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The Hilbert transform and rearrangement of functions
by

R. O’NEIL (Houston, Tex.) and G. WEISS (St. Louis, Mo.)*

1. Imiroduction. Let f be a measurable function on a measure space
M with measure m. We define the distribution funetion of f, Ay =2,
by letting A(y) = m{ze M; |f(z)] >y} for each y > 0. It is easy to see
that 2 is non-increasing and eontinuous from the right. Two measurable
functions, not necessarily defined on the same measure space, are said
to be equimeasurable if they have the same distribution function. Given
any measurable funetion f on M we can always £ind a non-increasing
extended-real valued function defined on (0, co) that is equimeasurable
with f, namely f*(¢) = inf{y > 0; Jn(y) <t}. This function will be
called the non-increasing rearrangement of f onto (0, co) (note that if 1 is
one-to-one and onto (0, co), then f* is simply i-1).
We now state some elementary properties of the functions 2
and f*:
() If feIP(M), p > 1, then
0
[If1Fam =p [4* *A)ay.
ar D
Consequently
@) Wl = ([ 11" am)™ = ([T @ @™ = 1],

b

(8) If f and g are two medsurable functions on M, then

Jfgdm < [ £ (t)g* 1)t
M 0

‘We shall be particularly interested in the integral mean of f*,
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* The first named author’s research was supported by the Air Force Office
of Scientific Research; the second named author’s research by AROD Contract No.
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Tt is not hard to see that f**(s) is the Hardy-Littlewood maximal
function (see [4], p. 32) of F* evaluated at s. I can be shown easily, with
the aid of (3), that

(4) If f is a measurable function on an atom-free M and s >0, then

ke .
§7E = ECJlf,u'r’nI()E)ms( Ef ]f[dm) '

This result, in turn, can be used to derive the following basic
property of the funetion f**:

(8) If s >0, let V be the space of all measurable functions f on M
such thai sf**(s) < co. Themn V is a linear space and the mapping
f—>sf*™*(s) = |fI|¥ is & norm making V a Banach space.

Since, for each s >0,
U1 =779
is & norm, so is the mapping -
f+mm=QmeMW
when p > 1. From property (2) and the obvious inequality f*(s) < f**(s)

we obtain the relation [f|, < N,(f). On the other hand, a special case
of Hardy’s inequality (see [4], p. 20) gives wus

® If p >1,
o) < 2 Il

thus N, and || |, are equivalent norms.
‘We shall apply these notions to the Hilbert transform

o e 1[0
F(z) ——!_1:1::.:‘ m ol e dt.

Tt is well known that f (@) exists a. e. if feIP(—o0, 00), 1 < p < o
(see [3]). We shall assume this fact and the following result (see [2])():

() We shall really use the fact that if f is locally integrable then

(3
Jim vl
60+ go gy 5e T

exists a.e., where a > 0 is any positive real number (see [4], pp. 57 and 131). We
could limit ourselves to a dense class of functions, say finite linear combinations of
characteristic functions of intervals, on which the Hilbert transform is obviously
defined and, with the help of our results, then pass to all of L? by extending the
definition of f a8 a limit in the norm of Hilbert transforms of functions in this class.
This would make this paper self-contained, but we choose not to do this in order
to avoid unnecessary technical difficultios.

at

icm
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(7) If yg is the characteristic function of o measurable set B C(—o0, c0)
of finite Lebesgue measure | B, then the distribution function of 7y is A (Y} =
= 2|B|[sinhwy. Consequently,

1
A (1) = = sinh~(2| 2] f1).

The prineipal result of this paper is the following theorem:
THEOREM 1. If

[} ] 1
ff*(t) sinh~* (-t—)dt < oo,
oq

then f () emists a. 6. and for each s > 0

> *
() <2 f f*(t)sinh—l(i)dt: 2 f iU,
Ty t T Vet

The second section of this paper will be devoted to the proof of this
theorem and an application of it deriving the well-known M. Riesz in-
equality for the Hilbert transform of funetions in IP, 1 <p < co. In
the third section we shall extend this result to certain singular integrals
defined in Euclidean n-dimensional space B". In the fourth section we
prove the analog of Theorem 1 for the conjugate funetions of functions
defined on [0, 2n). Of special interest is the fact that our methods enable
us o obtain a hest possible result (Theorem 5) when [fllog*|f| is inte-
grable.

