the ideal of subsets of {1}. Then Q is homeomorphie to [0, 1]
and I: 2 — T is the identification of the ends 0 and 1; since ! is not
open, the decomposition 2 = | JL(f) is not continuous.

4.3. Generalized compactification. Given a triple (T, Y, %), we
may ask if it can be embedded into another one <{T,, ¥, %,)> such that
T, is a compactification of T and ¥ /Z is equivalent to ¥,/#, in a natural
way; by Theorem 2 every spot functional over ¥,/#; woud have a loca-
lization point in 7,, whence every spot fumetional over ¥/Z would
be considered as localized at a point of 7, (bub not necessarily atb
a point of T). The following construction generalizes the Stone-Cech one,

4.3.1. Let T be completely regular and O*(T) C ¥. Let T, = 8T and
(%) teT,

o (1) =
(%) te TN\T,

where f, iy any fixed point of 7. Then the class ¥, = {#,: % ¢ ¥} and
the ideal £, of all sets of the form R v A with R ¢ Z and 4 C T\ T satis-
fy conditions of 11. Clearly, Y/# and ¥Y,/%, are equivalent in a natural
way, Y/%, separates T, and each spot functional on ¥ /% corresponds
to a unique spot functional over Y,/#,; which has a unique localization
point in T,. ' .

If Y does not contain all functions of C*(T) but if ¥ ~ C*(T) sepa-
rates points from cloged sets in T, then we may consider another com-

for

for
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pactification as 7T,. E.g. if T is locally compact we may consider any
functional of ON\L(T) as localized at infinity. For related questions, cf,
Edwards [4].

4.3.2. Let T = \J T, be completely regular, T, be compact and let

n=1
C*(T)C Y. A spot functional & over Y| belongs to L(T) if and only if
ihe conditions w, ¢ O*(T), @, <1 and sup{|z, ()] :teTy} -0 as n -0
(E=1,2,...) imply &(m,) —>0.

Proof. Necessity. If ¢ is the localization point of & and teT,
then &(w) = a(t) for all 2 « C*(T) (by Theorem 1), whence we infer our
condition.

Sufficieney. If the condition above is satisfied, then there exists
a Radon measure x on BT concentrated on I' such that £(s) = [adp
for all @ e C*(T) (ef. e. g. [17]); at the same time, £ being a spot fune-
tional, &(x) = @(f) for some ¢e ST whence uniqueness of u yields teT.

4.4. Application to Boolean algebras. We shall show that Theorem 2 .

yields a proof that the Stone space of the Boolean algebra of Lebesgue
measurable subsets of [0, 1] modulo sets of measure zero does not contain
a countable denge set.

44.1. Let T be an uncountable compact Hausdorff space and u an
atomless positive Radon measure on T which does not vanish on any open
non-void set. Let A be the algebra of Borel sels and # be the ideal of seis
of measure 0. Then no countable set is dense in Q = Q[A(T, o, R)]
(ef. 1.4.1).

Proof. Assume that u(T) =1 and #,, 7,, ... belong to Q. We are
going to show that this sequence is not denge in Q. For each # there exists
t, such that 9, < L(t,) and there exists G, ¢ 4(¢,) such that u(G,) < 27"%

Let o be the characteristic funetion of B = T\ | G,. Thus

=]
#(EB) =1—p(UG,) = 1—Su(@) > 1,

whenee [z}l = 1. Since © = 0 on each @,, 5,(w) = 0 for all n. By 1.8.3
f, I8 not' dense in Q.

4.5. Applications to investigation of Q. In most important cases,
if ¥/# is not separable, then the power of 2 is greater than that of con-
tinuum and the topological structure of Q is fairly complicated. In soxme
cases Theorem 2 helps us to establish properties of ©. Lot us consider
some examples.

