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but it follows from (A) of the lemma and ¢(z,) = 0 that

'5% Zn‘ﬂi“‘gﬂi %13— Eﬁi as
1 n+1 1

Glen) = D Bugilen) >

Therefore

B 4 <o Zm

1

. . . L ke
which implies that > f; > 20. However, }' 8, < 10.
1 1
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Generalized convolutions
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K. UTRBANIK (Wroctaw)

Introduction

Let P be the class of all probability measures defined on Borel sub-
sets of the positive half-line. By E, (¢ > 0) we shall denote the probabi-
lity measure concentrated at the point a. For any positive number a
we define a transformation 7T, of P onto itself by means of the formula
(T, P)(&f) = P(a~'sZ), where PP, & is a Borel set and oo = {a~"a:
zesf}. Of course, the family T, (a >0) forms a group under eompo-
sition and 7,05 = Te (a, b >0). Further, we define the transformation
T, by agsuming T, P = E, for all P from P. It is very easy to verify that
for every bounded continuous function f the equation

(1) J F(@)(ToP)(ds) = ff >0,PeP)

holds.

We say that a sequence P,, P,, ... of probability measures is weakly
convergent to a probability measure P, in symbols P, — P, if for every
bounded continuous funection f the equation

az)P(dz) (a

I~ -
lim [ f(z)Pp(da) = [ f()P ()
n—>00 g [

holds. From this definition of weak convergence and from (1) it follows
that

(%) Tq, Pn — T,P whenever a, — a and P, —P.

In particular,

(+*) if @, —0 and P, — P, then Ty P, — Ey.

A commutative and associative P-valued binary operation o defi-
ned on P is called a generaliced comvolution if it satisfies the following
conditions:

{i) the measure B, is a unit element, i.e. B,oP = P for all Pe P;
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(ii) (aP+0Q)oR = a(PoR)+b(QoR), whenever P,Q,ReP and
¢>0,b>20, a+b =1 (linearity);

(iii) (T, P)o(T,Q) = T,(PoQ) for any P,Q<P and ¢ >0 (homo-
geneity);

(iv) it P, —.>.P, then P,0@ —Po@ for all QP (continuity);

(v) there exists a sequence ¢, ¢y, ... 0f positive numbers such that
the sequence T, E7™ weakly converges to a measure different from I,
(the law of large numbers for measures concentrated at a single
point). )

The power H;” is taken in the sense of the operationo,i.e. Ho = Z
B = B0 R, (n=1,2,...). ’ ‘ v
. Now we shall quote some simple examples of generalized convolu-
tions. In all examples generalized convolutions Po@ will be defined by

means of the functional [ f(z)(Po@)(dr) on all bounded continuous
¢

functions f.
1. a-convolution (0 << a < co):

(@) [ 1@@o@ @) = [ [ (" +y" 1P (@m)Qay).

For « =1 we obtain the ordinary convolution. We note that the
sequence ¢, = n~1* satisfies condition (v) and ¥, is the weak limit of
the sequence T, 3",

2. co-convolution:

6) N f F@)(Po@)(de) = [ [ flmax(w, y)P(dx)Q (dy).

0
Since B =H, (n =1,2,.

..), the sequence ¢, =1 (mn=1,2
satisfies (v). ! q n (n=1,2,..)

3. (a, 1)-convolution (0 < a < co):
(4) ff(a;)(PoQ)(dm) = %*ff[f((w“%- Y)) 5 (la =y V) 1P (dw) Q (dy).
4. (a, B)-convolution (0 < a < 00, 1< f < 0o):
(5) 0fmf(fv)(P 0Q)(dx)
| p(g_) -

o 1
=1T('3—:1)7;f of _[ @ 4y 207 %)! ) (1 — )0~ &P (do) @ (dy).

2
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Taking ¢, = n~ ¢ for (a, f)-convolution (0 < a << oo, 1 K p < o)
we obtain the probability measure

B 812
sa() w
Pd) = ——— (m“*"”%xp(-——i—m“"’)dm
() * ’

as the weak limit of the sequence T, H:".

The (1, B)-convolutions for § > 1 were considered by Kingman [3].
The aim of this paper is to extend some Kingman’s results on generalized
convolutions. We shall give a necessary and sufficient condition for the
existence of an analogue of characteristic funetions associated with a gene-
ralized convolution. Moreover, we shall discuss some problems concer-

ning infinitely decomposable and stable probability measures.

2. Generalized convolution algebras

The class P with a generalized convolution o will be called a gene-
ralized convolution algebra and denoted by (P,c). A continuous mapping
7 of P into the real field is called a homomorphism of the algebra (P,0)
if R{aP+bQ) = ah(P)+bh(Q), whenever a >0, b >0, a+b =1, and
W(PoQ) = h(P)R(Q) for 2ll P, Qe P. Of course, each generalized convolu-
tion algebra admits two trivial homomorphisms h(P)= 0 and h(P)=1.
Algebras admitting a non-trivial homomorphism are called regular.

Consider an a-convolution algebra (0 < a < o). The mapping

(6) h(P) = [ exp(—a")P (dx)
0
is linear and continuous. Moreover, by (2), it satisfies the equation

WPo@) = [ [ exp(—a"—y")P(d2)Q (dy) = h(P)A(Q)
0 0 .
and, eonsequently, is a non-trivial homomorphism of the a-convolution
algebra. In other words, e-convolution algebras (0 < a << oo) are regular.
However, oo-convolution algebra is not regular. Indeed, by (3), we have
E,0E, = B, (a = 0). Hence for any homomorphism % we obtain the equa-
tion h2(E,) = h(B,oH,) = h(E,), which implies h(E;) =0 or 1. Thus,
by continuity of the homomorphism %, we have either h(H,) = 0 for all
@ >0 or h(B,) =1 for all ¢ > 0. Furthermore, either % (P) = 0 for all

n
convex linear combinations P= Y bp By, (b; >0, j=1,...,7; Dhe=1)
k=1 . E=1
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or h(P)=1 for all convex linear combinations P. Since these convex
linear combinations form a dense (in the sense of weak convergence)
subset of P, the continuity of % implies that the homomorphism % is
trivial.

The (a, f)-convolution algebras are regular. A non-trivial homomor-
phism can be constructed as follows. Put
Co8® it g=1,
(7) golw) =1 1 ¢
— [ Q=P Meosmtdt  if 1.
il Kot p>
The funetion g, can be also written in the form

wio =r(2) 2w @5,

where J, is the Bessel function. The non-trivial mapping

8) h(P) = [ go(a*)P (dn)

is obviously linear and continuous. If 8 =1, then we have, by virtue
of (4),

hPo@) =

L\'>|H

[ [ Leos(@"+y%)+ cos|a*— y*[ 1P (d)Q (dy)|

= [ [ cosateosy P (dx)Q (dy) = h(P)h(Q).
[ ]

Thus & is 2 non-trivial homomorphism of («, 1)-convolution algebra.
Now consider the case § >1. From a well-known formula concer-

ning Bessel functions (see [4], formula 8.19. 3, p. 243) for any pair %, v
of positive numbers we get

PE(B—1)Va

[ Bo{(0 0%+ Bune) ) (L) e = L g ) gy ).