The authors are indebted to Professors A. P. Calderén and E. M.
Stein for various valuable suggestions. In particular, the results in the third
section are due to them.

2. The Hilbert transform. We have

1 g t 1 t 1 4
lim — -L(—z—dt= lim — f(—)dt—}-— f 7 dt.
a0+ T [l—w1>st~"0 o0+ Ty W ase 88 Ll |t—m|>at~m
As was observed before the prinecipal-value integral
1 t
lim -- —]ll-dt
>0k T G ) > e t—a

exists a. 6. while the second integral is absolutely convergent, since, by (3)»

f@)

t—a

R ok
t
a <2 [ —{-i)—ou
[bmit] 3 @ 1 +a
and the last integral converges whenever

ff“(t) ginh~1 (%) it < 0.
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Because of property (4) Theorem 1 will be established if we can show

that

Ef.|f(w)[dw <%ff*(t)sinh—l( )dt 28[ ]/{:: -

for each set Z of measure s. Given such a set, let B, CH be the subset
on which f >0 and B, = E—F,. Then, using property (3),

oo

[1F@)iao = Jf(m)dm~ [F@yas = ff%)xrl iw -~ | F(@) 11 (a)da
B 1 a

Iy -eeu

= — [f@)in @ + f F@)in, (0)d

N

[ 1 wizma+ [rwinwa
= “ff* {asmh—1 |t d -+ sinh—1 2 lleﬂ}dt

2 ) By B, 2 s
<\:;ff*(t)smh"1{»—tl— —|—~t—2~}dt = ;r—ff*(t)smh"‘ (7) dat
[

[0
and the desired inequality is proved. The equality

2 P of8) o 28 7 Q)
Wff (#)sinh (»t—)dt%—n-f—_——:

Vs2t g2
follows by integrating by parts and observing that the integrated term
vanishes.

Many eclassical results follow from this theorem. For example, the
following theorem of M. Riesz (see [1]) is an immediate consequence:

THEOREM 2. If 1<p < oo, there ewists a constant A, independent
of feI; such that |||, < 4,|f Hy

Proof. We have

00 ES)

Ifl< Np(f) = {foc[f**(s)]ws}”” <;i{f[%ff 0 )smh~1( )dt]d }”p
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)

<%f smh—l(u {f[ ( >]p }llp _%f ginh~ ( W

0 0
2 Fsinh—ly
= ;llf*llnuf i
where (1/p)+(1/p') =
Thus we obtain Theorem 2 with

® .,
A 2 rginh-1y
p = ;J“ul+llp, au.

3. Singular integrals with odd kernels. We shall use capital let-
ters X, Y,... to denote points (w, z,, . 3 %n)y (Y1) Y2y eeey Yn)y .-
fuclidean n- (hmenmona;l space B and pnmed capital Ietters X, Y’
to denote points on the surface of the unit sphere £ of Z*. For exa.mple
we shall consistently write ¥ = »Y¥", where r = | Y| = V’!/rl- yz_,_ A9l
The element of volume in E* will be denoted by dY while d¥"* will repre-
sent the element of arvea of the surface 2. The operator

F(X) = lim J |1(7iY) (X—Y)a¥,

where @ is a homogeneous function of degree zero (that is, 2(¥) = Q(¥"))

sabisfying (a) £(¥') = —Q(-Y') for all Y'eX and (b) |2 =
= f [R(Y)|dY' < oo, is called a singular integral operator with odd kernel.
It is well known (see [5]) that F(X ) exists a. 6. when feIP(E"),
1 <p < oo, and that the mapping f—f isx a bounded linear operator
on LP(E™).

