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STUDIA MATHEMATICA, T. XXIII (1963)

Power series as orthogonal expansions
by

S. BALOERZYK (Toruh)

In the theory of functions of a complex variable are considered
expangions of an analytic function f in the series

(1) f= ontin,

where the sequence {u,} of analytic functions is fixed and coefficients
a, depend on f. The case of extreme importance is that of u, being poly-
nomials.

If we consider functions f which are analytic in a domain @, then it
is natural to investigate expansions of type (1) under the assumption
that u, are orthogonal with respect to the sealar product defined by the
plane integral

(f,9) = faff(z)'.ﬁ)dwdy-

By the application of the orthogonalization procedure to the system
{#"} it is transformed into Carleman’s polynomials for the domain G.
It is known that the system of Carleman’s polynomials is eomplete in
the space of all square integrable analytic functions on G (this space
is denoted by H,(@)) if G is a COarathéodory’s domain.

In particular, if G is the interior D of the unit cirele, the mystem
Up(2) = 2%, m =0,1,..., i3 orthogonal and complete. Let us remark
that this system admits the following properties:

(2) U * Y = Uy
(8) Uy, = Nlly_q+

The purpose of the present note is to prove that the conditions of
type (2) or (3) characterize the system {z"} among other complete ortho-
gonal systems {u,} in H;(D) (u, are not supposed to be the polynomials).
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1. We shall denote by D the interior of the unit circle. The set of
all funetions analytic in D and square integrable (i. e. [[If(2)Fdmdy < oo)
D

will be denoted by H,. It is a Hilbert space with respect to the sealar
product

f, ) = [[fe)-g(e)dway.
D

Tn the polar ecordinates the above formula assumes the form

12w

(f,9) = [ [ fird®) g(ré")yrd’ar.

If the funetions f, g « H; are represented as powoer series

flr) = anz”, g(7) = anzn:

N0 n=0
then we have formula
1 @ b,
4 =7 T "
® (o)== D,
Nl
and, in partieular,
”f”z - f" !“nlz ‘
=t

Then it is easy to see that f' ¢ H, implies f ¢ H,.
It A, u ave arbitrary complex numbers, then

[ [ &= dndy = =F(2a),
D

where the funetion ¥ is defined by the series

oo
k(]

k4
Pl zg a{n 1)

It is k.nown (see [1]) that the convergence in Hj, is stronger than
almost uniform convergence. Under some additional conditions both

types qf convergence are equivalent for partial sums of an orthogonal
expansion. We have

Imvmaa 1. If {u,} is @ system of orthogonal functions in Hj, any U,
oo

is analytic in the closed cirdle o] <1, feH;, and f(2) = > anuy(2) (the
M=

©
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series being almost wniformly convergent), then a,ual’ = (f, u), and the
series is convergent in the mean.

Proof. Let us write s,(2) = ozu(2) and, for a fixed n, u,(z) =
k=0

o
= Y ¢"; then by formula (4)
k=0

WOF: _ 1 N1 T [ ()
(Smy n) =ﬂ;§m=§k=o k—{—le 2 dz,

where K is such a circumference [2| = ¢ < 1 that the series

(=]
||

—k
el
~ E+1

is convergent. If [s, (2)—f(2)| < & for |2| = ¢, m > M, then

AL
(6 )= 0] <o D155 07
and consequently

(fy un) = Lim (8, Un)-

Since (8, Un) = anful® for m >mn, (f,4) = anlun|’. The fune-
tion f belongs to H,, so that

D lanl < 00

and this implies the last part of the Lemma.

2. In this section we prove the following

TawoREM L. If {u,} is an orthogonal and complete () in H, system
consisting of bounded amalytic functions, and the system satisfies the con-
dition
(i) for amy pair of indices m, m there ewist an index k and a complexw

number An, such that Uy tym = Aym Un,
then the system {u,} differs from {2"} at most by ordering and by
numerical coefficients.