Hence and from (5) it follows that

h(PoQ)
_ TR rer

Vnr ((8—1) of Of fl-"ﬁ((”” +y*+20% %)) (1 — 22) P~ PP (dw)Q (dy)
= [ 6@a0)P @) = ue)ne).
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Thus % is a non-trivial homomorphism.

We say that an algebra (P, o) admits a characteristic function if there
exists one-to-one correspondence P « @p between probability measu-
res P from P and real-valued functions @p defined on the positive half-
-line such that Pup 1o = aPp+bPy (@ =0, b =0,a+b =1), Ppo=
= Oplq, Ppp(t) = Pp(at) (¢ >0,f{>0) and the uniform conver-
gence in every finite interval of @p, is equivalent to the weak convergence
of P,. The function @, will be called the characteristic function of the
probability measure P in the algebra (P,0). The characteristic funetion
in generalized convolution algebras plays the same fundamental role
as in ordinary convolution algebra, i.e. in classical problems eoncerning
the addition of independent random variables.

Suppose that ®p is a characteristic function in a generalized convolu-
tion algebra. It is very easy to see that @g () =1. Let P, be a proba-
bility measure different from F,. Since the correspendence between
characteristic functions and probability measures is one-to-one, we infer
that there exists a number ?, such that Pp (4) # 1. Setting h(P) =
= @p(t,) for any PeP, we obfain a non-terla.l homomorphism of the
algebra in question. Thus each generalized convolution algebra admitt-
ing a characteristic function is regular. We shall prove in section 4 that
the converse theorem is also true. The proof of this theorem will be based
on some fundamental properties of homomorphisms in generalized con-
volution algebras, which will be proved in the next section.

3. Properties of homomorphisms

TuworREM 1. For any homomorphism h of an algebra (P, ) we have
h(P) <1 (PeP).
Proof. Contrary to this, let us suppose that there exists a probabi-

lity measure @ such that ¢ = [A(Q)| >1. Put
(9) P, =T (1—

Of eourse, P,e P and P, — B, as n - co. Consequently,

cT™ME, (n=1,2,..).

im k(P,) = h(B,).

Since 7(Q) == 0 and k(Q) = h(Q o By) = I(

Thus
(10)

Q)h(E,), we have h(H,)=1.
lim 2 (P,) = 1.

However, by (9), we have

h(Py) = ¢~

2 Q") (L — ¢~ h(By) = ¢ (R(@)P"+1 -0 =2—c7,
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which implies lLm »(P,) = 2. But this contradicts (10). The theorem
N0
is thus proved.
THEOREM 2. For any homomorphism h of an algebra (P, o) we have

[

(11) WP) = [ h(B)P(dw) (PeP).

Proof. By continuity of the homomorphism % and Theorem 1, the
function h(H,) of the variable z is bounded and continuous on the po-

sitive half-line. By linearity of the homomorphism %, formula (11) holds
for every convex linear combina,‘nion of measures B, (a > 0), i.e. for

0(j=1,2,..)

and Z'b,, = 1. Since the set of all such meagures is dense in the senge
=1

of the weak convergence in P, we obtain (11) for all probability measu-

res from P.

TeEoREM 3. Let b be a non-trivial homomorphism of an algebra (P, o)
and let PeP. If b(T,P) =1 for all @ =0, then P = H,.

Proof. Since the homomorphism % is non-trivial, we infer, by The-
orem 2, that there exists a non-negative number z, such that

every measure P of the form P = ) biB,, , where b; >
Ic.

(12) h(By) # 1.
Further, by Theorem 2, the equation h(T,P) =1 can be written
in the form

)

[ BB ToP) () = [ h(Bop)P(der) =
o [}

Hence for all @ >0 we get

00

[ (A= h{(Ba))P (d) = 0.

0

Since, by Theorem 1, the integrand is non-negative, the lagt equation
for each @ > 0 implies h(H,) =1 P-almost everywhere. Hence it fol-
lows that for any denumerable dense subset a,, ay,... of the positive
half-line the equation k(By,z) = 1 holds for P-almost all # and for all n.
If P is not concentrated at the origin, then there exists a positive number
oy such that the equation h’(Eaﬂzl) =1 holds for all ». Hence, by con-
tinuity of h, we have A (Bax,) = 1 for all a > 0, which, of course, contra-

diets (12). Thus the measure Pis coneentrated at the origin and, conse-
quently, P = E,.
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THEOREM 4. Let h be a non-trivial homomorphism of an algebra (P, o),
P a probability measure and ¢, ¢, ... & sequence of positive nwmbers. If
the sequence TcnP°" weakly converges to a probability measure @ satisfying
the inequality =+ E,, then

(13) lim e, = 0,
Nn—00
. Cn,

(14) lim =1

n—oo Oy +1
and there exist positive numbers ¢ and 7 such that
(18) MTaQ) = exp(—ea)

Proof. Contrary to (13) let us suppose that there exists a subsequence
of the sequence ¢,, ¢;, ... such that

lim ez}
00

(@ = 0).

Ckl’ Cloyy o v+

= b < co.

Thus for any non-negative number a we have, by (x), the relation
(IzllJ)Okw = Tuc,:nl (T(-kn-P)Okn - Ta,bQ‘

>0 the limit lim h(7,P)* exists.
N—00

Thus h(T,P) is one of the numbers 1, —1, 0. By continuity of the ho-
momorphism % and equation h(H,) = h(T,P) =1, valid for non-trivial
homomorphisms, we obtain A(T,P) =1 for all & > 0. Hence, by The-
orem 3, P = F, and, consequently, TcnP"" = B,. Thus @ = E,, which
contradicts the hypothesis. Formula (13) is thus proved.

Let us turn next to (14). Suppose that we could find a subsequence

Hence it follows that for any a

€nys0nyy --- Satisfying the following eondition:
d=Tlim " 21,
Tes00 Cpy g1

By (**) and (13) we have the convergence
(16) To P —~Ey (a20)
First we consider the case d < co. From (16) it follows that
an B (Lo, PP ) = 1 (ToLo, P™) (L, P) — B(T4Q)
as % — co. On the other hand, setting dj = ¢, [Cyy41, We have, by (*),
Tacn Pt — -Tadk +1P"(7"k+1) > T
Hence and from (17) we get

h(T.Q) = h(Taal) (o = 0).
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Thus, by successive iteration,
(18) MT,Q) = (T 0 (az=0,n=1,2,.),
where ¢ = min(d, d-*). Since 0 < ¢<< 1, we have, by (%), nQ — EB,.
Consequently, by (18), h(TyQ) = h(E,) = 1 for all a > 0. Now, applying
Theorem 3, we obtain @ = H,, which contradicts the hypothesis. For-
mula (14) is thus proved in the case d < co.