W shall prove the following extension of Theorem 1:

TarnoreM 3. If 1 < p < oo, then

™ (5) < 19 ff*(t)smh-l(%)dt

for all 8 > 0.

The proof will depend on the following lemma, an analog of prop-
erty (7):

Levma. If B is a measurable subset of E™ of finite n-dimensional
Lebesgue measure m(B) and yx, is the characteristic fumetion of B, then

sieris) < 121 f (i) g,

Studla Mathematica XXIIX 13

Jor all 8 >0.
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Proof. Let X, ={Y'eX; Q(Y') 20}, 7 = |Y| and Y’ = ¥/r when-
ever r % 0. We may suppose that B is a finite union of disjoint cubes.
(By approximating a general set of finite measure by such sets we then
obtain the lemma.)(?). Then, if X is not on the boundary of B,

QY
X xp(X—Y)aY
XE( ) ‘_)0+|Ylfﬂ Y| 41
~ Y X
— lim QY'{f p(X 7T —a(X 0T, }dY’
&> 04 T
21
o0

=fQ(Y’{ f B(X— VY) XE(X’H"Y) }dY’,
>0+

the passage of the limit under the integral sign is justified since the con-
vergence is uniform in ¥’ as long as X is not on the boundary of B.

For each fixed Y'eZ, lot & = Fy be the hyperplane through the

origin that is perpendicular to Y'. For HeE let L = Ly be the line
through H parallel to Y¥’, Each X in L has the form X = H-+}+2Y' for
some real number x. Let By, = H~L and &, be the characteristic function
of the set of all # such that X = H-+#¥’ belongs to H;. Thus, &7 () =
= yg(X) whenever X = H-+a2Y' belongs to L. We then have

—f () f Er(w— 51;(-” t)*fL(“"F”
s—»O—,—

z——>0+ t

1>

Thus, by property (7), the measure of the set {we( —o0, 00); |Er(#)] >
>y >0} is 2m,(B)[sichry, where m,(H;) denotes the 1-dimensional
Lebesgue measure of E;C L.

(%) More specifically, using the boundedness of our operator in I?, p > 1, we have
llxgl® = s7i*(s) = sup ioldm < sup  [m (F)TUP[ (15 1P qm]le < s19' 4 .
o 5 LB E[ 4! ()] [ ﬂ[ Rgl? dm]? < 817" A, g,

Thus, if B is a finite disjoint union of cubes such that m (B — H) and m (B-—-FE')
are small, then.

lsi (8) =82z ()] = [agl® — 12| < Iig—igl®

< "iE_E’Il(B)+ ”iE,_E”(a) < sti® Ap(”%@_,_Ef”p + “xEl_]g“p) :
which iz small. Moreover,

8 8
. 2 g
[ sinn-1 2220 B) g [ sinn-t &) 4
H 11 i
0
is also small with m(B)—m(B).

icm
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Now, to each X <BE" there corresponds & unique He& and real num-
ber & such that X = H+42Y'. With © and X so related let {gp(X) =
= E;(x), where L = Lg. Also, we put

F=F(y,B7Y)={XB |{ge(X) >y>0}
and

Fr=F(y,B,H,Y)={Xely; X =H+0Y and |i,(s) >y >0} =F L.

Then ¥y, has the same 1-dimensional Lebesgue measure along L ag
the set {we(—oo, 00); |E () >y >0} and, moreover, F = UFL

Thus, letting do denote the element of measure along I and dH the
element of measure in &, we have, by Fubini’s theorem,

nn = [ ([rasfax = [ e

-2 f(fdm)dﬂ:—.—?—«fd,x: 2m(#) |
smhnyg 2y smhnyE sinh ry

In particular, we see that m(F) is independent of ¥’. Moreover,
since m (F) is the distribution function of £z evaluated at y, we obtain

(8) st s =—fs hl( ))dt.