Proof. The functions u, are linearly independent, so that the index k
in (i) is unigquely determined by n, m: % = o(n, m), and, moreover, Ay, * 0.
I gln, m) = g(ny, m), then we have (lnlm“n_}'mn“n])'um =0, and
m =n, in virtue of the linear independence of the analytic functions u,.

() i.e. if feHj and (f, un) = 0, » =0,1,..., then f=0.
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Let an expansion of the function 1 be

00

1= 2%”%5

n=0
this implies for an arbitrary m

U, = 2 O Ui Uy, == 2 Ot Ao, m) 5
n=0 M=
and the series is convergent in the mean, because u,, is bounded. Conge-
quently, for some n, we have m = g(ny, m). Then Uy Uy = Ay, and
Uy (8) = Angm for all z e D. To gimplify the notation we can agsume thab
ne=0 and A, =1; then using (4) we have u,(0) = (U, 1) =
= 7 2y, Up) = 0 for all n > 0.
Let us consider an expansion

&= Butin(2);

=0

by the preceding formula we have S, = 0, and by differentiation we
get

1= ntun(0).
Ty==1

Consequently u,',l(O) #0 for at least one index n, > 0. We write
U = U, .

We shall prove that for any positive integer p there exisis in the sequence
{un} precisely one fumection which has 0 as its p-multiple value in 2 = 0.

In fact, the function v* differs from some w, by a non-zero coeffi-
cient and has 0 as its p-multiple value in # = 0. On the other hand, if
% (2) = 2°0(2), Us(¢) = 2"w(z) and ©(0) %0 s w(0), then wvu, = @’vu
and we have expansions ’

v = Zynum w = Z 5nun

=0 =0

With g # 0 5 8.

Consequently we get

ad 0
nz_;:?nim“e(n,s) = 2 6n}mruq(n,r)

Ni==()

and the terms with n =0 are yyu,, dou,, respectively, The functions
e(n,7), o(n,s) are one-to-one as funetions of n; consequently there
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exist integers k,! such that s = o(k,r), r = ¢(I,8), and this implies
Uy = Ay, Wgs = Mgty Hence we get At = A5 Uty Uy OT (Apydgg—
—upu)us = 0, and consequently wuxu; = Agrdzs. We have Ay 7% 0
and u,(0) =0 forn >0;80 k=1=0 and s = .

We have proved above that «'(0) # 0 for some % = u,; in virtue
of the preceding considerations it follows that the sequences {u,} and
{u"} differ by ordering and numerjcal coefficients. Consequently, to com-
plete the proof of Theorem 1 it iy sufficient to prove that u(z) = ez for
gome complex number ¢ 0.

The function 2z may be represented as

and hence it follows that if w(e,) = %(2,), then 2, = 2,; thus « is a uni-
valent function.

Let us write B = w(D); the set F is a bounded domain and 0 < E.
Let us consider a new variable { = u(2) with z e D, { < E, and let v be
the inverse function of «. Then we have

[[ur @)™ @ andy = [ [ ¢ o' Q)P dsdn
\ D E
with ¢ = &-+iy. Using Fubini’s theorem we get for sufficiently large
R and n #=m
R brd .
f prEmerl [f o=y l,vr(reis)lzx(r’ 9) dﬂ]dr -0
o 0
with g 'being the characteristic function of the set E. Consequently the
funetions
b
= [ &l (ré") g (r, 0)d0

0

@i (7)
are defined a. e., integrable and for all k + 0
R
fﬁ’"+k+1¢k<r)dr =0 (m=0,1,...).
0

By the well-known theorem on moments it follows, that ¢g(r) =0
a. . for k == 0. This means that for almost all » the Fourier coetficients
of |v'(re)®)|24(r, 0) (considered as a function of 0) are all 0 except the
case with index 0. For sufficiently small r we have x(r,6) =1, and then
there exists a function v such that [o' (re?)|2 = p(r) for almost all (suffi-
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ciently small) », and if # is fixed, for almost all 0. The function. v ig an
analytic one, so that [v'({)]" = w(|¢]) for all sufficiently small £, and
thus ¢'(¢) = 6~1¢'. Since v(0) = 0 and v is a univalent funetion, u(2) = ¢,
which eompletes the proof.