Now consider the case d = oo. Selling . =¢,, +1/c,bh, we have
lim ¢, = 0. Hence, according to (xx), we get the convergence
ko0

(19) T nk+1P " = Tagk(TcﬂkP""k) —Hy, (a=0).

On the other hand, by (16), we have the relation

Loy PO MT4Q)

» Pun — Aen+4-1
i) BT h(H,)

Comparying it with (19) we get 7 (7. Q) = h(E,) =1 (a > 0). Now,
applying Theorem 3, we get @ = F;, which contradicts the hypothesis.
Formula (14) is thus proved.

Now we proceed to the proof of (15). From (13) and (14) it follows
that for any pair @, y of positive numbers there exist subgequences Cny1Cnys -
and ep; Cpy, ... of the sequence ¢y, ¢,, ... such that

h(T W10 Q).

acy 41 P)

(20) Lim e Y
ko0 Crny, 4

Moreover, we may assume without loss of generality that the limit
G,
§ =lm-—T"& |
k00 Opyyymy,
perhaps infinite, exists. First of all we shall prove that the limit s is finite
Contrary to this let ag suppose that

. ¢,
lim v, =0, where o = —&7%
ko0 onk
Setting wy = ¢, /¢y, We have

o(ng+4m,
Pl ) — Tavk(T .P ) Twukwk) cm’Pomk)

Ay oot Mg Cng,

Hence, by (#x),
h(T, POt o b (B h(By) = 1

g
But, by the hypothesis,
PomrtmE)

“ngmy
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Thus k(7T,Q) = 1 for all a > 0. Applying Theorem 3 we infer that @ =H,,
which contradicts the hypothesis. The finiteness of the limit s is thus
proved.

Using the notation sp = 6, /6y 1mys Wk = Cny[0m, We obtain the
following equations:

(21) Tmcﬂch(nk+mk) _ TmnijMkO Tﬂ-’rwk ( T%kPmnk) ,

(22) T “”nkPO(nk‘ka) = Laos (T Ongrang ProwsTe).

‘When k —> oo we get from (21), by virtue of (x) and (20),
1T e, POEH) > 1Tz Q) 1 (Tay Q) -
Further, from (22) we obtain the convergence
h (TmnkP“"k*mk)) = 7 (T @) .
Thus for any non-negative number a we have the equation
MToww@)h(TeyQ) = h(Toxs@).

We define an auxiliary funetion g(z,y) by means of the formulas
g(®,0) =2, g(0,y) =9 and g(w,y) =sz for 2 >0, y > 0. The func-
tion ¢ satisfies the equation

(23) (T Dt (ToyQ) = M(Togapy@) (220,y >0)
for all @ > 0.

‘We shall prove that the funetion g is the only function satisfying
(23) for all @ > 0. Suppose that there exist two functions g, and g, sabis-
fying (23) for all & > 0 and g, (@, ¥o) < g2, ¥o) for a pair of non-ne-
gative numbers x,, ¥,. Setting

— 91(%o, Yo)
9o (2o, Yo)
we get, according to (23), the equation

MTaQ) = h(Tau@) (2 =0).

Hence it follows that h(T,Q)=h(T,n@) for all positive integers n.
Since 0 < u <1, we have, by (x*), h(TunQ) —~ h(E,) =1, as n — oco.
Thus 7 (T,Q) =1 for all & > 0. Applying Theorem 3 we infer that @ = H,
which contradicts the hypothesis. The uniqueness of the function g is
thus proved.

Studia Mathematica XXIIL3 15
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As & direct consequence of equation (23) and the uniqueness of its
solution we obtain

(24) g(w,y) =g(?/7m);
(26) g(g(a?,y),z) =g(m59(y7z)),
(26) glem,2y) = 29(%, 9)

for all non-negative numbers %,y and 2. Now we shall prove that the
function ¢ is continuous in the quadrant » >0, y > 0. Let ©, — & and
4, — 4. Moreover, suppose that g(w., y,) —>2, where 0 <z < oo. The
equation z = co ig impossible. Indeed, it would imply, by (23) and (),

1(T5Q) = (T, @)1 (Tag, @) — W(Bo)h(By) =1,

where p,= @,/ (%n ¥a) 204 ¢, = Yp/9(@n s Ys) . Bub the equation h(T,Q)=1
for all a > 0 implies, by Theorem 3, the equation @ = X, which contra-
dicts the hypothesis. Thus the limit 2 is finite. By continuity of the ho-
momorphism % and by equation (23) we obtain h(Te.Q) = h(Tep@)h(Toy)
for all @ > 0. Hence, by the uniqueness of solution of (23), we get 2 =
= g{x,y). Thus the function g is continuous.

From (23) for any @ >0 we obtain

B(T.Q) =h (TM(].,I)Q) .

If g(1,1) =1, then from (27) and from the equation % (T,Q) =
= h(B,) = 1 we get, by virtue of the continuity of h(7,Q) with respect
to a, h{(T,Q) =1 (a > 0). But this, according to Theorem 3, contradicts
the inequality @ = H,. Thus ¢(1,1) = 1. Further, if g(1,1) < 1, then,
by induection, from (27) we get

hzn(TaQ) =h (—Taaﬁ( 1,1)Q)

Hence, by (*x), h¥"(T,Q) —~1 as n— oco. Thus |h(T,Q)| =1 which,
by continuity of h(T,Q) with respect to ¢ and the condition h(Z,Q)=1,
implies k(T,Q)=1 for all & > 0. Applying Theorem 3 we get a contra-
dietion. Thus we have proved that the inequality
(28)
is wvalid.

By (26), to prove the inequality

>0,y >0)

27

(a=0, n=1,2,...).

g(1,1) >1

(29) g(z,y) >z

it sutfices to prove it for y = 1. Let us suppose that there exists & number
@, such that g(z,, 1) < @,. Since g(0, 1) = 1 and the function ¢ is con-
tinuous, we infer that there exists a number z, lying between 0 and =,
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for which the equation g(w,,1) = 2, holds. From this equation, using
(25) and (26), we obtain by induction with respect to » the formula

gl@e, g"(1, 1) =y (n=1,2,...).

Hence, setting 2, = x,/¢"(1, 1), we get, by (26),
9o, 1) =2, (n=1,2,...).

From inequality (28) it follows that lim z == 0. Thus, by the con-
n-—->o0
tinuity of g, the last equation implies ¢(0,1) = 0 which contradicts
the definition of ¢g(0,1) = 1. This completes the proof of (29).
Now we shall prove that for all 2 >0
(30) whenever

9(%, Y1) > g(2,Ys) Y1 > Y-

If y, = 0, then (30) is a direct consequence of (29) and the definition
of g(w,0) = x. Suppose that y, > 0. Since ¢g(0, ¥,) =y, and, by (29),
g{¥1s Ys) > Y., we infer, by virtue of continuity of g, that there exists
a number y satisfying the inequality 0 << y << y; for which the equation
g(¥,¥s) =y, holds. Hence, taking into account (24), (25) and (29), we
obtain

g(@,4) =g(2 9y, 9)) =glg(@,v), 9 = glg(y, ), v)
=gy, 9@ 9.)) = 9(g(@, 92, 9) > g(=,95)

which eompletes the proof of (30).