4.5.1. Let T =[0,1], let ¥ be the class of bounded functions with
one-side limits af each point of T and let % = ¢. The corresponding set
£2 can be decomposed into 2 = | J {L(t) 14« T} and each set L (t) consists
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of three functionals

Glo) = a(t), (o) =a@+), L@)=a{-)
whenever 0 <t <1 and of two functionals if ¢ =0 or { = 1. Hence 2
is homeomorphic to the ordered set 2+ 31+ 2 (where 1 is the order type
of the real line and multiplication denotes the lexicographical produet)
with the order topology. 2 is a eompact non-metrisable Hausdorff space
with the first axiom of countability.

If #, is the ideal of finite sets, then an analogous argument shows
that Q(X /#,) is homeomorphic to 142441 (space obtained from [0, 1]
by “splitting each point ¢ into two halves ¢, and 1_"). If %, is the ideal
of sets of measure 0, then Y/%#, = Y/%, and we may consider Y /%,
as a subring of Z/#Z, = L, where Z is the class of bounded measurable
functions. Clearly the set L(t) of all functionals of 2(Z/%,) is split into
two parts L(t4-) and L({—) obtained as the counter-images ¢(i4) and
@{t—) where ¢ is the natural map of Q(Z/%,) onto Q(Y|4%,) (ef. 1.3.2
and 1.3.4).

4.5.2. If T is the square 0 <% <1, 0 <o <1, if ¥ is the class
of bounded measurable functions on 7 and £ is the ideal of sets of meas-
ure 0, then for each spot functional £ over L_(T) there corresponds
a localization point ¢ and “localization direction” « in the following sense:
If A is any triangle of vertex ¢ and such that all points ¢+ la belong to
the interior of A for 0 < 4 << 4,, 4, being a positive number, then # = 5 ¥
on A implies &(z) = £(¥).

Chapter V. Sets L(4) with 4 cT

5.1. Third Localization Theorem. The set L(T), i.e. the set of all
gpot functionals localized somewhere in T, need not exhaust 2. By Pro-
position 4.3.1, some spot functionals may have localization points in
BIN\T, but density of T' in BT enable us to expect that L(T) must be dense
in 2. We shall show examples that it need not be the case even if 0*(T) C ¥,
but density of Z(T) holds under some agsumptions concerning .

Z# will be said to have the localization property if for any set 4 not
belonging to # there exists a point £« A such that G ~ A ¢ Z for every
G e %(1); in other words:

A A% =@ implies A <2,
where A% ig the set of points at which 4 does not belong locally to 2
(ef. [12], p. 34, and [18]).

Z will be said to have the weak localization property if for any set A
not belonging to # there exists a point te«7T such that G~ 4 ¢Z for
every G ¢ %(f); in other words:

A® = O implies A ¢ %.
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The former property is essentially stronger than the latter (cf. [187).

TeEorEM 3. Let B be a subset of T such that I™\B ¢ & and &y = Regtp %
has the weak localization property with respect to B, then L(B) is dense in Q.

In particular, if # has the weal localization property (with respeot
to T), then L(T) is dense in £.

Proof. Let #z¢ ¥Y/Z%. Then, by Theorem 1 and Lemma 2 of [18],

fl2ll = SUDe | = s]gpgzlwl = §UDay o]

= gup
teB

= sup{&(j2|): &< L(B)}.

Hence L(B) is dense in 2 by 1.3.3.

Now, we shall state some corollaries and remarks.

5.1.1. If T is a separable meiric space and # is any o-ideal, then for
each B <« Z the set L(T\R) is dense in L.

5.1.2. If & is dsolated in Q and & has the weak localization property,
then & e L(t) for some teT.

5.1.3. If # does not have the weak localization property, then there
ewists X such that L(T) is not dense in Q.

Proof. Let ¥ = m(T). By Lemma 2 of [18], there exists @ ¢ m(T)
such that |z =1, 0 < <1, and 1?1?;; 2(u) = 0 for each te<T; apply
1.3.3 and Theorem 1. -

Proposition 5.1.3 does not mean that if # does not have the weak

localization property, then L(T) is not dense in 2 for any elass ¥ sabis-
fying conditions of 1.1; indeed, consider ¥ = O*(T).

