Determinants in Banach spaces

by

R. SIKORSKI (Warsaw)

§ 1. Terminology and notation. X is a Banach space, \(X^* \) is the dual of \(X \). \(x, y, z \) denote elements of \(X \), and \(\xi, \eta, \zeta \) — elements of \(E \). \(\xi x \) is the value of \(\xi \) at \(x \). \(E \) is the Banach algebra of all bounded endomorphisms in \(X \) (called also operators), with the unit \(1 \). If \(y = A x \) is a bounded endomorphism in \(X \), then \(\eta = fA \) denotes the adjoint endomorphism in \(E \). Endomorphisms (operators) will often be interpreted as bilinear functionals \(\xi Ax = \xi (A x) = (A \xi) x \). For fixed \(x_0, \xi_n \) the symbol \(x_0, \xi_n \) denotes the one-dimensional operator \(Ax = x_0, \xi_n x \).

\(T : E \) is said to be quasinuclear if there exists a bounded linear functional \(F \) on \(E \) such that \(\xi TX = F(\xi x) \). Then \(T \) is denoted by \(T_F \), and \(F \) is called quasinucleas of \(T \). E.g. if \(x_0, \xi_n \) are fixed, then \(F(A) = \xi_n A x_0 \) (or \(A e E \) is a functional on \(E \), denoted by \(\xi_n x_0 \), which is a quasinucleas of \(x_0, \xi_n \). All functionals in the closure of the set of all finite sums \(\sum z_i x_i \) are called nuclear. If \(F \) is nuclear, then \(T = T_F \) is called nuclear and \(F \) is the nucleus of \(T \). For any quasinucleas \(F, F(I) \) is called trace of \(F \) and denoted by \(Tr E \). The space \(Q \) of all quasinucleas is a Banach algebra with multiplication: \(F_G(A) = \xi F_I(A x) \). The canonical mapping \(F \to \xi \) is a ring homomorphism. We write sometimes \(F_{e_0}(\xi x) \) instead of \(F(T) \).

§ 2. The determinant system for an \(A \in E \) is an infinite sequence

\[
D_1, D_2, D_3, \ldots
\]

such that: (1) \(D_1 \) is a scalar; (2) for \(n > 0 \), \(D_n(\xi_1, \ldots, \xi_n) \) is a \(2n \)-linear functional on \(E^* \times X^* \), skew symmetric in variables \(\xi_1, \ldots, \xi_n \) and skew symmetric in \(x_1, \ldots, x_n \); (3) \(D_2(\xi_1, \ldots, \xi_n) \) interpreted as a function of \(\xi_1 \) and \(x_1 \) only, is a bilinear functional on \(S^* \times X \) of the form \(\xi_1 C x_1 \), where \(C \in E \); (4) for an integer \(r \), \(D_r \) does not vanish identically (the smallest \(r \)
§ 5. Effective analytic formulae for a determinant system. For any quasinucleus F, let

\[D_n(F) = \sum_{m=1}^{\infty} \frac{1}{m!} D_{n,m}(F) \quad (n = 0, 1, 2, \ldots), \]

where

\[D_{n,m}(F) = D_{n,m}(F)[\xi_1, \ldots, \xi_n]_{\sigma_1, \ldots, \sigma_m} \]

\[= \int_{F_{n+1}(\pi_{n+1})^{-1}} \ldots \int_{F_{n+1}(\pi_{n+1})^{-1}} \xi_{n+1} \ldots \xi_n \sigma_{n+1} \ldots \sigma_m \]

The sequence (called the determinant system of F)

\[D_k(F), D_k(D_k(F), D_k(D_k(F), \ldots) \]

is a determinant system for $A = I + T_F$. Moreover,

\[D_{n,m}(F) = \begin{bmatrix} s_1 & m-1 & 0 & 0 \\ s_2 & s_1 & m-2 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ s_{n-1} & s_{n-2} & \ldots & s_1 \\ s_n & s_{n-1} & \ldots & s_2 \end{bmatrix} \]

\[T_\alpha^m = \begin{bmatrix} 0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0 \\ \Delta_{n,m}(F) & \ldots & \Delta_{n,m}(F) \end{bmatrix} \quad (m = 1, 2, \ldots), \]

where $s_n = \text{Tr}(F^{\alpha}) = F(T_F^{\alpha-1})$, and T_α^m is the $2n$-linear functional

\[T_\alpha^m(\xi_1, \ldots, \xi_\alpha, \ldots, \xi_n) = \sum_{i_1, \ldots, i_n=1}^{m} \det(\xi_1 T_{i_1}^{\alpha}, \ldots, \xi_n T_{i_n}^{\alpha}) \]

is a determinant system for A.