Since
in(X) = -«vcfQ Vg (XA,

(8) and the fact that the mapping f— sf**(s) is & norm (property (5))
give us the inequality

s7E( fg st (8)AY = fg(y' fsmh— ( mt(E))de'
0

_len f (2m E))

and the lemma is proved.
Proof of Theorem 3. The argument iz similar to that used in
establishing Theorem 1. For s > 0 fixed we want to estimate 1{ If(X)|ax

whenever m (H) = s. For guch a set HCE" let B,CE be the subset on
which f> 0 and ¥, = E—H,. Then, as before,

[l = [F=[F=— [fiu+ [ fin, < [F0ik,@ @+ [ @150 dt.
E B B m m b 8
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But,

£ 025, a = L {7 0)bz5(0)— 1 () 4z (@)} — [ 75 (2) df* ().
0 g 0
b—sco
Sinee f belongs to L”(B") there exists a constant 4 > 0 such that
@) < At7YP, Thus,

ANy, m(B,)
8

. . 2
Frnus e < ———t‘””fsmh—l ds -0 as t-— oo,
0

2

Hence,

[romoma < ~[vzomaro
0 0

co i )
2 , 2m (B, i} Q £ ,
<———-—“2 I uf{ofsmh“l (mmi ))ds}df () = Lzﬂuff (t)Sm}rl___ﬁzmiEl) d.

A similar estimate holds for [f*7#,; consequently
0

2m (H,)

s IR [  om(my)
Jlfl gbe‘f (t){smh ————t———-f-s]nh 1_7___}(11’

! <|el f #* ()sinh— (Mﬂ ) i

= Q| f F*(t)sinh—2 (ti) at

and the theorem is proved.

4. The conjugate function. If o periodic function f of period 2n
belongs to L1(0, 2) its conjugate function is defined by the principal
value integral

™

flor ==t [ [+ ) i

It is well-known (see [4], p. 131) that F(z) exists a. e. in [—x,m)
a.n(} In analogy to property (7), that the digtribution function of ¥z, when
B is a measurable subset of [—m, ), satisfies

sin (3| 8))

Ay) =4tan—1{ Sl } (see  [27).

icm
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Consequently
sin($15]) }

1
xE(t)=;sinh*1{ a2,

Thus, the same argument that was used in proving Theorem 1 gives
us the following analog to that result:

THEOREM 4. If feL'(0, 27), then
2

sf**(s) <?2E f f*(t)sinh—l{

0

sin (1)
tan (1)

}dt g% jnf*(t) sinh-t (ti) dt,

where 0 < 8 < 2m.

Ag in § 2, it immediately follows from this theorem that the transfor-
mation f—f is bounded from I” into I?, 1 < p < co. Another impor-
tant consequence is the following theorem of Zygmund (see [61):

2w

TeeorREM 5. If feLlog*L (that ds, if [ |fllog*|f] < oo), then
fe L0, 2x). Moreover 0

2 2 2r
- 2 11 2 i
{ If)dat < *ff*(i)sinh“l(cot—) dt = —ff*(t)logcot (—) di.
5 ™y 4 ™y 8
Proof. We have, by Theorem 4,
amn 2n 2 2m t
f IFt)|dt = f @ = 2nf*™(2n) < = f @) sinh"l(cotz)dt.
™
0 o [
But we may use the identity
§i h*l(cot 1) == lo, (mt'.—Z
- 1] T80y

to get the last integral of Theorem 5. But an elementary argument shows
that the last integral of Theorem 5 is finite if and only if |filog™|f| is
integrable. This proves Theorem 5.

We remark that the inequality of Theorem 5 is a best possible in-
equality in the sense that there iy a function for which the equality holds.
In fact, let

1 if <o <m,
fl@) = -1 i r<e<2r,
fllo)y=1 i 0<t<2x.
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But f= 2%z where B = [0, z),

sin 7

2r 2r 2
- _ 20,
Oflf(t)ldt=2ofx§(t)dt= ;!s@l*l(tan%t-)dt

2 2
2 i 2 4
= — | ginh—Y{eob—|dt = — | f*(t)sinh—{cot —)ds.
71:ofsmh (co 4)(1 W‘If (2)sin. (co 4)d
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