5.1.4. There ewist o compact Hausdorff space T, an ideal & with the

-weak looalization property, o class ¥ and o set B ¢ # such that L(TNR)
28 not dense in Q. )

| = sup sup [£(x)]

lim, [o(w)
trd e gLl

Proof. Let 1 be the order type of (0,1) and let I he the lexico-
graphical product Axw, (i.e. (a, ) < (', ') if B< B’ or f=p and
a<e'). Then H is a locally compaet Hausdorff space in the order to-
pology (°); let T be the ome-point compactification of H. Let % be the
ideal of countable sets in T and ¥ = m(T). Then L(H) is not dense
in L(T) = 2, because if A containg exactly one point of each set
Ax{a}, aelo(w), and @ =y, then |of =1 and limgw = 0 at every
point of H, whence &(2) = 0 for every & e« L(H).

(°) This is a space obtained from T,

. (w1) by replacing each point by an open
interval and is called long Jine. V.Y TeR € r v ?
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5.2. Isolated points in £. The conversion of 1.5.2 is not always true;
an isolated point of Q need not be a point functional (e. g. if 7' is an un-
countable set, # the ideal of countable sets and ¥ contains only con-
stant functions). Under the assumptions of Theorem 3, a partial con-
verse is true.

5.2.1. Suppose that & has the localization property and Y|R separa-
tes T. Then any spot functional £ isolated in Q is a point functional.

Proof. By Theorem 3, there exists a unique  « 7' such that £ « L(#),
because L(T) is dense in £ and {£} is open in Q. If ¢ is isolated
in T, there is nothing to prove, so let us suppose that ¢ is not isolated in T H
we are going to show that &¢L,(f). There exists 2« ¥Y/# such that
£(2) =1 and 7(2) = 0 for 9 # £, 5 « Q. Hence sup{|&(2)| : £ e L(u)} = 0
for any % # ¢ and any 2« ¥ /#, whence lim}|z(v)| = 0 (by Theorem. 1).

U

Since # has the localization property, 2 = 50 on T\t whence &(z) >
limg2(u) and & ¢ Lo(t). -
Ut

5.2.2. If Y|% separates T, if & has the localization property and if
Te =T, then Q is dense-in-itself.
It follows from 5.2.1.

5.3. Topological properties of sets L(4). We shall show that very
few can be said about the ecommon properties of all sets L(T) or L(¢).

5.3.1. L(T) need not be o Borel subset of Q.

Proof. Let T be a dense non-Borel subset of [0, 1], let £ = 0 and
let ¥ be the class of functions uniformly continuous on 7. Then 2 = [0, 1] .
(up to homeomorphism) and L(T) = T.

5.3.2. If F is any compact Hausdorff space, then there exist T, ¥, R)
and teT such that L(t) s homeomorphic to F.

Proof. Let 7, F,, ... be a sequence of copies of F and O B> F,
be homeomorphisms onto. Let 7' be the one-point compactification
of the digjoint union F, v F, v ... with  being the point at infinity.

Let

Y= U{{em(D): 2[p,(t)] = a(t) for n =1,2,...}
60(F)
and let # = {t}, @}.

- Chapter VI. Integral representation of localized functionals .

6.1. Representation of functionals of 5(f) by integrals over L(t).
This section will be devated to localization of non-multiplicative func-
tionals.

Studia Mathematica XXIIT z. 1
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6.1.1. For each t T, the set E(t) is a complete sublatlice of E, i, e.
‘Lf f,‘E E(t) fO’V‘ all » and & = \/{-‘n 6504:8'!87 then E ¢ E(t).

Proof. By a theorem of F. Riesz ([14], p. 179),

E(a) = SUP{Exl(wl)*f" st Ewn(mﬂ/): Tyt ooty =2, 8 = 0}
for any @ 3> 0. Suppose that 0 <2 <1 and z =40 on U, U %(1).
Then @; = &0 on U whenever @, +...~-o, =2 and ; >0, whence
E(m) =0 for i =1,...,n and &) =0.
6.1.2. A functional & over Y|# of the form

£(a) = [n(@)p(dn),

where u 18 a Radon measure on 2 (ef. 1.3.1), has a localizalion point at
if and only if u is concentrated on L(t), i. e if

@)= [ n(@)uldn)
L{t)
holds for each x e X [#. .