§ 6. First fundamental theorem. If $A \in B$ has a determinant system, then A is Fredholm. This is the order r is 0, then $A^{-1} = D_1(A)$. If $r > 0$ and $\sigma_1, \ldots, \sigma_r, \pi_1, \ldots, \pi_r$ are fixed elements such that $\delta = D_1(\eta_1, \ldots, \eta_r) \neq 0$, let $\zeta_1, \ldots, \zeta_r, \sigma_1, \ldots, \sigma_r$ and $B \in E$ be such that, for all ξ, σ:

\[\begin{align*}
\zeta B x &= \delta^{-1} D_1(\eta_1, \ldots, \eta_r, x, y_1, \ldots, y_r, \sigma_1, \ldots, \sigma_r) \\
\zeta x &= D_1(\eta_1, \ldots, \eta_r, y_1, \ldots, y_r, \sigma_1, \pi_1, \ldots, \sigma_r) \\
\zeta x &= D_1(\eta_1, \ldots, \eta_r, x_1, \ldots, x_r, \sigma_1, \pi_1, \ldots, \sigma_r) \\
\zeta x &= D_1(\eta_1, \ldots, \eta_r, y_1, \ldots, y_r, \sigma_1, \pi_1, \ldots, \sigma_r)
\end{align*} \]

Then ζ_1, \ldots, ζ_r are linearly independent in E, and so are η_1, \ldots, η_r. The linear equation $Ax = x$ has a solution $x = 0$ if $\zeta_1 \eta_1 = 0$ for $i = 1, \ldots, r$; then $x = B x_0 + \alpha_1 x_1 + \cdots + \alpha_r x_r$ is the general form of the solution. The adjoint equation $J A \xi = \xi$ has a solution $\xi = 0$ if $\zeta \xi = 0$ for $i = 1, \ldots, r$; then $\zeta = \xi B = \xi_1 \xi_2 + \cdots + \xi_r \xi_1$ is the general form of the solution.

§ 4. The second fundamental theorem. If A is Fredholm, then A has a determinant system. The determinant system of A is determined by A uniquely up to a scalar factor $\neq 0$.

§ 5. Examples of determinant systems. (a) Let X be the m-dimensional space, and A an endomorphism in X, determined by a square matrix (a_{ij}). Let $D_0 = \det(a_{ij})$. For $0 < n < m$, the set of all algebraic minors obtained from (a_{ij}) by omitting n rows and n columns is an m-covariant and m-contravariant tensor, i.e., a $2n$-linear functional $D_n(\eta_1, \ldots, \eta_n)$ on $\mathbb{R}^m \times X$. Let $D_0(\eta_1, \ldots, \eta_n) = \det(\xi a_i)$, and $D_n = 0$ for $n > m$. Then D_0, D_1, D_2, \ldots is a determinant system for A.

(b) If X is any Banach space, and $A \in E$ has the inverse A^{-1}, then

\[\begin{align*}
D_0 &= 1 \\
D_0(\xi_1, \ldots, \xi_n) &= \det(\xi_1 A^{-1}, x)
\end{align*} \]

is a determinant system for A.

\[\begin{align*}
D_n(\xi_1, \ldots, \xi_n) &= \sum_{i_1, \ldots, i_n=1}^{m} \det(\xi_1 T_{i_1}^{\alpha}, \ldots, \xi_n T_{i_n}^{\alpha}) \\
&= \sum_{i_1, \ldots, i_n=1}^{m} \det(\xi_1 T_{i_1}^{\alpha}, \ldots, \xi_n T_{i_n}^{\alpha})
\end{align*} \]
§ 7. Some identities for the determinant system (4). Let

\[D_\delta(F; x_1, \ldots, x_n) = \lim_{\varepsilon \to 0} \frac{D_\delta(F + \varepsilon F_0) - D_\delta(F)}{\varepsilon}, \]

and, by induction

\[D_\delta^n(F; x_1, \ldots, x_n) = \lim_{\varepsilon \to 0} \frac{D_\delta^{n-1}(F + \varepsilon F_{n-1}) - D_\delta(F; x_1, \ldots, x_{n-1})}{\varepsilon}. \]

We have

\[D_\delta(F) \left(\xi; x_1, \ldots, x_n \right) = D_\delta^n(F; \xi; x_1, \ldots, x_n). \]

\[D_\delta(F) \] is the only analytic solution (in \(Q \)) of the differential equation

\[D_\delta(F; F_1 + F_2) = D_\delta(F) \cdot D_\delta(F_2) \]

with the initial condition \(D_\delta(0) = 1 \).

For \(|F| < 1 \),

\[D_\delta(F) = \exp \text{Tr} \log(J + F), \]

where \(J \) is the abstract unit added to the algebra \(Q \). For all \(F_1, F_2, F_3 \in \mathfrak{Q}, \)

\[D_\delta(F_1 + F_2 + F_3) = D_\delta(F_1)D_\delta(F_2)D_\delta(F_3) \]

(\text{theorem on multiplication of determinants}), and

\[D_\delta(F) = D_\delta(F) \cdot D_\delta^*, \]

where \(D_\delta^* \) is defined by (1) with \(A = I + T_F \).

§ 8. The case where \(X \) is the one-dimensional space. Then formulas (2), (3) yield the algebraic determinant system described in § 5 (b).