3. In this section we prove the following

TemorEM 2. If {u,} is an orthogonal and complete in Hj system
consisting of functions analytic in the olosed circle |2| < 1, and the systom
satisfies the eondition
(i) for any indexs n there ewists an indew k and a complen number A, such

that uy, = Ay,
then the system {u,} differs from {"} at most by ordering and by numerioal
coeffictents.

Let ug firgt prove the following

LevmA 2. If oll assumptions of Theorem 2 are salisfied, then a con-
stant (nom-zero) fumction belongs to the system {u,}.

Prood. Let us suppose that all functions u, are non-constant. We
denote by o(n) the uniquely determined index such that u, = An Wiy«
Then the funetion ¢ has the following properties:

(a) any non-negative integer %k is of the form % = ¢(n),

(b) there exists precisely one pair of indices %, m, m % n, such that
o(n) = e(m),

(¢) if o(m) = o(m) and n # m, then o(n) 5% n and o(m) = m.

CE,O prove (a) leb » be such an analytic function that v’ = u,; then

o= ) o,u, and by almost uniform convergence of this series

n=0
u(2) =0'(0) = D anun () = 3 o2 (2).
n=0 (1)

« By Lemma 1 it follows that k = g(n) for some n.
To prove (b) let

1= D' fatn(2);

N==0

then by differentiation we get 0 — Z:] BnAntym (2) and since not all coef-
=i

ficients .4, are zero, it follows by Lemma 1 that  is not one-to-one.
On the other hand, if o(n) = g(m) = ky n#m, then wu, = A, iy, Uy =
= M:uk and z',,,u,ﬁ L m 18 & constant non-zero function. Congequently
n, m i§ the unique pair of indices such that 1 is a linear form of 4, and ty,.
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To prove (c) let us suppose g(n) = g(m) = m 7 n. Since U, = AUy,
Uny = DUy WO gOb Uy, (2) = ae™®, u,(2) = b(¢™*4-¢) with a,b,c¢ being
non-zero. By (a) it follows that n = p(I) for some integer I 5= n, m, and
thus % = Ay, = b (e"®4-¢). The funetion w; is orthogonal to both u,,
Uy, it iy also orthogonal to any eonstant, and from (4) we get u;(0) = 0.
Hence #; can be represented as w(2) = d(e" - el,2—1), d 0. By
the relation (U,, ty) = (U, Un) = 0 we get

Fllin)+e =0, F(|Anl)+}olinl'~1 =0
(F being the funetion defined in the section 1) and hence

. 2
F(|Aa]) = DT,

‘We have |A,|* <2 because F(|1,|") > 0, and consequently

Z‘”v ™ _ N1l

“ nl(n+1)! 2"

which is impossible, because A, 7 0 and 1/n!(n+1)! < 1/2" for all n > 0.
Then the proof of (e) is complete.

By (a), (b) we can assume that (1) = ¢(2) = 0 and we shall con-
gider two cases:

(«) for any positive integer g we have %(0) # 0,

(B) there exists a positive integer ¢ such that 0%(0) = 0.

Tf (x) holds, then there exist two sequences of integers {nz}, {mx},
k=1,2,..., such that n, =1, my =2, o(Mg) = M, 0{Myeyy) = My
It is easy to see that all terms of these sequences are different and
positive. -

By the relation o(1) = ¢(2) = 0 it follows that for some number
a # 0 we have
(8) gy — A Us = G.

Since m; > 1, m; >1 for k¥ >1, by the orthogonality of f.unctions
ty, it follows that %, (0) = 4y, (0) = 0, k=2,83,... Integrating both
sides of (b) we get

1
,“kunk(z)'—”k'“’mk(z) = - az* (F=1,2,..),

(T—1)!

