On the differentiability of weak solutions of certain non-elliptic equations

by

H. MARCINKOWSKA (Warszawa)

Lax [7] has given the method for studying the differentiability of weak solutions of elliptic equations of order $2m$ with the aid of Hilbert spaces H_p (p being an arbitrary integer). The purpose of this paper is to adapt the theory of Lax to some classes of non-elliptic equations. This can be made with the aid of Hilbert spaces $H_{p,q}$ (p, q are arbitrary integers) which will be defined in Chapter 1. In chapter 2 we consider the regularity properties of these spaces, when the indices are sufficiently large. In chapter 3 the differentiability theorem for certain non-elliptic equations is given. As a special case we obtain some results concerning the regularity of weak solutions of elliptic equations depending on a parameter.

1. The norms $\|\cdot\|_{u,0}$ and related Hilbert spaces

1.1. Our definition (and the definition of the spaces H_{-m} given by Lax) is based on the following theorem concerning Banach spaces:

Theorem A. Let X_u and X_s be two reflexive Banach spaces such that

1. X_u is a dense subset of the space X_s,
2. $\|\cdot\|_u \geq \|\cdot\|_s$ for all x in X_u ($\|\cdot\|_u$ and $\|\cdot\|_s$ denote the norms in the spaces X_u and X_s respectively).

Let X^*_u be a space conjugate to X_u (that is the space of all continuous linear functionals on X_u). For $y \in X^*_u$ put

$$
\|y\| = \sup_{x \in X_u, \|x\|_u < 1} |y(x)|
$$

and let X_- be the completion of X^*_u in the norm $\|\cdot\|_-$. Then the space X_- is isometrically isomorphic with the space X^*_u, and so is the space X_+ with regard to the space X^*_u, the latter isomorphism being given by the correspondence

$$
X^*_u \ni x \leftrightarrow \varepsilon X_+,
$$
when \(l(y) = y(x) \) for all \(y \in X_- \). When we set \(b(x, y) \overset{df}{=} y(x) \) for \(y \in X_- \) and \(x \in X_+ \), then the generalized Schwarz inequality

\[
|b(x, y)| \leq \|z\| |y|_-
\]

holds.

This theorem can be proved by using the arguments contained in the paper of Lax [7].

1.2. The two-indices norms shall be first defined for infinitely differentiable functions in some domain \(\Omega \) of the Euclidean space \(\mathbb{R}^m \); then we obtain the related Hilbert spaces with the aid of completion. We suppose the domain \(\Omega \) to be the product of two domains: \(\Omega \) of the space \(\mathbb{R}^m \), and \(\Omega \) of the space \(\mathbb{R}^n \). We denote by \(z = (z_1, \ldots, z_n) \) the point of the space \(\mathbb{R}^n \), and by \(y = (y_1, \ldots, y_m) \) the point of the space \(\mathbb{R}^m \). The class of all complex-valued functions which are infinitely differentiable in \(\Omega \) and whose all derivatives are square summable in \(\Omega \), will be denoted by \(C_0^\infty(\Omega) \). By \(B \) we denote a linear subset of the class \(C_0^\infty(\Omega) \) containing the class \(C_0^\infty(\Omega) \), which has the following properties:

1. For each function \(\varphi \in C_0^\infty(\Omega) \) or \(y \in C_0^\infty(\Omega) \) and for each \(u \in B \) the functions \(\varphi u \) and \(y u \) are also in \(B \).

Let \(B_k \) be the subset of the class \(B \) consisting of all functions \(w(x, y) \) which vanish for \(x \in \partial \Omega - \bar{K} \) and \(y \in \Omega \), when \(\bar{K} \) is a compact contained in \(\Omega \). Then \(B_k \) has the same meaning when the roles of \(x \) and \(y \) are interchanged.

In the sequel the letters \(m, k \) will denote non-negative integers and \(p, q \) arbitrary integers. The derivative \(\frac{\partial^{|\alpha|} u}{\partial x^1 \cdots \partial x^m} \), \((|\alpha| = a_1 + \cdots + a_m) \) will be denoted briefly by \(D_{\alpha}u \), and, analogously, \(D_{\beta}u \) will denote the derivative \(\frac{\partial^{|\beta|} u}{\partial y^1 \cdots \partial y^m} \), \((|\beta| = b_1 + \cdots + b_n) \).

