Intermediate spaces and interpolation

by

A. P. Calderón (Chicago)

E. Gagliardo and J. L. Lions and S. Krein have given methods to construct "intermediate" spaces between two Banach spaces. In the present note alternative approaches to the construction of intermediate spaces are given.

Let B be a complex Banach space in which two additional norms $||x||_1$ and $||x||_2$ are defined. A norm is a subadditive homogeneous function on B which vanishes only at zero. We assume that $||x||_i \leq ||x||$, $i = 1, 2$, and $||x||_1 + ||x||_2 \geq C||x||$, $C > 0$, where $||x||$ is the norm of x as an element of B. Then there exists a norm $||x||_0$, which also only vanishes at zero and such that $||x||_0 \leq ||x||_i$, $i = 1, 2$.

1. Consider now functions $F(s)$ with values in B which are continuous and bounded in the strip $0 \leq R(s) \leq 1$, $s = s + it$ and analytic in $0 < R(s) < 1$. Define in this class \mathcal{F} of functions the norm $||F|| = \max \{\sup \{||F(it)||_0, \sup \{||F(1+it)||_0\}\} \}$ and given s, $0 \leq s \leq 1$, and $s \in B$, define

$$||x||_{1,s} = \inf_{n \to \infty} \{||F_n||\}$$

where the infimum on the right is taken over all Cauchy sequences $F_n(s)$, i.e., such that $\lim_{n,m \to \infty} ||F_n - F_m|| = 0$, with the property that $\lim_{n \to \infty} ||F_n(s) - x||_0 = 0$. The quantity $||x||_{1,s}$ is a norm. Further if B is a Banach algebra and the norms $||x||_0$ are submultiplicative, the same is true of $||x||_{1,s}$.

The norms $||x||_{1,s}$, $0 \leq s \leq 1$, are compatible with $||x||_0$, that is if a sequence of elements $x_n \in B$ is Cauchy with respect to both norms $|| ||_{1,s}$ and $|| ||_0$ and tends to zero with respect to $|| ||_0$, it also tends to zero with respect to $|| ||_{1,s}$. As a consequence of this the completions $B_{1,s}$ of B

* The contents of this note were submitted by the author to the Conference on Functional Analysis in Warsaw, August 1960. This topic, which has undergone substantial development since that time, will be the subject matter of papers to be published shortly.
with respect to \(\| \cdot \| \) can be simultaneously isometrically imbedded in the completion of \(B \) with respect to \(\| \cdot \|_1 \).

Theorem 1. Let \(F(x) \) be a function with values in \(B \), which is continuous and bounded with respect to \(\| \cdot \| \) in \(0 < R(x) < 1 \) and analytic in \(0 < R(x) < 1 \). Suppose that \(F(u) \in B \), and is continuous and bounded with respect to the norm \(\| \cdot \|_1 \) and \(F(1+it) \in B \), and is continuous and bounded with respect to the norm \(\| \cdot \|_1 \). Then for \(0 < s < 1 \), \(F(s+it) \in B_{1+s} \) and

\[
\| F(s+it) \|_{1+s} \leq \sup \| F(it) \|_1(1-t)^s \sup \| F(1+it) \|_1.
\]

Theorem 2. Let \(B \) be a second space with two additional norms \(\| \cdot \|_1 \).

Let \(\| \cdot \|_{1+s} \), \(\| \cdot \|_{1+s} \) be defined as in the case of the space \(B \). Let \(A_1 \) be a function defined on \(0 < R(x) < 1 \), \(x = s + it \) whose values are bounded operator from \(B \) to \(B_1 \), which is continuous and bounded in the operator norm \(0 < R(x) < 1 \) and analytic in \(0 < R(x) < 1 \). Then if \(A_1 \) maps \(B_1 \) into \(B_1, A_{1+s} \) maps \(B_1 \) into \(B_1+s \) and

\[
\| A_1(\| \cdot \|_1) \|_{1+s}, \quad \| A_{1+s}(\| \cdot \|_1) \|_{1+s} \leq M_1 \| \cdot \|_1,
\]

then \(A_{1+s} \) maps \(B_{1+s} \) into \(B_{1+s} \) and

\[
\| A_{1+s}(\| \cdot \|_1) \|_{1+s} \leq M_1^{1+s} \| \cdot \|_1.
\]

This theorem can be interpreted as an abstract version of the extension of the theorem of M. Riesz given by E. Stein.

