

STUDIA MATHEMATICA, T. XXIII (1963)

Reflexivity and summability*

Ъv

TOGO NISHIURA and DANIEL WATERMAN (Detroit)

A theorem of Banach and Saks [1] asserts that any bounded sequence in $L_p(0,1)$ or $l_p(p>1)$ has a subsequence whose (C,1) means converge strongly. Kakutani [4] later showed that for weakly convergent sequences in a uniformly convex Banach space the same conclusion holds. Since uniformly convex spaces are now known to be reflexive [5, 7, 8], "weakly convergent" here may be replaced by "bounded". Schreier [9] has shown that the theorem of Banach and Saks cannot be extended to C[0,1]. Thus we observe that for a subclass of the reflexive Banach spaces the conclusion of the Banach-Saks theorem holds and for some non-reflexive Banach spaces the theorem does not hold. We shall show (Corollary, Theorem 2) that Banach spaces for which the Banach-Saks the orem hold are reflexive. Two natural questions which arise are:

- 1) Are there reflexive Banach spaces which are not uniformly convex and for which the Banach-Saks theorem holds?
 - 2) Is reflexivity equivalent to a summability property?

In § 1 we give a class of spaces for which the Banach-Saks theorem holds which includes the isomorphs of uniformly convex spaces. By exhibiting examples we show the inclusion to be proper. In § 2 we give an affirmative answer to the second question. In § 3 we give a summability property which, in a Banach space with a Schauder base, implies that it is boundedly complete.

- 1. Consider the class of Banach spaces satisfying the property:
- (*) There is a $\theta \in (0,1)$ such that in every sequence $\{x_n\}$, $||x_n|| \leq 1$, which converges weakly to zero, there is a pair x_{n_1}, x_{n_2} such that $||x_{n_1} + x_{n_2}|| < 2\theta$.

Kakutani has shown ([4], p. 191), that every uniformly convex space satisfies another formulation of this property. The equivalence of these formulations is easily seen. It is clear from the proof of Kakutani that

^{*} This research was supported by the National Science Foundation Grant NSF-G24841.

54

this property implies that a weakly convergent sequence has a subsequence whose (C, 1) means converge strongly. Thus, in the class of reflexive Banach spaces satisfying (*), which includes the uniformly convex spaces, the Banach-Saks theorem holds.

Let B_i be the *i*-dimensional space of points $b_i = (b_{i1}, \ldots, b_{ii})$ and let $||b_i|| = \sup_{j \leq i} |b_{ij}|$. For p > 1, let $P^p\{B_i\}$ be the class of sequences $b = \{b_i\}$, $b_i \in B_i$, and $||b|| = (\sum_{j=1}^{\infty} ||b_i||^p)^{1/p} < \infty$. Day [2] has shown that the

Banach space $P^p\{B_i\}$ is reflexive, but not isomorphic to any uniformly convex space.

THEOREM 1. The spaces $P^p\{B_i\}$ have property (*).

Proof. Suppose $\{b^n\}$ is a sequence in the unit ball of $P^n\{B_i\}$ which converges weakly to zero.

Given $\varepsilon>0$, there exists an N such that $\sum\limits_{i>N}\|b_i^1\|^p<\varepsilon^p$. Since weak convergence to zero implies coordinatewise convergence to zero, we have, for n sufficiently large, $\sum\limits_{i>N}\|b_i^n\|^p<\varepsilon^p$. Then

$$\begin{split} \|b^1 + b^n\| & \leqslant \|(b_1^1, \, \dots, \, b_N^1, \, b_{N+1}^n, \, \dots)\| + \|(b_1^n, \, \dots, \, b_N^n, b_{N+1}^1, \, \dots)\| \\ & = (\sum_{i \leqslant N} \|b_i^1\|^p + \sum_{i > N} \|b_i^n\|^p)^{1/p} + (\sum_{i \leqslant N} \|b_i^n\|^p + \sum_{i > N} \|b_i^1\|p)^{1/p} \\ & \leqslant (1+1)^{1/p} + (\varepsilon^p + \varepsilon^p)^{1/p} = 2^{1/p} (1+\varepsilon). \end{split}$$

Thus we see that (*) holds for $\theta \in (2^{\frac{1}{p}-1}, 1)$.

