

Power series as orthogonal expansions

S. BALCERZYK (Toruń)

In the theory of functions of a complex variable are considered expansions of an analytic function f in the series

(1)
$$f = \sum_{n=0}^{\infty} a_n u_n,$$

where the sequence $\{u_n\}$ of analytic functions is fixed and coefficients a_n depend on f. The case of extreme importance is that of u_n being polynomials.

If we consider functions f which are analytic in a domain G, then it is natural to investigate expansions of type (1) under the assumption that u_n are orthogonal with respect to the scalar product defined by the plane integral

$$(f,g) = \iint_{G} f(z) \cdot \overline{g(z)} \, dx \, dy.$$

By the application of the orthogonalization procedure to the system $\{z^n\}$ it is transformed into Carleman's polynomials for the domain G. It is known that the system of Carleman's polynomials is complete in the space of all square integrable analytic functions on G (this space is denoted by $H'_2(G)$) if G is a Carathéodory's domain.

In particular, if G is the interior D of the unit circle, the system $u_n(z) = z^n$, $n = 0, 1, \ldots$, is orthogonal and complete. Let us remark that this system admits the following properties:

 $(2) u_n \cdot u_m = u_{n+m},$

 $(3) u_n' = n u_{n-1}.$

The purpose of the present note is to prove that the conditions of type (2) or (3) characterize the system $\{z^n\}$ among other complete orthogonal systems $\{u_n\}$ in $H'_2(D)$ (u_n are not supposed to be the polynomials).

Ъy

3

1. We shall denote by D the interior of the unit circle. The set of all functions analytic in D and square integrable (i. e. $\iint_{D} |f(z)|^2 dx dy < \infty$) will be denoted by H'_2 . It is a Hilbert space with respect to the scalar product

$$(f,g) = \iint_D f(z) \cdot \overline{g(z)} \, dx \, dy.$$

In the polar coordinates the above formula assumes the form

$$(f,g) = \int_0^1 \int_0^{2\pi} f(re^{i\theta}) \cdot \overline{g(re^{i\theta})} rd^\theta dr.$$

If the functions $f, g \in H'_2$ are represented as power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad g(z) = \sum_{n=0}^{\infty} b_n z^n,$$

then we have formula

(4) $(f,g) = \pi \sum_{n=0}^{\infty} \frac{a_n \cdot \overline{b}_n}{n+1},$

and, in particular,

$$\|f\|^2 = \pi \sum_{n=0}^\infty rac{|a_n|^2}{n+1}.$$

Then it is easy to see that $f' \in H'_2$ implies $f \in H'_2$. If λ, μ are arbitrary complex numbers, then

$$\int_D \int e^{\lambda z} \cdot \overline{e^{\mu z}} \, dx \, dy = \pi F(\lambda \bar{\mu}),$$

where the function F is defined by the series

$$F(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!(n+1)!}$$

It is known (see [1]) that the convergence in H'_2 is stronger than almost uniform convergence. Under some additional conditions both types of convergence are equivalent for partial sums of an orthogonal expansion. We have

LEMMA 1. If $\{u_n\}$ is a system of orthogonal functions in H'_2 , any u_n , is analytic in the closed circle $|z| \leq 1$, $f \in H'_2$, and $f(z) = \sum_{n=0}^{\infty} \alpha_n u_n(z)$ (the series being almost uniformly convergent), then $a_n ||u_n||^2 = (f, u_n)$, and the series is convergent in the mean.

Proof. Let us write
$$s_m(z) = \sum_{k=0}^m a_k u_k(z)$$
 and, for a fixed n , $u_n(z) = \sum_{k=0}^\infty a_k z^k$; then by formula (4)

$$s_m, \, u_n) \, = \, \pi \, \sum_{k=0}^\infty rac{s_m^{(k)}(0) \overline{a}_k}{(k+1)!} = rac{1}{2i} \sum_{k=0}^\infty rac{\overline{a}_k}{k+1} \, \int\limits_K rac{s_m(z)}{z^{k+1}} \, dz \, ,$$

where K is such a circumference $|z| = \rho < 1$ that the series

$$\sum_{k=0}^{\infty} \frac{|a_k|}{k+1} \, \varrho^{-k}$$

is convergent. If $|s_m(z)-f(z)| < \varepsilon$ for $|z| = \varrho$, $m \ge M$, then

$$|(s_m, u_n) - (f, u_n)| \leq \varepsilon \pi \sum_{k=0}^{\infty} \frac{|a_k|}{k+1} \varrho^{-k},$$

and consequently

(

$$(f, u_n) = \lim_{m \to \infty} (s_m, u_n)$$

Since $(s_m, u_n) = a_n ||u_n||^2$ for $m \ge n$, $(f, u_n) = a_n ||u_n||^2$. The function f belongs to H'_2 , so that

$$\sum_{n=0}^{\infty} |a_n|^2 \|u_n\|^2 < \infty$$

and this implies the last part of the Lemma.