§ 9. The case where \(X, \mathfrak{F} \) are spaces of measurable functions defined on a set \(F \) with a measure \(\mu, \xi \in \mathfrak{F}(x, t) \) be a function such that the functional \(F(x)(K) = \int \mathfrak{F}(x, t) x(t) d\mu(t) \) is continuous on the class of integral operators \(K: Kx(s) = \mathfrak{F}(x, t) x(t) d\mu(t) \). Let \(F \) be any extension of \(F_\delta \) over the whole \(E \). Then (4) is the determinant system for the integral equation

\[x(s) = \int F(x, t) x(t) d\mu(t) = x_\delta(s), \]

and \(T_F \) is the integral endomorphism with the kernel \(\mathfrak{F}(s, t) \). The determinant system (4) does not coincide, in the case \(X = C \), with the original Fredholm determinant and subdeterminants. The Fredholm determinant system coincides with the sequence \((D_\delta(F)) \), where

\[D_\delta(F) \left(\xi_1, \ldots, \xi_n ; x_1, \ldots, x_n \right) = D_\delta(F) \left(\xi_1 T, \ldots, \xi_n T ; x_1, \ldots, x_n \right) = D_\delta(F) \left(\xi_1 T x_1, \ldots, \xi_n T x_n \right) \]

and \(T = T_F \). The same integral formulas for (13) can be written as in the case investigated by Fredholm.

§ 10. The case of infinite square matrices. Substituting in \(\xi = x \) the set of positive integers with a trivial measure, we get a generalization Koch's theory of determinants and subdeterminants of infinite square matrices.

§ 11. The non-uniqueness effect. Observe that the canonical mapping \(F \mapsto T_F \) is not one-to-one; consequently the determinant system (4) for \(A \) is uniquely determined by \(F \), but if it is not uniquely determined by \(A = I + T_F \). In many concrete cases we know that the canonical mapping is one-to-one on the class of all nuclei. Then, if we restrict ourselves to examine only the operators \(A = I + T \), where \(T \) is nuclear, we can uniquely assign, to every \(A \) of this form, a determinantal system, viz. the system (4) where \(F \) is the only nucleus of \(T \). In the general case we cannot prove that the canonical mapping is one-to-one on the set of all nuclei. The problem whether the canonical mapping is one-to-one on the set of all nuclei is equivalent to the problem whether every compact endomorphism is a uniform limit of a sequence of finitely dimensional operators.

Observe that, for every quasinucleus \(F \), the sequence

\[(D_\delta(F)) \exp (-T_F + 4T_F^2) \]

is also a determinant system for \(A = I + T_F \) and is uniquely determined by \(A \) only! The sequence

\[(D_\delta(F)) \exp (-T_F) \]

has the same property, provided \(T_F \) is a uniform limit of finitely dimensional operators. However, in the case where \(X \) is a finitely dimensional space, neither (15) nor (14) coincides with the algebraic determinant system \(\Sigma 5(a) \).

§ 12. The Carleman determinant system in \(L^1(F, \mu) \). If the kernel \(\mathfrak{F}(s, t) \) of the integral equation (12) is such that \(\int \mathfrak{F}(s, t) x(t) d\mu(t) \) is in \(C \), the determinant system (4) does not exist, in general. However, the expressions (15) remain sensible and give a whole determinant system for (12).
Формула механических кубатур называют обычно приближенной формулой

\[\int_{\Omega} \varphi(x) \, dx = \sum_{k=1}^{N} \lambda_k \varphi(x_k), \]

где \(\Omega \) — некоторая область в мером пространства, точки \(x_k \) суть такие точки внутри этой области, а коэффициенты \(\lambda_k \) — задания системы чисел. Ошибка формулы зависит от функции \(\varphi \). Для различных классов функций эту ошибку можно оценивать по разному. В пространствах \(C^m \) (\(m \geq 1 \)) и \(W^{m,p} \) (\(m > n/p \)), как это следует из теорем вложении, функционал

\[(l, \varphi) = \int_{\Omega} \varphi(x) \varphi(x_k) \]

является дифференцируемым. Максимум такого функционала на единичной сфере в \(W^{m,p} \) может быть найден эффективно. Ниже будет показано, как это произойдет. Искомое выражение для максимума можно поставить задачу о нахождении

\[\min \{ \max \{ l, \varphi \} \} \]

в \(C(x_0, C) \) для всех \(x_0 \) в \(\mathbb{R}^n \).

т. е. о построении оптимальной формулы механических кубатур с заданным числом точек, что представляет собой задачу о нахождении экстремума функции конечного числа переменных.

Напомню, что формула механических кубатур определяется нормой в \(W^{m,p} \) в смысле

\[\| \phi \|_{W^{m,p}} = \| \phi \|_{L^p} + \| \partial_j^m \phi \|_{L^1}, \]

где \(S^{m-1} \) пространство многочленов степени \(m-1 \), \(L^1 \) фактор, пространство

\[L^1 \hookrightarrow W^{m-1,p} \]