2. A summability method T is a real matrix (c_{mn}) , $m=1,2,\ldots$, $n=1,2,\ldots$; the T-means of a sequence $\{x_n\}$ are $t_m=\sum\limits_{n=1}^\infty c_{mn}x_n$. T is said to be regular if x_n real, $x_n\to x$ (finite), implies $t_m\to x$. The theorem of Toeplitz and Silverman gives the following necessary and sufficient conditions that T be regular:

- 1) $\sum_{m=1}^{\infty} |c_{mn}| < H$ for all m,
- 2) $c_{mn} \to 0$ as $m \to \infty$ for all n,
- 3) $\sum_{n=1}^{\infty} c_{mn} \to 1$ as $m \to \infty$.

We will be particularly interested in a class of methods which in addition to being regular have the property

4)
$$\sum_{n=1}^{\infty} |c_{mn}| \to 1$$
 as $m \to \infty$.

A matrix satisfying this requirement will be called essentially positive.

We obtain the following property from the theorem of Banach and Saks by replacing (C, 1)-summability with general methods. A Banach space is said to have property $\mathcal S$ if for every bounded sequence there is a regular summability method T and a subsequence whose T-means converge strongly.

A Banach space is said to have property $w\mathscr{S}$ if for every bounded sequence there is a regular method T and a subsequence whose T-means converge weakly.

Since the insertion of columns of zeros into the matrix T does not affect the conditions 1) through 4) and we do not require that the same T be used for all sequences, property \mathscr{S} ($w\mathscr{S}$) is equivalent to the existence of a regular method T for each bounded sequence such that the T means of the sequence converge strongly (weakly).

THEOREM 2. For a Banach space B the following three statements are equivalent:

- (i) B is reflexive.
- (ii) B has property \mathcal{S} with essentially positive T.
- (iii) B has property $w \mathcal{S}$ with essentially positive T.

Proof. If our sequence is bounded and the Banach space is reflexive then there is a weakly convergent subsequence $\{x_n\}$ with weak limit x. According to a well known theorem of Mazur ([6], p. 81), there exists a sequence of finite convex combinations of x_n which converge strongly to x. Thus there exist $c_{1n} \ge 0$, $n = 1, \ldots, n_1$, $\sum_{n=1}^{n_1} c_{1n} = 1$, such that $\left\|\sum_{n=1}^{n_1} c_{1n} x_n - x\right\| < 1$. Omitting x_1, \ldots, x_{n_1} from consideration, we can find $c_{2n} \ge 0$, $n = n_1 + 1, \ldots, n_2$, such that

$$\Big\| \sum_{n=n_1+1}^{n_2} c_{2n} x_n - x \Big\| < 1/2.$$

Proceeding in this manner, we find a sequence of convex combinations with coefficients (c_{mn}) , $n_{m-1} < n \le n_m$, where $n_0 = 0$, such that

$$\Big\| \sum_{n=n_{m-1}+1}^{n_m} c_{mn} x_n - x \Big\| < 1/m.$$

If we define $c_{mn} = 0$ for $n \notin [n_{m-1} + 1, n_m]$, then $T = (c_{mn})$ is a positive regular method which meets the requirements of the theorem. Thus (i) implies (ii).

Clearly, (ii) implies (iii).

Let us now assume that our space has property $w\mathscr{S}$, that $\{x_n\}$ is a sequence in U, the unit ball, that $T=(c_{mn})$ is an essentially positive

regular method and x is the point of our space such that $t_m \to x$ weakly. If we demonstrate that $x \in U$ and, for every continuous linear functional f, $\lim_{n \to \infty} f(x_n) \leqslant f(x) \leqslant \overline{\lim} f(x_n)$, then U is weakly sequentially compact ([3], p. 48), which implies that the space is reflexive. Since $t_m \to x$ weakly,

$$\|x\| \leqslant \underline{\lim} \|t_m\| \quad ext{ and } \quad \|t_m\| = \Big\| \sum_{n=1}^\infty c_{mn} x_n \Big\| \leqslant \sum_{n=1}^\infty |c_{mn}| o 1,$$

we see that $||x|| \leq 1$, or $x \in U$. We have for fixed N,

$$\begin{split} \inf_{n>N} \{f(x_n)\} &= \lim_{m\to\infty} \Bigl\{ \sum_{n\leqslant N} c_{mn} f(x_n) + \sum_{n>N} c_{mn}^- f(x_n) + [\inf_{n>N} \{f(x_n)\}] \sum_{n>N} c_{mn}^+ \Bigr\} \\ &\leqslant \lim_{m\to\infty} f(t_m) = f(x) \,. \end{split}$$