F. Bohnenblust proved in [1] (p. 630-632) that the functions ‘g
satisfying conditions (24), (25), (26), (30) and the boundary condition
g(0, ) = & are of the form g(»,y) = (¢’+4")"*, where 1 is a positive
congtant. Thus, setting H(s") = h(T,Q), we obtain from (23) a funec-
tional equation H(x)H (y) = H(z+y) (¢ >0,y > 0). By Theorem 3
the funcfion H is not identically equal to 1. Since H(0)= h(H,)=1,
it is not a constant function. Moreover, the function H is continuous.
It is well-known that all continuous non-constant solutions of the con-
sidered functional equation are of the form H(z) = exp(—ecz), where
¢ is a constant different from 0. Thus h(7T,Q) = exp(—ea’) (a > 0).
From Theorem 1 it follows that the constant ¢ cannot be negative and,
consequently, ¢ > 0. Theorem 4 is thus proved.

As a consequence of Theorem 4 we obtain the following theorem:
THEOREM 5. For any mnon-trivial homomorphism h of a generalized

convolution algebra there emists a positive number a, such that h(E,) < 1
whenever 0 < 6 < 4.
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Proof. We have, by Theorem 1, the inequality h(HE,) <1 for all
a > 0. Suppose that there exists a sequence by, b,, ... of positive numbers
such that b, — 0 and

(31) h(B,) =1 (0 =1,2,..).

By condition (v) of the definition of generalized covolutions there
exist a sequence ¢, ¢y, ... of positive numbers and a measure Q differ-
ent from E, such that

(32) T, B —Q.

n
Since, by Theorem 4, ¢, — 0, we can find a subsequenwe o, e, ...
sabisfying the condition

S . o
Ol 41 <b, < Cry (n=1,2,...).

Setting d,, = b,/0y,, We obtain, by virtue of (14), lim d, = 1. Bince
n—>00

Ok, oy __ m oky _m 10K,
Ebnn = TbnEl "= d“eknEl = ldn(Tckn—El )1

we have, by (x) and (32), hkﬂ(Ebn) — 1(Q). Hence and from (31) it follows
that h(Q) = 1. Sinece h(Q) = h(T,Q), this contradicts (15). The Theorem
ig thus proved. ’

4. Characteristic functions

We already know that generalized convolution algebras admitting
characteristic functions are regular. Now we shall prove the converse
theorem:

THEOREM 6. Hvery regular generalized convolution algebra admits
characteristic functions. Each non-trivial homomorphism h induces a cha-
racteristic funciion Op by means of the formula

(33) Pp(t) = R(IP) (¢t =0, PeP)
Conversely, each characteristic function is of the form (33). Moreover,
Dp is an integral transform

| Q(tz)P(dw),
(1]

(34) Dp(t) =
where the kernel Q is defined by formula Q(z) = h(E,).

Proof. First of all we shall prove that every characteristic function
@p is of the form (33), where b is a non-trivial homomorphism of the
algebra in question. Put A(P) = Pp(1). It is clear that & is a homomor-
phism. From the formula @y p(t) = Pp(at) we obtain the equation @p(t)=
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= O@pp(1) = W(T,P). Hence, in particular, it follows that the homo-
morphism % is non-trivial.

Now let us suppose that & is & non-trivial homomorphism. We have
to prove that function (33) is a charaecteristic function. We note that the
integral representation (34) is a direct consequence of (1), (11) and (33).
Further, the conditions @up o = aPp+0Py (¢ =0, b =0, at+db=1)
and Pp.g = PpPy are a consequence of (33) and the corresponding con-
ditions for the homomorphism L. From definition (33) we get also Or p(t) =
= Pp(at). Now we shall prove that the correspondence between proba-
bility measures P and the functions @p is one-to-one.

Suppose that @p, = Pp,. From condition (v) for generalized convo-
lutions and from Theorem 4 (formula (15)) it follows that there exists
a probability measure @ such that

(35) (1) = exp(—of),

where ¢ and /. are positive constants. Since, by (34),
o0 o0 oo

I @ (m)Q(an) = [ [ 2(tan)Pyidn)@(dy) = [ [ Q(toy)Q(@y)P;(dm)

o

oc

= [ exp(—ctia))Py(da) (j =1,2),
0
we have -
f exp (— i) P, (dw) = j exp( — et’w?)Py(ds).

By the change of variable z = #*, u = ¢t' in the last equation we
obtain the equality for Laplace-Stieltjes transforms
oa : ©
f exp (— u2) Py (dz) = f exp (— uz)P; (d=),
[ g
where Pj(dz) = P;{dz) (j = 1,2). Since the measures P} are uniquely
determined by their Laplace-Stieltjes transforms (see [5], p.290), we
have P} = P; and, eonsequently, P; = P,. Thus the measure P is uni-
quely determined by the function @p.

It P, »P and ¢, —~¢, then, by (%), h(TyPn) —r(T,P). In other
words, if P, -~ P, then the functions @p, (t) tend to the function Pp(t)
uniformly in every finite interval. Now suppose that a sequence Dp (1),
Dp, (1), ... converges to a function @(t) uniformly in every finite interval.
To prove that P, weakly converges to a probability measure P and
@ = Pp it suffices to show that the sequence P,,P,,... is compact,
i. e. each subsequence of P,, P,,... containg a convergent subsequence.
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Indeed, it P’ and P are weak limits of subsequences P, and P, ves-
pectively, then, by the previous part of the proof,

P, () > @y (1) and @Pmk (t) — Dp. (%)
uniformly in every finite interval. Thus Dpi(t) = D(t) = Pp~(t) which
implies, by the unigueness of the correspondence P« Dp, the
equation P’ = P"'. Hence if follows that the sequence Py, P,, ... 18 weakly
convergent.

The compactness of the sequence Py, Py, ...
Theorem 6 will follow from the following lemma:

TEMMA. Let Py, Py, ... be a sequence of probability measures and let
b be & non-trivial homomorphism of a generalized convoluiion algebra. If
there exists a positive number t, such that the sequence h(TyPy), h(TyPy), ...
s uniformly convergent in the interval 0 <1 <1y, then the sequence P,
P,,... is compact.