Examples. By suitable choice of \(B \) and the norms \(\| \cdot \|_1 \) one can obtain various classes of "intermediate" spaces.

a) Let \(L_p \) be the Orlicz space associated with a convex strictly increasing function \(\Phi(u) \). We assume that \(\Phi(u) \) tends to zero as \(u \) tends to zero and infinity as \(u \) tends to zero and infinity respectively. Let \(L_{\Phi} \) be the closure in \(L_p \) of the class of simple functions. Then if \(B_1 = L_p \) and \(B_2 = L_{\Phi} \), the intermediate space \(B_{1+s} \) coincides with \(L_p \) where \(\Phi(u) \) is defined by

\[
\Phi(u^{1+s}) = \Phi(u) = \Phi(u).
\]

b) Let \(L^p_{\alpha} \) be the class of Beazell potentials of order \(\alpha \) of functions in \(L^p(B) \) (for \(\alpha = 0 \), a positive integer, \(L^p_{\alpha} \) coincides with the space \(W^p_{\alpha} \) of Sobolev). Then if \(B_1 = L^p_{\alpha} \) and \(B_2 = L^p_{\alpha}, 1 < p < \infty, \alpha < a, \) then \(B_{1+s} \) coincides with \(L^p_{\alpha} \) where \(1/p = 1/p_1(1-s)+1/p_2 \) and \(\alpha = (1-s)a+as_\alpha \).

c) Let \(L_\alpha \), \(0 < a < 1 \), be the class of bounded functions in \(B_\alpha \), which satisfy a Lipschitz condition of order \(a \). Then if \(B_1 = L_\alpha \) and \(B_2 = L_\alpha \) then \(B_{1+s} = L_\beta \) where \(\beta = (1-s)a + as_\alpha \).

2. By introducing other norms in the space \(\mathcal{F} \) of analytic functions with values in \(B \), it is possible to obtain a greater variety of intermediate spaces. We mention only one example. Consider the functions \(F(s) \) which have a representation of the form

\[
F(s) = \int_{-\infty}^{\infty} \phi(u)e^{iut}du, \quad 0 \leq R(s) \leq 1,
\]

where \(\phi(u) \) is a continuous bounded function with values in \(B \) such that \(\int_{-\infty}^{\infty} \| \phi(u) \|_1e^{iut}du \) is finite for \(0 < s < 1 \). Given \(\beta_1, \beta_2, 0 < \beta_1 < 1, 0 < \beta_2 < 1, \)

we define

\[
N(F) = N(\beta_1, \beta_2, F) = \max \left(\int_{-\infty}^{\infty} \| \phi(u) \|^\beta_1 du, \int_{-\infty}^{\infty} \| \phi(u) \|^\beta_2 du \right)
\]

and

\[
N(\beta_1, \beta_2, s, \varphi) = \lim_{a \to \infty} N(F_a)
\]

where the infimum is taken over all sequences \(F_a \) such that \(|N(F_a) - N_a| \to 0 \) and \(\|F_a \|_1 \to 0 \).

The intermediate norms just defined have the property of decreasing (up to equivalence) when \(\beta_1 \) or \(\beta_2 \) decrease. This has as a consequence the following

Theorem 3. Let \(B \) be a Banach space with two additional norms \(\| \cdot \|_1, \) \(i = 1, 2, \) and \(A \) a bounded operator from \(B \) into \(B \) such that

\[
\|A\|_i \leq M_i \|\cdot\|_i, \quad i = 1, 2.
\]

Then, if \(\beta_1 \leq \beta_2, \)

\[
N(\beta_1, \beta_2, s, A) \leq C M_1^{1-s} M_2^s N(\beta_1, \beta_2, s, \varphi)
\]

where \(C \) depends on \(\beta_1, \beta_2, \beta_1, \beta_2, \) and \(s. \)