1.5. We first define the spaces \(H_{\alpha, k}(\Omega, B) \). Let

\[
H_{\alpha, k} \overset{df}{=} \sum_{\alpha \in \mathbb{N}^m} \sum_{k \in \mathbb{Z}} |D_{\alpha} u|^2 \|(\cdot)\|_0
\]

for all \(u \in B \), and let \(H_{\alpha, k}(\Omega, B) \) be the completion of the class \(B \) in the norm \(\|(\cdot)\|_k \). To each element \(u \) of the space \(H_{\alpha, k}(\Omega, B) \) and to each \(\beta \) \((0 \leq |\beta| \leq k) \) corresponds the strong derivative \(D_{\beta}u \). Defined as the limit

\[
\frac{D_{\beta}u}{(\cdot)_{\beta}}(\cdot)
\]

(\(\beta \) is a domain of the Euclidean space) denotes the class of all functions infinitely differentiable in \(\beta \) and having a compact support contained in \(\beta \).

in \(L^2(\Omega) \) of the sequence \(\{ D_{\beta}u_n \} \) when \(u_n \) belongs to \(B \) and \(\|u_n - u\|_{\alpha, k} \to 0 \).

The same arguments as used by Friedrichs [3] show, that the correspondence

\[
H_{\alpha, k}(\Omega, B) \ni u \to D_{\beta}u \in L^2(\Omega)
\]

is a one-to-one linear and continuous mapping, which leaves invariant the elements of \(B \). Therefore the space \(H_{\alpha, k}(\Omega, B) \) may be treated as a subset of \(L^2(\Omega) \), when each element is identified with its strong derivative of order zero. It is a Hilbert space with the scalar product

\[
(u, v)_{\alpha, k} \overset{df}{=} \sum_{\beta \in \mathbb{N}^m} \sum_{|\beta| \leq k} (D_{\beta}u, D_{\beta}v)_{\Omega, 0}
\]

the derivatives being taken in the strong sense.

Lemma 1. The class \(B \) is dense in \(B_k \).

Proof (1). It is sufficient to show, that an arbitrary function \(u \) belonging to \(B \) can be approximated with functions of the class \(B_k \), with respect to the norm \(\|(\cdot)\|_k \). Let \(\varphi \in C_0^\infty(\Omega) \) be a function satisfying the conditions

\[
\begin{align*}
1^a & \ 0 \leq \varphi(x) \leq 1, \\
2^a & \ \varphi(x) = 1 \text{ for } x \text{ lying in some compact } \beta \text{ contained in } \Omega,
\end{align*}
\]

write

\[
u_k(x, y) = \varphi(x) u(x, y), \quad (x, y) \in \Omega.
\]

Then \(u_k \in B_k \) and

\[
\|u - u_k\|_{\alpha, k} \overset{df}{=} \sum_{\beta \in \mathbb{N}^m} \sum_{|\beta| \leq k} \int_{\Omega} |1 - \varphi(x)|^2 (D_{\beta}u(x, y))^2 \, dx dy
\]

\[
\leq \sum_{\beta \in \mathbb{N}^m} \sum_{|\beta| \leq k} \int_{\Omega} (D_{\beta}u(x, y))^2 \, dx dy
\]

From the square-summability of \(D_{\beta}u \) follows, that the last sum may be arbitrarily small for suitable \(\beta \), q. e. d.

We now define for \(u \in L^2(\Omega) \) the norm \(\|u\|_{\alpha, k} \) as the norm \(\|\cdot\| \) described in theorem 1.2. When \(H_{\alpha, k}(\Omega, B) \) is taken as the space \(X_+ \), and \(L^2(\Omega) \) as the space \(X_- \) and \(X_- \). The corresponding space \(X_- \) is denoted by \(H_{\alpha, k}(\Omega, B) \). From theorem 1 it follows that on the product \(H_{\alpha, k}(\Omega, B) \times H_{\alpha, k}(\Omega, B) \) the bilinear form \(b_{\alpha, k}(w, v) \) can be defined, having the property

\[
b_{\alpha, k}(w, v) = (u, v)_{\alpha, k}
\]

for \(u, v \in L^2(\Omega) \). Because of the density of the class \(C_0^\infty(\Omega) \) in \(L^2(\Omega) \) it is also dense in \(H_{\alpha, k}(\Omega, B) \).