Proof. Since the functions k(T,P,) are continuous and k(7 P,) =
= h(H,) = 1, the uniform convergence in 0 <t < ¢, implies for any ¢ >0
the existence of an integer m, and a positive number %, (%, < %) such
that

(36)!

and consequently the

(TP, >1—e i 0 =m0, and 0 <1 < Uy

Let Q be the probability measure defined by (35). Since, by (**),
T,Q - B, ad a — 0, there exists a positive number a, such that

37) f Qo (dt) < e,

where @, = T, Q. Moreover, by (35),
h(T>Qo) = exp(—e,2%),

where ¢, is a positive constant. Thus we can find a positive number w,
such that

(38) MTQ) <& if w3>u,

From (36) and (37) we get

00 1l0 o0
(39) [ MTPIQ(@) = [ W(TP)Q(d)+ [ h(TiP,)Qq (1)

o

>(1—s>f°czo(dt)— [ Q@) > —ep—e

e ©
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for all w >, and 0 < ¢ < 1. Further, for all » > n, we have, by (33),
(34) and (38),

[ TP (@) = [ [ Q)P (de)Qo(@) = [ [ 2(t0)Qo(dt) P, (@)
¢ 0 (1)

= [ W(T.Q0Pw(@) < [ Pp(de)+ [ h(TuQ0Pu(d0) < [ Py(da)+s.

Hence and from (39) it follows that for every number ¢ (0 < & < 1)
there exist an integer n, and a positive number #, such that

[ Pu(dn) >(1—e)—2c i n >,
o

It is well-known that this condition implies the compactness of the
sequence P,, P,, ... (see [2], Chapter 2, Theorem 3). The Lemma is thus
proved.

‘We note that from (6), (8) and Theorem 6 it follows that the functions

o0

Pp(t) = [ exp(—a")P(do)

0

and  @p(t) = [ g,(ta")P(dw)

are characteristic funetions in the «-convolution algebra and the (a, 8)-
convolution algebra respectively. .

THEEOREM 7. Let (P,0) be o regular generalized convolution algebra.
There exist a probability measure M and a positive number wx such thai
for every characieristic function ®p in (P,0) we have

(40) Py (t) = exp(—eqt”),

where ¢y s a positive number depending on Pp. {Moreo'ver, the kernel Q
of Dp satisfies the condition

. 1—0(ix)
41 im —— ="
1) z0 1—2(x)
uniformly in every fimite interval.

Proof. From condition (v) for generalized convolutions it follows
that there exist a sequence ¢y, ¢,, ... of positive numbers and & probability
measure M different from F, such that

(42) T, B — M.

Furthermore, from (15) and (33) it follows that for any characteri-
gtic function @p there exist positive numbers ¢, and », such that

D (1) = exp(—o0,1"?).
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To prove (40) it suffices to show that x, does not depend upon the
choice of @p. Contrary to this let us suppose that x»s <2y for a pair
@p, Pp of characteristic funections. From the equations

Dyroar(t) = Py (1) Py () = exp (—2¢,8™?) = @Fwa(t);
Parou(t) = Yo (1) Wi (1) = exp(— 208™) = ¥, u(?),
where b, = 22 and b, = 2% it follows that
(43) MoM = Ty M = Ty, M.

Put d = by/bs. Since x, < #y and, consequently, by > by, we have
d < 1. Moreover, from (43) we obtain M = T3 M and, consequently,
M=T,M (n=1,2,...). Since, by (#*), T, M — E,, we get M = F,
which contradiets the hypothesis M = E,. Formula (40) is thus proved.

Now we proceed to the proof of (41). Let Q be the kernel of the cha-
racteristic function @p. Since the characteristic function of the meagure
_’l’an‘f" ig equal to £2"(c,?), we infer, by (40) and (42), that

Q" (0,1) — exp (— cpt”)
uniformly in every finite interval. Hence it follows that
(44) n(1—8(c,t)) — cot’

o

uniformly in every finite interval. Given an arbitrary sequence uy, @, ...
of positive numbers tending to 0. Without loss of generality we may
assume that 1—Q(wx,) >0 (n =1,2,...) (see Theorem 5). Since, by
Theorem 4, ¢, — 0, we can find a subsequence o, Op,y - .. for which the
inequalities

Oppp1 < @ <0, (n=1,2,...)

hold. Betting s, = @,/ez,, We have, by (14), s, — 1 and, consequently,
by (44),
1—0Q@m,)  1-—Q(o,s,1)
1-Q(z)  1—Q(er,5,)

uniformly in every finite interval. This completes the proof of the Theorem.

The exponent x is uniquely determined by formula (41). We shall
call it a characleristic ewponent of the algebra (P, o). Moreover, each
measure M satisfying (40) with a constant ¢, will be called a characteristic
measure of the algebra (P, o). It is very easy to verify that the characte-
ristic exponent of the a-convolution algebra is equal to « and the cha-
racteristic exponent of the (a, g)-convolution algebra is equal to 2a.

Every probability measure P is uniquely determined by its charac-
teristic function @p». Now we shall give an inversion formula analogous.
to the classical result of Lévy.

- ¥
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TaEOREM 8. Let M and Pp be a characteristic measure and & characteri-
stic fumetion of a generalized convolution algebra, respectively. Put

Ve(t) = | @p(t' o) M (do),

0
where

N T
v (IOg@M(l)f) ’

and x is the characteristic exponent of the algebra. If [a, b] is an interval
with endpoinis of P-measure xero, then

. " = [\t -~
P((a, ) = lim (—1) j(T) v (%
Proof. By (34) and (40) we have
Velt) = [ [ Q" vay)P(dy)M (de) = [ [ Q(8vwy) M (der) P (dy)
¢ 0

0 0
= [ exp(— ") P(dy).
0

Making the change of variable z = y* we obtain

Vo(t) = [ exp(—i2)P*(d2),
0
where P*(dz) = P(dy). Thus Vp(¢) is the Laplace-Stieltjes transform
of the measure P*. Applying the inversion formula for Laplace-Stieltjes

transform (see [5], p. 290) we get
b*

P ([, 5] = L (— 1 | (—:”—)+ Vi?’(’—:)dt

provided the endpoints of the interval [a”, b*] are of P*-measure zero,
Hence, taking into aceount the equation P([a, b]) = P*([a", b"]), we
obtain required inversion formula.

5. Infinitely decomposable measures

This section is devoted to the study of certain limit distributions.
We assume that the algebra (P,o) is regular and @p is a fixed characte-
ristic function in (P, o).

A measure Pe P is said to be infinitely decomposable if for every
positive integer n there exists a measure P,e P such that P = Py".
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TuEOREM 9. The characteristic function of an infinitely decomposable
measure is positive.

Proof. Suppose that P is infinitely decomposable and Pp is not posi-
tive. Taking into account the continuity of @» and formula ®p(0) =1,
we ean find a positive number ¢, such that @p(t,) = 0 and Dp(t) >0
in the interval 0 <t < t,. Let P, be a probability measure satisfying
the condition Py* =P. Since &3 (i) = ®p(t), we have Op, (1) = PL(t)

in the interval 0 < <{?,. Thus

(45) Bp () =0 (n=1,2,...)
and

(46) @Pn(t) -1

uniformly in every compact contained in the interval 0 <7 < #,. Hence,
by Lemma in section 4, the sequence of probability measures P,,P,,...
is compact. Let @ be its limit point. From (45) and (46) it follows thatb
@y(t) =1 in the interval 0 <t <<?, and Py(t,) = 0, which contradicts
the continuity of the characteristic function. The theorem is thus proved.