This theorem can be interpreted as an abstract formulation and an improvement of the theorem on interpolation of Marcinkiewicz. For with suitable choice of the norms \(\| \cdot \|_1 \) one obtains a sharpened version of that theorem and an extension of it to upper half of the square in the diagram of exponents. Let \(A_{1+s} \) be the Lorentz space of functions \(f \) whose non-increasing rearrangement \(f^*(u) \) in \(0 < u < \infty \) has the property that

\[
\int_{0}^{\infty} (f^*(u))^p u^{-1} du < \infty.
\]
Let $||f||_1$ be the norm in A_{p_1} and $||f||_4$ the norm in A_{p_2}, where $1 \leq r \leq \infty$. Then, if $p_1 \neq p_2$, we have, up to equivalence,

$$||f||_{A_{p_1}, r} \leq N(\beta_1, \beta_2, s, f) \leq ||f||_{A_{p_2}, r}$$

where $1/p = (1-s)/p_1 + s/p_2$, $r_1 = p \max(1/p_1, \beta_1)$, $r_2 = p \min(1/p_1, \beta_1)$. This combined with Theorem 3 gives the following result:

Theorem 4. Let \mathcal{A} be a linear operator on functions which is continuous from A_{p_1} to A_{p_2}, $i = 1, 2$, $q_1 \neq q_2$, $p_1 \neq p_2$. Then \mathcal{A} maps A_{p_1} continuously into A_{p_2} where $1/p = (1-s)/p_1 + s/p_2$, $0 < s < 1$, $1/q = (1-s)/q_1 + s/q_2$ and $\mathcal{P} > r$.

The fundamental principle and some of its applications

by

L. EHRENPREIS (New York)

Let $\mathcal{R}(\mathbb{C})$ denote real (complex) Euclidean space of dimension n with coordinates $z = (z_1, \ldots, z_n)$, $\bar{z} = (\bar{z}_1, \ldots, \bar{z}_n)$. Let W be a reflexive space of functions or distributions on \mathcal{R} such that differentiation and translation are continuous on W; denote by W' the dual of W. We assume that W' is a convolution algebra and that the Fourier transform \tilde{W}' of W' is a space of entire functions on \mathcal{C} and that the topology of \tilde{W}' can be described as follows:

There exists a family a of continuous functions $a(s) > 0$ such that the sets

$$\mathcal{N}_a = \{F \in W : |F(s)| \leq a(s)\}$$

form a fundamental system of neighborhoods of zero. In what follows we assume certain other "natural" conditions on a.

Let D_1, \ldots, D_r denote partial differential operators on \mathcal{R}; we want to find a description for $W(D_1, \ldots, D_r)$ which is the intersection of the kernels of D_1, \ldots, D_r acting on W, that is, $W(D_1, \ldots, D_r)$ is the set of $f \in W$ for which $D_j f = 0$ for $j = 1, 2, \ldots, r$. Denote by $(D_1, \ldots, D_r)W$ the ideal generated by the D_j in W. We can show that $(D_1, \ldots, D_r)W$ is closed in W. Thus, the dual of $W(D_1, \ldots, D_r)$ is $W'/(D_1, \ldots, D_r)W$.

Denote by F the Fourier transform of D_0 so F is a polynomial on \mathcal{C}; denote by F the complex affine variety of common zeros of the F_j. The Fourier transform of $W'(D_1, \ldots, D_r)W$ is $W'(F, \ldots, F)W'$. The fundamental principle gives an analytic description of this quotient space; by means of this we shall obtain a complete description of $W(D_1, \ldots, D_r)$.

Fundamental Principle. There exists a finite sequence of complex affine subvarieties V_k (not necessarily distinct) of \mathcal{C}. For each k we can find a constant coefficient differential operator ∂_k with the following properties:

- The mapping
 $$F \mapsto \text{set of restrictions of } \partial_k F \text{ to } V_k$$