2. In this section we prove the following

THEOREM 1. If $\{u_n\}$ is an orthogonal and complete $(^1)$ in H'_2 system consisting of bounded analytic functions, and the system satisfies the condition

(i) for any pair of indices n, m there exist an index k and a complex number λ_{nm} such that u_n · u_m = λ_{nm} · u_k,

then the system $\{u_n\}$ differs from $\{z^n\}$ at most by ordering and by numerical coefficients.

Proof. The functions u_n are linearly independent, so that the index kin (i) is uniquely determined by $n, m: k = \varrho(n, m)$, and, moreover, $\lambda_{nm} \neq 0$. If $\varrho(n, m) = \varrho(n_1, m)$, then we have $(\lambda_{n_1m}u_n - \lambda_{n_m}u_{n_1}) \cdot u_m = 0$, and $n = n_1$ in virtue of the linear independence of the analytic functions u_n .

(1) i.e. if $f \in H'_2$ and $(f, u_n) = 0, n = 0, 1, ..., then <math>f = 0$.

32

$$1 = \sum_{n=0}^{\infty} a_n u_n;$$

this implies for an arbitrary m

$$u_m = \sum_{n=0}^{\infty} a_n u_n u_m = \sum_{n=0}^{\infty} a_n \lambda_{nm} u_{\varrho(n,m)}$$

and the series is convergent in the mean, because u_m is bounded. Consequently, for some n_0 we have $m = \rho(n_0, m)$. Then $u_{n_0}u_m = \lambda_{n_0m}u_m$ and $u_{n_0}(z) = \lambda_{n_0m}$ for all $z \in D$. To simplify the notation we can assume that $n_0 = 0$ and $\lambda_{n_0m} = 1$; then using (4) we have $u_n(0) = \pi^{-1}$ $(u_n, 1) = \pi^{-1}(u_n, u_0) = 0$ for all n > 0.

Let us consider an expansion

$$z = \sum_{n=0}^{\infty} \beta_n u_n(z);$$

by the preceding formula we have $\beta_0 = 0$, and by differentiation we get

$$1=\sum_{n=1}^{\infty}\beta_n u_n'(0).$$

Consequently $u'_{n_1}(0) \neq 0$ for at least one index $n_1 > 0$. We write $u = u_{n_1}$.

We shall prove that for any positive integer p there exists in the sequence $\{u_n\}$ precisely one function which has 0 as its p-multiple value in z = 0.

In fact, the function u^p differs from some u_k by a non-zero coefficient and has 0 as its *p*-multiple value in z = 0. On the other hand, if $u_r(z) = z^p v(z)$, $u_s(z) = z^p w(z)$ and $v(0) \neq 0 \neq w(0)$, then $vu_s = wu_r$ and we have expansions

$$v = \sum_{n=0}^{\infty} \gamma_n u_n, \quad w = \sum_{n=0}^{\infty} \delta_n u_n \quad \text{with} \quad \gamma_0 \neq 0 \neq \delta_0.$$

Consequently we get

$$\sum_{n=0}^{\infty} \gamma_n \lambda_{ns} u_{\varrho(n,s)} = \sum_{n=0}^{\infty} \delta_n \lambda_{nr} u_{\varrho(n,r)}$$

and the terms with n = 0 are $\gamma_0 u_s$, $\delta_0 u_r$, respectively. The functions $\varrho(n, r)$, $\varrho(n, s)$ are one-to-one as functions of n; consequently there

35

exist integers k, l such that $s = \varrho(k, r)$, $r = \varrho(l, s)$, and this implies $u_k u_r = \lambda_{kr} u_s$, $u_l u_s = \lambda_{ls} u_r$. Hence we get $\lambda_{kr} u_s = \lambda_{\overline{ls}}^{-1} u_k u_l u_s$ or $(\lambda_{kr} \lambda_{ls} - u_k u_l) u_s = 0$, and consequently $u_k u_l = \lambda_{kr} \lambda_{ls}$. We have $\lambda_{kr} \lambda_{ls} \neq 0$ and $u_n(0) = 0$ for n > 0; so k = l = 0 and s = r.