From this theorem it follows that the equation ¢5pn(t)=¢¥”(t) is
equivalent to the equation !D}“,n(t) = Op(t). Since the last equation is
equivalent to the formula P;" = P, we obtain the following condition
for infinite decomposability:

TEEOREM 10. A probability measure P is infinitely decomposable
if and only if, for every positive integer n, Y™ (t) is o characteristic function.

As a direct consequence of Theorem 10 we obtain the following Theo-
rem:

ToeoreM 11. The family of infinitely decomposable measures is closed
under generalized convolution, transformations T, (@ =>0) and passages
o the limit.

Let ¢ be a non-negative number and @ a probability measure. The
probability measure -
[
P =§EQ exp(—¢)

is said to be of Poisson type. It is easy to verify that @p(t) = exp (¢(Pg(t)—
—1)). Hence it follows that P = Py*, where P, is a measure of Poisson
type associated with the same measure @ and the constant ¢/n. Thus
measures of Poisson type are infinitely decomposable.

Probability measures P,y (¢ =1,2,...,k,; » =1,2,...) are said
to be uniformly asymplotically neglegible it for any positive number &

(47) lim max f Pi(dz) = 0.

n>o00 I<hhy
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THEOREM 12. A probability measure is a weak Uimit of a sequence

P,10P,30...0 Py, , where Py (k=1,2,...,k,; n=1,2,...) are uniformly

asymptotically neglegible if and only if it is infinitely decomposable.

Proof. Consider a sequence P, (k=1,2,...,k,; n=1,2,..)
of uniformly asymptotically neglegible probability measures such that

(48) P, 0P,50...0F, —~P.
We define an auxiliary sequence of measures of Poisson type
il i kn,
‘N O -
W= D Qexp(—l), where Q= ) Pu
8=0 k=1
Of course
kﬂ-
(49) By, () = exp D (Pp,, () —1).
k=1

By continuity of @p(f) and equation @p(0) =1 we conclude that
@, (1) is positive in a neighborhood of the origin. Consequently, there
exists an interval [0,%;) such that &$p(t) >0 if 0 <# <#, and either
1, is a finite number and Gp(t;) = 0 or ¢, = oo. From (48) it follows that

K,
[] ®2,.0) — 22 ()
k=1

uniformly in every finite interval. Thus

kn,
(50) Zlog By, (1) — log Dp(2)
k=1
uniformly in every compact contained in [0, ?,). Given a positive number
& and a positive number ¢,, there exists a positive number ¢ such that
1— Qi) < & whenever 0 <o <0 and 0 <i <{,. Hence for any num-
ber ¢ satisfying the inequality 0 <t <, and for any integer % satisfying
the inequality 1 <k < %, we get the formula

0 <1—Bp, (1) = [ (1—L(12)) Pur(d0)
o

e-+2 max ank(da:)
1<hghy §

< [ [L—2(t0)) Pus(da)+ [ ((1—-Q(t0)) P (d) <
0 L

which, by (47), implies max {1——@,,k(t)) -0 "unjformly in every finite
1<k<ky,

interval. Hence and from (50) it follows that
kﬂ

D (@, (1) —1) —log @e(0)
k=1
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uniformly in every compact contained in [0,%,). Consequently, by (49),
(81) Dp, (1) — Pp(t)

uniformly in every compact conbained in [0, ?;). Hence, by Lemma in
section 4, we infer that the sequence Py, P,,... is compact. Let P, be
its limit point. Since the measures Py, P,,... are of Poisson type and,
congequently, infinitely decomposable, the measure P, is, according
to Theorem 11, also infinitely decomposable. Moreover, from (51) it fol-
lows that @p, (1) = ®p(t) whenever 0 <1? <?;. Hence it follows that
1, cannot be a finite number. Indeed, by continuity of the characteristic
function the last equation would imply @p,(f;) = Pp(f;) = 0, which
contradicts Theorem 9. Thus #, = co and, c¢onsequently, @p, = Pp,
which implies P = P,. The limit measure P is thus infinitely decompo-
sable.

Conversely, let us suppose that P is an infinitely decomposable
measure and P =P;" (n =1,2,...). Put Py, =P, (k=1,2,...,n;
n=1,2,...). Sinece P,;0P,0...0P,, =P, to prove the Theorem it
suffices to prove that P, are uniformly asymptotically neglegible.

Let M be a characteristic measure of the algebra in question. Since,
by Theorem 9, &p is positive and Pp (1) = Pp, (£) = PE"(f), we have
the formula

(52) lim max j (L—@p, () M (dt) =

nroo I<k<n g

Given a positive number & we have, by (34), and (40),

oo

[ i—op, )M (@) = [ [ (1—2 (@) P (der) M (d2)

0

= f f {1 —Q (1)) M (@8) P (div)
0 0

(L—exD(— 00 ) Prs(da)

:‘%8

oo

f (1—exp(—coa™)Poulw)

\Y%

> (L—exp(—cee) [ Pulda).

Henc.e and from (52) it follows that the measures P,, are uniformly
agymptotically neglegible, which completes the proof of the Theorem.
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By Theorem 5 there exists a positive number z, such that 2(x) <1
whenever 0 < 2 < x,. Put
1—Q(x if 0 <2
(83) o(@) = @ Eose s
1—Q(x,) i 2 >ua,.

Of courge, the function o is positive except the origin. From (41)

it follows that
1—0(¢

(84) lim 1=20w) =

20 (@)
uniformly in every finite interval, where x is the characteristic exponent
of the algebra. Thus the function (1—Q(iz))/w(w) defined, aceording
to (54), to be t* for 2 = 0, becomes continuous in the quadrant 0 <7 < oo,
0 <2<oco.

Now we shall prove an analogue of the Lévy-Khintchine represen-
tation for the characteristic functions of infinitely decomposable measures
in a generalized convolution algebra.

THEOREM 13. A function @ is a characteristic fumction of an infi-
nitely decomposable measure if and only if it is of the form

(55) #epf L (de),

where m is a finite Borel measure on the positive half-line.

Proof. First we shall prove the necessity of the condition. Let P
be an infinitely decomposable measure. Suppose that P = P;" and,
consequently, Op (f) = dE*(t) (n=1,2,...). Hence, by Theorem 9,
we get
(56) 0 (Pp, (1) —1) — log Dp(%)

uniformly in every finite interval. Setting m, (&) =n f w(x). P, (dx)

and taking into account (34), we obtain
o0

. Q(tw)—1

F Op—1) - [ 201
(57) L e e

Let & be a positive number satisfying the inequality £ < }. Since

the funetion log®p(t) is continuous and log®p(0) = 0, we can find,

by virtue of (36), an integer m, and a positive nmumber 4, such that

'n,(l—dip )< ¢ whenever 0 <t <t, and » >mn,. Hence and from

(67) it follows that

My ()

(58)

—mp(de) <& (0 <t <lg3 m=R).