(1) This proof has been suggested to the author by Prof. S. Lojasiewicz. The proof given previously by the author was more complicated.
1.4. Now we set
\[\|u\|_{H_{\alpha}} = \sum_{\alpha < \gamma \leq \max} \|D^\alpha u\|_{L^2} \]
for \(u \in B\) and we define \(H_{\alpha}(\Omega, B)\), as the completion of the class \(B\) in the norm \(\|\cdot\|_{H_{\alpha}}\). An analogous reasoning as in the proof of lemma 1 shows, that \(B_{\alpha}\) is dense in \(B\) in the norm \(\|\cdot\|_{H_{\alpha}}\) and therefore also with respect to the norm \(\|\cdot\|_{H_{\alpha-\beta}}\). For each \(u\) belonging to \(H_{\alpha}(\Omega, B)\) and for each \(\gamma, \beta\) \((0 \leq |\gamma| \leq m, 0 \leq |\beta| \leq k)\) the strong derivative \(D_\gamma D_\beta u\) may be defined as the limit in \(L^2(\Omega)\) of \(D_\gamma D_\beta u_n\), when \(u_n\) is a sequence of functions of the class \(B\) approximating \(u\) in the norm \(\|\cdot\|_{H_{\alpha}}\). When we identify each \(u \in H_{\alpha}(\Omega, B)\) with its strong derivative of order zero, the space \(H_{\alpha}(\Omega, B)\) can be considered as a subset of \(L^2(\Omega)\) (namely the set of all functions square summable in \(\Omega\), which have strong derivatives to the order \(\alpha\) with respect to \(x\) and \(\partial x\) with respect to \(y\)).

Lemma 2. The space \(H_{\alpha}(\Omega, B)\) may be mapped in an one-to-one linear and continuous manner into the space \(H_{\alpha}(\Omega, B, v)\); this mapping leaves invariant the functions of the class \(B\).

Proof. A system \(\{w\}\) of elements of the space \(H_{\alpha}(\Omega, B)\) (\(w = (a_1, \ldots, a_m) 0 \leq |a| \leq m\) having the following properties corresponds to each element \(u\) of \(H_{\alpha}(\Omega, B)\):
1. when \(u_k \in B\) is a sequence approximating \(u\) in the norm \(\|\cdot\|_{H_{\alpha}}\), then \(\sum_{\alpha, \beta} \|D_\gamma D_\beta u_k - D_\gamma D_\beta u\|_{L^2} \to 0.
2. \(\|w\|_{H_{\alpha}} = \sum_{\alpha, \beta} \|D_\gamma D_\beta u\|_{L^2}\).

The mapping is given by the correspondence \(u \to w\) and it will be proved that from \(u \to w\) it follows that \(w \to 0\) for \(0 \leq |a| \leq m\). For an arbitrary function \(\varphi \in B\), we have after integration by parts
\[(D_\gamma D_\beta u, \varphi)_{L^2(\Omega)} = (u_k, (\xi)\varphi)_{L^2(\Omega)} \]
and in the limit
\[(w, \varphi) = (u, (\xi)\varphi) \]
the last brackets being taken in the sense of the duality between the spaces \(H_{\alpha}(\Omega, B)\) and \(H_{\alpha-\beta}(\Omega, B, \pi)\). From the last equality and from lemma 1 it follows, that \(w^\alpha = 0 (0 \leq |\alpha| \leq m)\) when \(u \to 0\), q. e. d.

According to lemma 2 the space \(H_{\alpha}(\Omega, B)\) may be treated as a subset of \(H_{\alpha}(\Omega, B)\) when \(u\) is identified with \(w^\alpha\). Especially in the case \(q = 0\), the element \(w\) is called strong derivative in the norm \(\|\cdot\|_{H_{\alpha}}\) with respect to \(\alpha\) of order \(\alpha\) and can be denoted by \(D_\alpha\), when there is no danger of misunderstanding. The spaces \(H_{\alpha}(\Omega, B)\) are Hilbert spaces with the scalar product
\[(u, v)_{H_{\alpha}} = \sum_{\alpha, \beta \leq \max} (D_\alpha D_\beta u, D_\alpha D_\beta v)_{L^2(\Omega)} \]
in particular for \(q = k\)
\[(u, v)_{H_{\alpha}} = \sum_{\alpha, \beta \leq \max} (D_\alpha D_\beta u, D_\alpha D_\beta v)_{L^2(\Omega)} \]
(the derivatives are taken in the strong sense).