£ is a generalized limit of t if and only if p =0 and [y =1 =
L) = ulLoH)]. ,

The set K (t) of such limits is the smallest *-weakly compact conver
set containing Ly(t) and Z (1) is the *-weak closure of the linear span of L(1).

Proof. Sufficiency of such representations follows from 2.1.1 as the
integral is a *-weak accumulation point of linear or convex combinations,
respectively.

To prove necessity it is enough to show that K (t) is the *-weak elo-
sure-of conv L, (1) (actually points of L,(?) are extreme in K (¢)) and apply
theorems on *-weak closednesy of sets of measures; for (i) the proof
is analogous.

Suppose that 5 ¢ Cl eonv Ly(t), then by a theorem of Krein and
Smulyan [10], there exists w, e Y/# such that 5(z,) >1 and {(z) <1

for all { e Ly(t). Hence, by Theorem 1, limg x,(w) < 1 and % cannot be
sl

a generalized limit by 2.2.4.

6.2. Localization of functionals represented by finitely additive
measures. Every linear functional & over A(T, &/, %) (cf. 1.4.1) can be
represented as &(z) = [#(t)»(dt) where v is a finitely additive set fune-
tion of bounded variation defined on /%, i.e. v is defined on & and
vanishes on #. & is a spot functional if and only if »(4 ~ B) = »(4)»(B)
for any two sets 4, B of o (equivalently, if v(A) is a zero-one set function)
and »(T) =1 (cf. Smulyan [21], Yosida and Hewitt [23]).

Aceording to Yosida and Hewitt ([23], p. 48), a finitely additive

set function » on o//# is called purely findtely additive if no non-zero
o-additive measure u can satisty 0 < n < .
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6.2.1. If £ € Q, then the corresponding v is either o-additive or purely
finitely additive.

Indeed, if £ is a spot functional, then the lattice ideal generated by
£ in E is one-dimensional.

6.2.2. Let t be a Gypoint of T and let Ay, A,, ... be a sequence of sets
of o7 such that (4, = {t} and t is an interior poini of each A,,. Let & ¢ L)
and §(x) = [adv. Then if it is o-additive, v(t) =1; if t « Ta, then v is purely
finitely additive.

Proof. First part follows from 2.2.1, as
(1) =limy(4,) =limé(y,,) = 1.

The second part follows from 6.2.1.
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On the differentiability of weak solutions
of certain non-elliptic equations II

by

H. MARCINKOWSKA (Warszawa)
Introduction

In the first part of this paper (which will be quoted here as [I])
a theorem was given concerning the periodic weak solutions of certain
partial differential equations of non-elliptic type. The differentiability
properties of such solutions were described with the aid of some Hilbert
spaces, which have been defined in the first chapter of [I]. In the present
paper we are going to prove some further properties of these Hilbert
spaces and to study the differentiability of weak solutions of the mentio-
ned equations under some special boundary conditions.

We recall some definitions and notations of [I]. Let 2 be the pro-
1 2

duet of two domains: £ of the space B¥, and @ of the space ES (R+8 =
= N), and let (3°(2) be the class of all complex-valued functions which
are infinitely differentiable in 2 and whose all the derivatives are square
summable in 2. We denote by B a linear subset of the class 0&°(2) con-
taining the class 07°(£) which has the following properties:

1 2

1° for each function peCf(Q) or peC0y (L), and for each ueB, the
functions gu and yu are also in B,

2° for each ueB all the derivatives of u are also in B.

B, .. denotes the subset of the class B consisting of all functions

1 2
(@, y) which vanish for zeQ2—K and yeQ, when K is a compaet con-
1

tained in £ (depending on «). B_ , has the same meaning when the roles
of # and y are interchanged. Let especially 2 be the N-dimensional cube;
80 B, denotes the class of all functions infinitely differentiable in BV
which are periodic with 2 as period-parallelogram.

We have defined in [I] the two-indices norms for w05 (£2) as follows:

““”%Ic == IIDZuH}z a)?
(@)
otk
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