GUEST


238 K. Urbanik

Let M be a characteristic measure of the algebra in question. Since,
by (*%), T,M — B, as a — 0, there exists a positive number a, such that

(59): [ My(dw) <e,
f

where the measure M,, being also a characteristic meagsure, is defined
by the formula M, = T, M. By (40) the characteristic function of the
measure M, is given by the formula

(60) O, (1) = exp(—ot),

where x ig the characteristic exponent of the algebra and ¢ is a positive
congtant. Put

it 1/
(61) %=G%

Since the integrand in (58) is nomn-negative, we conclude that the
inequality

ffl Q(m) Ao Mo(dt) <e  (n > no)

holds. Since the mtegrand is bounded in the strip 0 <t <), 8, <2 < oo,
we can change the order of integrations:

o

1,
1 0
(62) f ps f (L—Q(t2) My (@tymy(d) < e (n > no).
g 0
Further, by a simple computation, from (59), (60) and (61) we get

to oo
[ (1 —Q (1)) M, (d8) = 1— By, () — f (1 —Q(tw)) M, ()
[] 0

> 1—By (@) —2 [ My(d) >1—3¢
%
whenever @ > z,. Thus, sefting b = max w(z), we obtain, by (62)

000
the inequality
1—3e
(63) f my, (d) < (n = ny).
Consequently, to prove that the sequence Myy My, ... 18 cOmMpact,

it is sufficient to prove that the measures m, are bounded in common.
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From the definition of the function « and from (54) it follows that
there exists a positive number i, such that &, <1, and
1—-Q(t:2)

d= min ———— >0.
ococn, (@)

Since the integrand in (58) is non-negative, we have
Z, o, -
* 1-Q(t %
df m,, (@) gf 1-902) ) <e (0> mn)
w
(] [ B

which. together with (63) shows that m, are bounded in common. Conse-
quently, the sequence my, My, ... is compact. Let m be its limit point.
Since for any ¢ the function (.Q(tm 1)/w(z) is bounded and continnous
on the half-line 0 < # < oo, from (56) and (57) we get

FOte)—1

tog @(t) = [ 2002 on aa,

J o(z)

which completes the proof of the necessity of our condition.
Conversely, suppose that the function @ is given by formula (55).

Consider the function exp(—m({0})#). If m({0}) = 0, then it is the

- characteristic function of the measure X, which is obviously infinitely

decomposable. If m({0}) >0, then, by (40), it is the characteristic fun-
ction of a characteristic measure of the algebra. Since, by (40) and The-
orem 10, characteristic measures are also infinitely decomposable, we
infer that there exists an infinitely decomposable measure P, such that
@p, (1) = exp (—m({0}")). Now we define a sequence of measures of
Poisson type by means of the formula

S
P, = 2?@1& exp(—¢y),

8=0

where .
1 .
¢, = f—(——m(dw), Qn=2B, i e, =0
]
and Y
Q. (s7) = ¢t ——m(dzr) i e, >0.

S [1/n,00) w(m)

Since measures of Poisson type are infinitely decomposable, the mea-
sure PyoP, is, by Theorem 11, also infinitely decomposable. From the
equation

Pp o, (1) = oxp (—m ({01 — 0,1 (Do, (1) —1))

= exp f Mm(dm) (n=1,2,..)

Wi @@
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it follows that ®pp,(t) = D(?) uniformly in every finite interval. Thus,
by Theorem 11, the sequence PyoP, converges to an infinitely decompo-
sable measure. It is clear that the function @(f) is the characteristic
function of this limit measure, so that the Theorem is completely estab-
lished.

6. Stable measures

A probability measure P is said to be stable in a generalized convolu-
tion algebra if for any pair @, b of positive numbers there exists a posi-
tive number ¢ such that T,PoTpP = T.P.

THEOREM 14. The family of stable measures is closed under the trans-
formations T, (¢ > 0) and passages to the limit.

Proof. Let P be a stable measure. The stability of Z,P (a >0)
is a direct consequence of condition (iil) for generalized convolutions.
Now suppose that a sequence P,, P,, ... of stable probability measures
is weakly convergent to a probability measure Q. If @ = H,, then it
is obviously stable. Therefore we may assume that @ = E,. Given posi-
tive numbers @ and b, there exists a positive number ¢, such that 7,P,0
Ty P, = T, P,. Hence it follows that

(64) @p, (at)Dp, (b)) = Dp (cat) (n=1,2,...).

The sequence ¢;, ¢;, ... cannot tend to oo. Indeed, by (64), this would
imply ®p, (1) = Pp,(at/c,) Pr, (bife,) — D4 (0) = 1, which contradicts the
hypothesis @ #* E,. Thus ¢, ¢s, ... containg a convergent subsequence.
Let ¢ be its limit. From (64) we obtain the equation Og(at)Py(bt) =
= Py(ct). Since the leff-hand side of this equation is not identically
equal to 1, we have ¢ > 0. Furthermore, the lagt equation implies T,Qo
oTyQ = T.Q which completes the proof.

THEOREM 15. A probability measure is o weak limit of a sequence
To, P™, where ¢, >0 (n=1,2,...) and PeP, if and only if it is stable.

Proof. Let @ be the limit of a sequence 7, P™. Since H, is stable,
we may assume that ¢ # B,. By Theorem 4, there are positive numbers
¢, and 4 such that Oy(f) = exp(—¢,t"). Settmg, for any pair @, b of posi-
tive numbers, ¢ = (¢'+1")", we have O gurq(t)= @TGQ( )Dryo (1) =
= Pr(t) and, consequently, T,00T,Q=T.Q which shows that @ is
k2 stable measure.

Conversely, let @ be a stable measure. For any positive integer n
there exists a positive number 4, such that @ = (T,0)" = T, Q. Set-
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ting ¢, = a, ", we have T, @™ = Q and, eonsequently, Q is the limit of
the sequence T, Q.

THEOREM 16. A function @ is a characteristic function of a stable
measure if and only if it is of the form

(65) D(t) = exp(—at),

where ¢ >0 and A is either the characteristic exponent » of the algebra or
A >0 and

. w
(66) f 17 (Zﬂ') < oo,
J @

Proof. Let @ be a stable measure. Since the eharacteristic function
of B, is of the form (65) with ¢ = 0, we may assume that @ # F,. From
Theorems 4 and 15 it follows that Pg(t) = exp(—ect’), where ¢ and A
are positive numbers. Suppose that 2 £ x. We have to prove condition
(66). First we shall prove the formula

o(x)
67 lim——= = 0.
67) o @

Contrary to (67) let us suppose that there exists a sequence z,, #,, ...
of positive numbers tending to 0 such that
1imn & (@n)

n-—»oo-”}.,

=v (0 <o < oo).

From (41) and (53) in the case v << oo we get

1-0 (tm‘n) 1—Q(tw,) .. (@)
68 {lim. = lim Him = ot*
(68) n—s00 mn n—so0 L — 2 (mn) oy 50"
uniformly in every finite interval. If » = oo, then

1—8(tw, co if t>0
(69) L . ’
Ny00 Ly, 0 if t=0.