We have proved above that $u'(0) \neq 0$ for some $u = u_{n_1}$; in virtue of the preceding considerations it follows that the sequences $\{u_n\}$ and $\{u^n\}$ differ by ordering and numerical coefficients. Consequently, to complete the proof of Theorem 1 it is sufficient to prove that u(z) = cz for some complex number $c \neq 0$.

The function z may be represented as

$$z=\sum_{k=0}^{\infty}\varepsilon_n u^n(z),$$

and hence it follows that if $u(z_1) = u(z_2)$, then $z_1 = z_2$; thus u is a univalent function.

Let us write E = u(D); the set E is a bounded domain and $0 \in E$. Let us consider a new variable $\zeta = u(z)$ with $z \in D$, $\zeta \in E$, and let v be the inverse function of u. Then we have

$$\int\limits_{D}\int u^{n}(z)\,\overline{u^{m}(z)}\,dx\,dy\,=\int\limits_{E}\int \zeta^{n}\overline{\zeta^{m}}\,|v^{\prime}(\zeta)|^{2}\,d\xi\,d\eta$$

with $\zeta = \xi + i\eta$. Using Fubini's theorem we get for sufficiently large R and $n \neq m$

$$\int\limits_{0}^{R}r^{n+m+1}\Big[\int\limits_{0}^{2\pi}e^{(n-m)i\theta}|v'(re^{i\theta})|^{2}\chi(r,\theta)d\theta\Big]dr=0$$

with χ being the characteristic function of the set *E*. Consequently the functions

$$\varphi_k(r) = \int_0^{2\pi} e^{ki\theta} |v'(re^{i\theta})|^2 \chi(r,\theta) d\theta$$

are defined a. e., integrable and for all $k \neq 0$

١.

$$\int_{0}^{R} r^{2m+k+1} \varphi_k(r) dr = 0 \quad (m = 0, 1, \ldots).$$

By the well-known theorem on moments it follows, that $\varphi_k(r) = 0$ a. e. for $k \neq 0$. This means that for almost all r the Fourier coefficients of $|v'(re)^{i\theta}|^2 \chi(r, \theta)$ (considered as a function of θ) are all 0 except the case with index 0. For sufficiently small r we have $\chi(r, \theta) = 1$, and then there exists a function ψ such that $|v'(re^{i\theta})|^2 = \psi(r)$ for almost all (sufficiently small) r, and if r is fixed, for almost all θ . The function v' is an analytic one, so that $|v'(\zeta)|^2 = \psi(|\zeta|)$ for all sufficiently small ζ , and thus $v'(\zeta) = o^{-1}\zeta^i$. Since v(0) = 0 and v is a univalent function, u(z) = cz, which completes the proof.

3. In this section we prove the following

THEOREM 2. If $\{u_n\}$ is an orthogonal and complete in H'_2 system consisting of functions analytic in the closed circle $|z| \leq 1$, and the system satisfies the condition

(ii) for any index n there exists an index k and a complex number λ_n such that u'_n = λ_nu_k,

then the system $\{u_n\}$ differs from $\{z^n\}$ at most by ordering and by numerical coefficients.

Let us first prove the following

LEMMA 2. If all assumptions of Theorem 2 are satisfied, then a constant (non-zero) function belongs to the system $\{u_n\}$.

Proof. Let us suppose that all functions u_n are non-constant. We denote by $\varrho(n)$ the uniquely determined index such that $u'_n = \lambda_n u_{\varrho(n)}$. Then the function ϱ has the following properties:

(a) any non-negative integer k is of the form $k = \varrho(n)$,

(b) there exists precisely one pair of indices $n, m, m \neq n$, such that $\varrho(n) = \varrho(m)$,

(c) if $\varrho(n) = \varrho(m)$ and $n \neq m$, then $\varrho(n) \neq n$ and $\varrho(m) \neq m$.