1.5. The space \(H_{\alpha}(\Omega, B)\) is defined as the space \(X_{\alpha}\), which is given by theorem 1 when one puts \(H_{\alpha}(\Omega, B)\) as \(X_{\alpha}\), \(H_{\alpha}(\Omega, B)\) as \(X_{\alpha}\), and \(H_{\alpha}(\Omega, B)\) as \(X_{\alpha}\). It is isometrically isomorphic to the adjoint space of the Hilbert space \(H_{\alpha}(\Omega, B)\) and therefore is a Hilbert space. A consequence of theorem 1 is the following

Theorem 1. On the product \(H_{\alpha}(\Omega, B) \times H_{\alpha}(\Omega, B)\) the binear form \(b_{\alpha}\) having the following properties can be defined:
1. \(b_{\alpha}(u, v) = (u, v)_{L^2(\Omega)}\) for all \(u, v\) when \(u \in \alpha, v \in H_{\alpha}(\Omega, B)\).
2. The generalised Schwarz inequality
\[|b_{\alpha}(u, v)| \leq \|u\|_{H_{\alpha}} \cdot \|v\|_{H_{\alpha}} \]
holds for all \(u \in H_{\alpha}(\Omega, B)\) and \(v \in H_{\alpha}(\Omega, B)\).
3. The isometric correspondence
\[H_{\alpha}(\Omega, B) \ni u \mapsto (u, v)_{L^2(\Omega)}, \alpha \in H_{\alpha}(\Omega, B) \]
gives an isometric mapping of \(H_{\alpha}(\Omega, B)\) on \(H_{\alpha}(\Omega, B)\).

1.6. Definition 1. Let \(\|\cdot\|_{p}\) and \(\|\cdot\|_{q}\) be two norms of Banach type defined on a linear set \(X\) and satisfying the inequality \(\|w\|_{p} \leq \|w\|_{q}\) for all \(w \in X\). We say they are compatible on \(X\) (1), if each sequence \(u_n \in X\) which is fundamental in both norms and tends to zero in one of the norms \(\|w\|_{p}\) or \(\|w\|_{q}\), and this mapping leaves invariant the elements of the set \(X\). Therefore the \(\|w\|_{q}\) completion can be treated as a dense subset of the \(\|w\|_{q}\) completion.

Let \(X_{1}\) and \(X_{2}\) be two Banach spaces such, that \(X_{1}\) is a dense subset of \(X_{2}\) and \(\|w\|_{1} \geq \|w\|_{2}\) for all \(w \in X_{2}\). Because of the density each linear functional on \(X_{2}\) is uniquely determined by its restriction to the set \(X_{1}\) and this restriction is evidently continuous in the norm \(\|\cdot\|_{1}\) so

(1) In Russian correspondence (see [5]).
is a linear functional on X_1. Denote by $\| \cdot \|_0$ and $\| \cdot \|_0'$ the norms in corresponding adjoint spaces.

$$\|u\|_0 = \sup_{\|w\|_0' \leq 1} \langle u, w \rangle, \quad \|u\|_0' = \sup_{\|w\|_0 \leq 1} \langle u, w \rangle.$$

Then the inequality $\|u\|_0 \leq \|u\|_0'$ holds for all $u \in X_1^*$ and it may be proved in a simple way, that the norms $\| \cdot \|_0$ and $\| \cdot \|_0'$ are compatible on X_1^*.

Lemma 3. For $p_1 \geq p_2$ and $q_1 \geq q_2$ the inequality

$$\|u\|_{p_1, q_1} \leq \|u\|_{p_2, q_2}$$

holds for all $u \in B$, the norms $\| \cdot \|_{p_1, q_1}$ and $\| \cdot \|_{p_2, q_2}$ are compatible on B.

Proof. The inequality (1) follows immediately from the definition of the norms $\| \cdot \|_{p, q}$. We shall prove the compatibility of the norms.

In the case when p_j and q_j ($j = 1, 2$) are non-negative it is evident because we identify each element of the space $H_{p_j}(Q, B)$ with its strong derivative of order zero. Therefore $H_{p_j}(Q, B)$ is a dense subset of $H_{p_j}(Q, B)$ ($m \geq m_1, k_1 \geq k_2$) and from the preceding remarks it follows, that the norms $\| \cdot \|_{p_1, q_1}$ and $\| \cdot \|_{p_2, q_2}$ are compatible on the class B (considered as the set of linear functionals on $H_{p_j}(Q, B)$).

As both spaces $H_{p_j, q_j}(Q, B)$ ($j = 1, 2$) are the completions of B in the corresponding norms, we have the dense embedding $H_{p_j, q_j}(Q, B) \subset H_{p_j, q_j}(Q, B)$.