Using the formula
f (1 —Q(r2,))Q(dz) = 1—exp(—caht)
0

and Fatou Lemma we obtain

~1—Q(tew,)
L)

n N—300 &y

(10) o —lim Q(dm)>fﬁm£LWQ(dm).
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Hence and from (69) it follows that in the case ¥ = co the measure
Q is concentrated at the origin, i. e. @ = H,, which eontradxcts the hypo-

thesis. If v < oo, then from (68) and (70) we get off > ot f 2*Q (dz) for
all > 0. Since Q # E,, the integral f *Q (dx) is positive. Thus the fune-

tion #*~* is bounded on the posmve half-line. But this implies A =x
which contradicts the hypothesis. Formula (67) is thus proxed.
Now we proceed to the proof of (66). Contrary to (66) let us suppose

that
1
o (@)
(71) poes dy = co.

0
From (33) and (67) it follows that both integrals

f w(@) de and fl—-——»—_g (@) dz

It ot
oo

are finite for all positive » < A. Since the kernel £ is not identically
equal to 1, we have also the inequality

[r=eeg ..
Hence it follows that the formula
(72) m,() = b, f i O
where
(73) b, = ( f 1;3,(””) dw)—l,
3

defines a finite meagure on the positive half-line provided 0 <» < 4.
Taking into account (53), (71) and (73), we conclude that limb, = 0.
Hence and from (72) it follows that e

(74) hmfm,(dm =0 for a>0.
r>i g

The measures m, (» < 1) are bounded in common. Indeed, from
(72) by simple computations we get the formula

F1-0
(75) f—;(T()t@m,(dm) = (<)
0
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Since the integrand is non-negative, we have

fm (da) f p ()””)m (do) <1 (< 2,
where @, is defined by (53). Comparying this inequality with (74) we
infer that m, (v < 1) are bounded in common. Moreover, condition (74)
implies the compaetness of the family m, (v < 1). Let m. be a limit point
of this family as » > 4. By (74) the measure ms is concentrated at the
origin, i. e. mx = ax« By, where a, is a non-negative number. Since for any
number ¢ the fonction (1 Q (i ) Jo(x) is continuous and bounded on the

positive half-line, we have for a sequence of indices » tending to A the
relation

P10 °1
f (t2) m,(dx)—«,f 1-0U) ().
0 0

w(@) o(®)

By (75) the left-hand side of this formula tends to ¢ and, by (54),
the right-hand side is equal to a«t*. Thus A = % which contradicts the
hypothesis 4 5= ». Condition (66) is thus proved.

Now we shall prove that any function of the form (65) is a characte-
ristic function of a stable probability measure. If ¢ = 0, then (65) is the
characteristic function of the measure #,. Suppose that ¢ > 0. If 1 = «,
then (65) is the characteristic funetion of a characteristic meagure of the
algebra. It remains the case 1 £ » for which condition (66) is satisfied.
Hence it follows that both integrals

f -z—i(_%)dm and f (@) dx
[ 0

ml-}-l

are finite. Moreover, since the kernel 2 is not identically equal to 1, the
last integral is positive. Thus the measure m defined by the formula

([ 1—Q@)  \
m(sf) = be le dz, where bﬂ(of po dm) ,

14

is finite on the positive half-line. Thus, by Theorem 13, there exists an
infinitely decomposable measure @ such that

Dy(t) = e pf Q(w)_ ————m(dz).

Hence, by simple computations, we get the formula

F Qi) —1
Do(t) = epraf *(g%-z— de = exp(—ot*
L]
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Tt is very easy to verify that the measure ¢ is stable. This comple-

tes the proof.
‘We conclude this paper with a characterization theorem for a-con-

volution algebras.
TeeoreM 17. Let (P,0) be a regular generalized convolution alge-
bra. If there ewists in P a stable purely atomic measure Q different from E,,
then (P, 0) is an a-comvolution algebra and @ = B, for a positive number a.
Proof. Let Q be a stable purely atomic measure different from H,.
By Theorem 16 ity characteristic function is of the form Dy (t) = exp(— ot?),
where ¢ and « are positive constants. This formula implies the equation

Brg()Pryo(t) = P ().
Hence it follows that
(76) T,QoTy¢ = T(mu_,.yu)l/aQ'

Let o be the set of all a,toms of the measure Q. Of course, the set
& is at most denumerable and the measure @ can be written in the form
Q = X ¢, B,, where > ¢, =1 and ¢, >0 for all a « /. Hence and from
aesd best

paty)lfa@

(76) we get the equation

2 2 a0y By 0 By = Z Calliny yejijat
2

aed bed

which. shows that for any pair a, b ¢« the measure F,, o B, is purely ato-
mic and all its atoms belong to the set {(z°+y*)"*a: ae &}. Thus, deno-
ting the last set by «/(#,y) and the set of all atoms of E,o0E, by #(x,y),
we have the inclusion

(1) #(aw, by) = L(@,y) (,9 = 0; a,be ).

Tet @ be a positive number. Since @ = B, the set .= contains a posi-
tive number, say a,. Suppose that « containg a number b, different
from a,. It is very easy to verify that for any pair a,, a, (@, > 0) of ele-
ments of «/ both expressions ajai—bja; and ajas—afal cannot vanish
simultaneously. Since the set o is at most denumerable, we can find
a positive number ¢ satisfying for all @, and a, (a; > 0) from 7 the in-
equality :

(78) #(a5ai—bjas) # a°a5(a;—al).
Moreover, we may suppose that the number z satisfies the inequality

(79) 2 ay # 0% (ag—1)
for all a,¢ 2.
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Suppose that ge o/ (#,2) (@, ag'byz). There exist then elements
b, and b, belonging to 7 such that

9" = (242 b} = (2°+ (a7 'b,2)7) b5
Hence, by simple computation, we get the equation
#*(agbi—bgbs) = xag(bz—1b3),
which, according to (78), implies b, = 0 and, consequently, ¢ = 0. Thus,
(80) . (1, 2) ~ (@, a5 bez) < {0}.

Since % (box, byz) = & by, a,o‘lboz)), we infer, by (77), that the
intersection (80) is non-void. Thus it contains the number 0. Hence it
follows that Oe /. Substituting in (77) @ = a,, b = 0, ¥y = 2z and taking
into account the obvious equation #(a,z, 0) = {a,x}, we obtain the rela-
tion aywes? (4, 2). Consequently, there exists an element ¢, in < such
that a,@ = (#°+#°)"%,. But this equation contradicts (79). Thus & is
a one-point set {a,} and, consequently, ¢ = B, . Moreover, from (77)
it follows that %(ayz, ayy) = {&°+y*)"“a,}. Hence we get H,o0H, =
= E’(muﬂa)l,u (# >0, y >0). Now it is very easy to verify that for convex
linear combinations of the measures B, (a > 0) formula (2) holds. Since
they form a dense subset of P in the sense of weak convergence, for-
mula (2) holds for all measures P, from P. In other words, the algebra
in question is an a-convolution algebra. The Theorem is thus proved.
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