Uxy v being some complex numbers. By thig formula it follows that all
integrals

ffuo(z)-z;dmdy (r=0,1,...)
D

are zero and so %, = 0, which is impossible.
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If (8) holds, then let ¢ be the least positive integer such that ¢?(0) = 0;
we have ¢ > 1 in view of (b). By our assumption it follows that all the
integers 7o =0, 7= 0(0),...; 71 = 0%"1(0), are different, and Poe1
is 1 or 2. We can assume, of course, that r,; = 1; we have moreover
wl® = b, for some complex number b 7 0 and from the orthogonal-
ity of the funetions t, Up, ..., s, _, t0 Aty — Aty = & it follows that
4o(0) =0, u(0) =10,..., ""E)q~2)(0) =0, W H(0) = o with o0 5% 0. It is
easy to check that the function w, is given by the formula

-1
Up(8) = b D gt
Jem)
with & = &, j = 0,1, ..., ((—1), being g-th roots of 1. As tho functions
Uy, differ only by numerical coefficients from the functions

g—1
v(?) = ob"“““”q“lz gtle™, K =10,1,...,(qg—1),
=

we have by the relation of orthogonality
(6) (Vg1 te) = (Vgzy Up) = 0

with p satisfying o(p) = 2.

S;inee Vg = Vg_yy Vg_y = Gy, Up = Aty AN Uy == A7 (AU —a) =
= AT v — @) With f = A0, we have u,(2) = Ay [Brg.s(e)—az]
because u%,(0) = 0 and v,_,(0) = 0.

Using formulae (6) we get

B(”q—l; Dgy)— Gem =0,
B(vys; v0)—T03 =0,
because

jl.)f Vg_o(2)2dedy = cg.

Consequently we have 2(v,_s,vg_s) = (Vg1 Vg1) and by a simple
computation we get

oo

[N — 2 ng !1 e
Z (rg+1)Hng+2)! e = ; (ng) 1 (ng+1)1 e,

Nn=0

vr;h_iijch is impossible, because b = 0. The proof of the Lemma 2 is com-
plete.

Proof of the Theorem 2. By Lemma 2 we can agsume that
%(2) = 1. Let us denote by o(n) (n =1,2,...) such an index that

G
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Uy, = AUy 20d 0(0) = 0. In the same way as in the proof of Lemma 2
we can show that

(d) any non-negative integer k is of the form k = ¢(n),

(e) if o(n) = ¢(m) and » # m, then n =0 or m = 0.

By the above properties of the function g it follows that there exists
the unique sequence of different integers {n;} such that n, = 0, ¢(np) =
= fg, k =1, 2, ... In fact, by the orthogonality of u, with u, it follows
that ,(0) =0 for n 21. If

R = Zﬂn“ﬂ,(z)y

=0

then f, = 0 and

1= Badnthyn)(?)

(by Lemma 2 the geries is convergent in the mean). Consequently o(n,) = 0
for some ny =1.

In view of the properties of the sequence {n;} it follows that u,, (2) =
= y,2" for some complex numbers y; # 0. From the completeness of
{¢"} it follows that the sequence {n,} exhausts all non-negative integers,
which completes the proof of Theorem 2.

Added in proof. As was pointed out to me by Dr 8. Rolewiez,
multiplicative systems of orthogonal functions of a real variable were
extensively studied in [2].

References

[1] A. . MaprymeBmY, Teopust anaiumuiecrus pyrryuil, Mockpa-JIeHEHIP AL
1950.

[2] N.Ya. Vilenkin, Supplement to Bussian tramslation of 8. Kacemarz and
H. Steinhaus “Theorie der Orthogonalreihen’, Amer. Math. Soc. Translations, Series 2,
17 (1961), p. 219-250.

INSTYTUT MATEMATYOZNY POLSKIES ARADEMII NAUK
MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Regu par la Rédaction le 22. 6. 1962


GUEST