A similar reasoning proves that the norms $\| \cdot \|_{p_j, q_j}$ and $\| \cdot \|_{p_j, q_j}$ are compatible; thus $H_{p_j, q_j}(Q, B)$ is a dense subset of $H_{p_j, q_j}(Q, B)$ (from this follows the compatibility of the norms $\| \cdot \|_{p_1, q_1}$ and $\| \cdot \|_{p_2, q_2}$ on the class B). Therefore $H_{p_1, q_1}(Q, B)$ is also a dense subset of $H_{p_1, q_1}(Q, B)$.

Let u_α be a sequence of functions of the class B fundamental in both norms $\| \cdot \|_{p, q}$ and $\| \cdot \|_{p, q}$ ($\alpha \geq k_2$) and let $\|u_\alpha\|_{p, q} \rightarrow 0$ for $s \rightarrow \infty$. Then for $0 \leq |\alpha| \leq s$ the sequence $\{D^\alpha u_\alpha\}$ is fundamental in the both norms $\| \cdot \|_{p, q}$ and $\| \cdot \|_{p, q}$ and $\|D^\alpha u_\alpha\|_{p, q} \rightarrow 0$. So $\|D^\alpha u_\alpha\|_{p, q} \rightarrow 0$, because the norms $\| \cdot \|_{p, q}$ and $\| \cdot \|_{p, q}$ are compatible, and therefore $\|u_\alpha\|_{p, q} \rightarrow 0$. So the norms $\| \cdot \|_{p, q}$ and $\| \cdot \|_{p, q}$ are compatible on B. From this follows the dense inclusion $H_{p_1, q_1}(Q, B) \subset H_{p_1, q_1}(Q, B)$ and as a consequence, the compatibility of the norms $\| \cdot \|_{p_1, q_1}$ and $\| \cdot \|_{p_1, q_1}$ on the class B.

So the lemma is proved and we have also verified.

Theorem 2. For $p_1 \geq p_2$ and $q_1 \geq q_2$ the space $H_{p_1}(Q, B)$ may be treated as a dense subset of the space $H_{p_2}(Q, B)$. The inequality (1) holds for all $u \in H_{p_1}(Q, B)$.

Let $p_1 \geq p$ and $q_1 \geq q$. According to what has been stated above we have the embeddings

$$H_{p_1}(Q, B) \subset H_{p}(Q, B), \quad H_{p}(Q, B) \subset H_{p_1}(Q, B).$$

Let $u \in H_{p_1}(Q, B)$, $v \in H_{p_1}(Q, B)$ and let (u_α) and (v_β) be the corresponding approximating sequences of smooth functions

$$\|u_\alpha - u\|_{p_1} \rightarrow 0, \quad \|v_\beta - v\|_{p_1} \rightarrow 0.$$

From theorem 1 and lemma 3 it follows that $b_{\alpha, \beta}(u, v) = \lim_{\alpha, \beta \rightarrow \infty} b_{\alpha, \beta}(u, v)$; so for fixed $v \in H_{p_1}(Q, B)$ the form $b_{\alpha, \beta}(\cdot, v)$ is a restriction to the space $H_{p_1}(Q, B)$ of the form $b_{\alpha, \beta}(\cdot, v)$. (Evidently the roles of α and β may be interchanged). Therefore we can omit the index and in the sequel we shall write simply (u, v) instead of $b_{\alpha, \beta}(u, v)$.

From the definition of the norms $\| \cdot \|_{p, q}$ can be obtained in a simple manner.

Lemma 4. The inequality

$$\|u\|_{p, q} \geq ||D^\alpha u||_{p, q}$$

holds for

$$\begin{cases}
B & \text{when} |\alpha| \leq p, |\beta| \leq q, \\
B_{\alpha, \beta} & \text{when} |\alpha| > p, |\beta| \leq q, \\
B_{\beta, \alpha} & \text{when} |\alpha| \leq p, |\beta| > q, \\
C_{\alpha, \beta} & \text{when} |\alpha| > p, |\beta| > q.
\end{cases}$$

When Ω is the N-dimensional cube and B is the class of all functions which belong to $C^\infty(\Omega)$ and are periodic, with Ω as the period parallelogram, then the inequality (2) holds for all $u \in B$ without any restriction concerning the support.

2. Some differentiability properties of the spaces $H_{p, q}(Q, B)$.

2.1. The present chapter contains some inequalities concerning the norms $\| \cdot \|_{p, q}$ which are similar to the inequalities for the norms $\| \cdot \|_{p, q}$ obtained by Ehrlich [1]. From these inequalities follows and analogue to the Sobolev Lemma for the spaces $H_{p, q}(Q, B)$.