To prove (a) let v be such an analytic function that $v' = u_k$; then $v = \sum_{n=0}^{\infty} a_n u_n$ and by almost uniform convergence of this series

$$u_k(z) = v'(z) = \sum_{n=0}^{\infty} a_n u'_n(z) = \sum_{n=0}^{\infty} a_n \lambda_n u_{\varrho(n)}(z)$$

By Lemma 1 it follows that $k = \rho(n)$ for some n. To prove (b) let

$$1=\sum_{n=0}^{\infty}\beta_n u_n(z);$$

then by differentiation we get $0 = \sum_{n=0}^{\infty} \beta_n \lambda_n u_{\varrho(n)}(z)$ and since not all coefficients $\beta_n \lambda_n$ are zero, it follows by Lemma 1 that ϱ is not one-to-one. On the other hand, if $\varrho(n) = \varrho(m) = k$, $n \neq m$, then $u'_n = \lambda_n u_k$, $u'_m = \lambda_n u_k$ and $\lambda_m u_n - \lambda_n u_m$ is a constant non-zero function. Consequently n, m is the unique pair of indices such that 1 is a linear form of u_n and u_m .

Power series

To prove (c) let us suppose $\varrho(n) = \varrho(m) = m \neq n$. Since $u'_n = \lambda_n u_m$, $u'_m = \lambda_m u_m$, we get $u_m(z) = ae^{\lambda m^s}$, $u_n(z) = b(e^{\lambda m^s} + c)$ with a, b, c being non-zero. By (a) it follows that $n = \varrho(l)$ for some integer $l \neq n$, m, and thus $u'_l = \lambda_l u_n = \lambda_l b(e^{\lambda m^s} + c)$. The function u_l is orthogonal to both u_n , u_m , it is also orthogonal to any constant, and from (4) we get $u_l(0) = 0$. Hence u_l can be represented as $u_l(z) = d(e^{\lambda m^s} + c\lambda_m z - 1)$, $d \neq 0$. By the relation $(u_n, u_m) = (u_l, u_m) = 0$ we get

$$F(|\lambda_m|^2) + c = 0, \quad F(|\lambda_m|^2) + \frac{1}{2}c|\lambda_m|^2 - 1 = 0$$

(F being the function defined in the section 1) and hence

$$F(|\lambda_m|^2) = rac{2}{2-|\lambda_m|^2}.$$

We have $|\lambda_m|^2 < 2$ because $F(|\lambda_m|^2) > 0$, and consequently

$$\sum_{n=0}^{\infty} \frac{|\lambda_m|^{2n}}{n!(n+1)!} = \sum_{n=0}^{\infty} \frac{|\lambda_m|^{2n}}{2^n},$$

which is impossible, because $\lambda_m \neq 0$ and $1/n!(n+1)! < 1/2^n$ for all n > 0. Then the proof of (c) is complete.

By (a), (b) we can assume that $\rho(1) = \rho(2) = 0$ and we shall consider two cases:

(a) for any positive integer q we have $\varrho^{q}(0) \neq 0$,

(3) there exists a positive integer q such that $\varrho^q(0) = 0$.

If (α) holds, then there exist two sequences of integers $\{n_k\}, \{m_k\}, k = 1, 2, \ldots$, such that $n_1 = 1, m_1 = 2, \ \varrho(n_{k+1}) = n_k, \ \varrho(m_{k+1}) = m_k$. It is easy to see that all terms of these sequences are different and positive.

By the relation $\varrho(1) = \varrho(2) = 0$ it follows that for some number $a \neq 0$ we have

 $\lambda_2 u_1 - \lambda_1 u_2 = a.$

Since $n_k > 1$, $m_k > 1$ for k > 1, by the orthogonality of functions u_n it follows that $u_{n_k}(0) = u_{m_k}(0) = 0$, k = 2, 3, ... Integrating both sides of (5) we get

$$\mu_k u_{n_k}(z) - \nu_k u_{m_k}(z) = \frac{1}{(k-1)!} a z^{k-1} \quad (k = 1, 2, ...),$$

 $\mu_k,\,\nu_k$ being some complex numbers. By this formula it follows that all integrals

$$\iint_D u_0(z)\overline{z^r}\,dx\,dy \qquad (r=0,1,\ldots)$$

are zero and so $u_0 = 0$, which is impossible.

If (β) holds, then let q be the least positive integer such that $\varrho^{q}(0) = 0$; we have q > 1 in view of (b). By our assumption it follows that all the integers $r_{0} = 0$, $r_{1} = \varrho(0), \ldots, r_{q-1} = \varrho^{q-1}(0)$, are different, and r_{q-1} is 1 or 2. We can assume, of course, that $r_{q-1} = 1$; we have moreover $u_{0}^{(q)} = b^{q}u_{0}$ for some complex number $b \neq 0$ and from the orthogonality of the functions $u_{r_{0}}, u_{r_{1}}, \ldots, u_{r_{q-2}}$ to $\lambda_{2}u_{1} - \lambda_{1}u_{2} = a$ it follows that $u_{0}(0) = 0, u_{0}'(0) = 0, \ldots, u_{0}^{(q-2)}(0) = 0, u_{0}^{(q-1)}(0) = o$ with $o \neq 0$. It is easy to check that the function u_{0} is given by the formula