Thus we have $\liminf_{n \to \infty} f(x_n) \leq f(x)$. $f(x) \leq \overline{\lim} f(x_n)$ may be demonstrated in a similar fashion.

Since the (C, 1)-method is a positive regular summability method, we have, at once, the

COROLLARY. Banach spaces in which bounded sequences have subsequences whose (C,1) means converge strongly are reflexive.

3. In a Banach space, a Schauder base $\{\Phi_i\}$ is called boundedly complete if $\left\|\sum_{i=1}^n a_i \Phi_i\right\| < M$ for all n implies that $\sum_{i=1}^\infty a_i \Phi_i$ converges.

Theorem 3. A Schauder base in a Banach space with property $w\mathscr{S}$ is boundedly complete.

Proof. Suppose $\|\sum_{i=1}^n a_i \Phi_i\| < M$ for all n. Then there is a regular method $T=(o_{mn})$ and a point $x=\sum_{i=1}^\infty b_i \Phi_i$ such that the T means of

$$x_n = \sum_{i=1}^n a_i \Phi_i$$

converge weakly to x. We will show that $a_i = b_i$ for all i. We have formally

$$t_m = \sum_{n=1}^{\infty} c_{mn} x_n = \sum_{i=1}^{\infty} a_i \left(\sum_{n=i}^{\infty} c_{mn} \right) \Phi_i.$$

We verify this identity by demonstrating the equiconvergence of the two series;

$$\begin{split} \| \sum_{i=1}^N a_i \Big(\sum_{n=i}^\infty c_{mn} \Big) \varPhi_i - \sum_{n=1}^N c_{mn} \sum_{i=1}^n a_i \varPhi_i | \\ &= \left\| \sum_{i=1}^N a_i \Big(\sum_{n=i}^\infty c_{mn} \Big) \varPhi_i - \sum_{i=1}^N a_i \Big(\sum_{n=i}^N c_{mn} \Big) \varPhi_i \right\| \\ &= \left\| \sum_{i=1}^N a_i \varPhi_i \sum_{n=N+1}^\infty c_{mn} \right\| < M \sum_{n=N+1}^\infty |c_{mn}| \to 0 \quad \text{ as } \quad N \to \infty. \end{split}$$

Thus

$$\sum_{i=1}^{\infty} \left(a_i \left(\sum_{n=1}^{\infty} c_{mn}\right) - b_i\right) \varPhi_i \to 0 \;\; \text{weakly as} \;\; m \to \infty$$

which implies that for each i.

$$\lim_{m\to\infty} \left[a_i \left(\sum_{n=i}^{\infty} c_{mn} \right) - b_i \right] = a_i - b_i = 0.$$

References

[1] S. Banach et S. Saks, Sur convergence forte dans les champs L^p , Studia Math. 2 (1930), p. 51-57.

[2] M. M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. AMS 47 (1941), p. 313-317.

[3] - Normed Linear Spaces, Berlin 1958.

[4] S. Kakutani, Weak convergence in uniformly convex spaces, Tôhoku Math. J. 45 (1938), p. 188-193.

[5] — Weak topology and regularity of Banach spaces, Proc. Imp. Acad. Tokyo 15 (1939), p. 169-173.

[6] S. Mazur, Über konvewe Mengen in linearen normierten Raümen, Studia Math. 4 (1933), p. 70-84.

[7] D. P. Milman, On some criteria for the regularity of spaces of the type (B), Doklady Akad. Nauk SSSR (N. S.) 20 (1938), p. 243-246.

[8] B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), p. 249-253.

[9] J. Schreier, Ein Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), p. 58-62.

DEPARTMENT OF MATHEMATICS WAYNE STATE UNIVERSITY

Reçu par la Rédaction le 7.8.1962