$$u_0(z) = ob^{1-q}q^{-1} \sum_{j=0}^{q-1} e_j e^{e_j bz}$$

with $\varepsilon_i = \varepsilon_1^i$, j = 0, 1, ..., (q-1), being q-th roots of 1. As the functions u_{r_i} differ only by numerical coefficients from the functions

$$v_k(z) = cb^{k-q+1}q^{-1}\sum_{j=0}^{q-1} \varepsilon_j^{k+1}e^{s_jbz}, \quad k = 0, 1, \dots, (q-1),$$

we have by the relation of orthogonality

(6) $(v_{q-1}, u_2) = (v_{q-2}, u_p) = 0$

with p satisfying $\varrho(p) = 2$.

Since $v'_{a-2} = v_{a-1}$, $v_{a-1} = au_1$, $u'_p = \lambda_p u_2$ and $u_2 = \lambda_1^{-1}(\lambda_2 u_1 - a) = \lambda_1^{-1}(\beta v_{a-1} - a)$ with $\beta = \lambda_2 a^{-1}$, we have $u_p(z) = \lambda_p \lambda_1^{-1} [\beta v_{a-2}(z) - az]$ because $u_p(0) = 0$ and $v_{a-2}(0) = 0$.

Using formulae (6) we get

$$\begin{split} &\overline{\beta}(v_{q-1}, v_{q-1}) - \overline{a}c\pi = 0, \\ &\overline{\beta}(v_{q-2}, v_{q-2}) - \overline{a}c\frac{\pi}{2} = 0, \end{split}$$

because

$$\int_D \int v_{q-2}(z)\bar{z}\,dx\,dy\,=\,c\frac{\pi}{2}\,.$$

Consequently we have $2(v_{q-2}, v_{q-2}) = (v_{q-1}, v_{q-1})$ and by a simple computation we get

$$\sum_{n=0}^{\infty} \frac{2}{(nq+1)!(nq+2)!} |b|^{2nq} = \sum_{n=0}^{\infty} \frac{|1|}{(nq)!(nq+1)!} |b|^{2nq},$$

which is impossible, because $b \neq 0$. The proof of the Lemma 2 is complete.

Proof of the Theorem 2. By Lemma 2 we can assume that $u_0(z) = 1$. Let us denote by $\rho(n)$ (n = 1, 2, ...) such an index that

 $u_n'=\lambda_n u_{\varrho(n)}$ and $\varrho\left(0\right)=0$. In the same way as in the proof of Lemma 2 we can show that

(d) any non-negative integer k is of the form k = q(n),

(e) if $\rho(n) = \rho(m)$ and $n \neq m$, then n = 0 or m = 0.

By the above properties of the function ρ it follows that there exists the unique sequence of different integers $\{n_k\}$ such that $n_0 = 0$, $\rho(n_{k+1}) =$ $= n_k$, k = 1, 2, ... In fact, by the orthogonality of u_n with u_0 it follows that $u_n(0) = 0$ for $n \ge 1$. If

$$z = \sum_{n=0}^{\infty} \beta_n u_n(z),$$

then $\beta_0 = 0$ and

$$1 = \sum_{n=0}^{\infty} \beta_n \lambda_n u_{\varrho(n)}(z)$$

(by Lemma 2 the series is convergent in the mean). Consequently $\varrho(n_1) = 0$ for some $n_1 \ge 1$.

In view of the properties of the sequence $\{n_k\}$ it follows that $u_{n_k}(z) = = \gamma_k z^k$ for some complex numbers $\gamma_k \neq 0$. From the completeness of $\{z^k\}$ it follows that the sequence $\{n_k\}$ exhausts all non-negative integers, which completes the proof of Theorem 2.

Added in proof. As was pointed out to me by Dr S. Rolewicz, multiplicative systems of orthogonal functions of a real variable were extensively studied in [2].

References

[1] А. И. Маркушевич, Теория аналитических функций, Москва-Ленинград 1950.

 [2] N. Ya. Vilenkin, Supplement to Russian translation of S. Kaczmarz and H. Steinhaus "Theorie der Orthogonalreihen", Amer. Math. Soc. Translations, Series 2, 17 (1961), p. 219-250.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 22. 6. 1962