We make the following assumptions concerning the domains Ω ($j = 1, 2$) (see [1] and [8]):
There are positive constants A and t_4 (depending on Ω, n, α) such that the inequality

$$|u|_{\bar{A}^k} \leq At^{n-k-1}\left(\sum_{k=0}^{\infty} \text{ess} \sup_{x \in \Omega} |u|_{\bar{A}^{k+1}}^{n-k-1}\right)^{1/(n-k-1)}$$

$$0 \leq k \leq n; 0 \leq l \leq n$$

holds for $u \in P^\alpha(\Omega)$ and $t \geq t_4$.

With the aid of similar estimates, as used by Ehrling [1], can be also proved

Lemma 6. There exists a positive constant A (depending on $\Omega, |\alpha|, |\beta|$) such that for $u \in P^\alpha(\Omega)$

$$\sup_{x \in \Omega} |D_x^\alpha D_y^\beta \text{sup}_{x \in \Omega} u(x, y)| < A u|_{\bar{A}^1}$$

$$\text{and } u|_{\bar{A}^1}$$

In the inequality (5) the roles of x and y may be interchanged.

2.2. We suppose now that B is a subset of $P^\alpha(\Omega)$. The following two lemmas show that the functions belonging to the space $H_{\alpha, \beta}(\Omega, B)$ with sufficiently large indices have some regularity properties analogous to those given by Sobolev’s Lemma in the case of the space H_α.

Lemma 7. Let $u \in H_{\alpha, \beta}(\Omega, B)$ for some $|\alpha| > R/2, k > S/2$. There exists a function $u \in P^\alpha(\Omega)$ such that the inequalities

$$D_x^\alpha D_y^\beta u(x, y) = D_x^\alpha D_y^\beta u_1(x, y)$$

hold almost everywhere in Ω. So the space $H_{\alpha, \beta}(\Omega, B)$ may be treated as a subset of $P^\alpha(\Omega)$.

Proof. According to the remarks of the section 1.6. and to lemma 6 it is sufficient to show, that the norms $||u||_{H_{\alpha, \beta}(\Omega, B)}$ and $||u||_{H_\alpha}$ are compatible on B, where

$$||u||_{H_{\alpha, \beta}(\Omega, B)} = \sup_{x \in B} |D_x^\alpha D_y^\beta u(x, y)|.$$

Let $(u_n) \subset B$ be a sequence fundamental in both norms and tending to zero in the norm $||u||_{H_{\alpha, \beta}(\Omega, B)}$, and $||u||_{H_\alpha}$.
plesness of the space $H_{m,n}(Q, B)$ it is a square summable function u such that $\|u_n - u\|_{m, n} \to 0$. But

$$\left| \int \int u_n(x, y) dxdy - \int \int u(x, y) dxdy \right| \leq \left| \int \int |u_n(x, y) - u(x, y)| dxdy \right|$$

and the integral on the right is not greater than $|Q|^{1/2} \|u_n - u\|_{m, n}$. Therefore

$$\int \int |u(x, y)| dxdy = 0$$

and so $u(x, y)$ vanish almost everywhere in Q, q.e.d.

As a consequence of inequality (5) we obtain (with $A_1 = |Q|^{1/2} A^{1/2}$)

$$\sup_\mathcal{F} \int \int D^2_{k} D^2_{l} u(x, y) dxdy \leq A_1 \|u\|_{m, n}$$

for $u \in P^m(Q)$. A similar reasoning as in the proof of lemma 7 shows that the norms $\|\cdot\|_{m, n} = \|\cdot\|_{m, n}$ are compatible on B, where

$$\|u\|_{m, n} = \sup_\mathcal{F} \int \int D^2_{k} u(x, y) dxdy$$

From this it follows

Lemma 8. Let $u \in H_{m,n}(Q, B)$ $(m \geq 0, n \geq 0)$. For each a(0 $\leq |a| \leq m)$ there exists a function $w^a \in P^{m-|a|-1}(Q)$ such that the quantities

$$\int \int D^2_{k} D^2_{l} u(x, y) dxdy = D^2_{k} w^a(x, y) \quad (0 \leq |a| \leq m, 0 \leq |b| < k - S(2))$$

hold almost everywhere in Q. So for $0 \leq |a| \leq m$ the functions

$$D^2_{k} u(x, y)$$

may be treated as belonging to the class $P^{m-|a|-1}(Q)$ and the derivation of order β with respect to y $(0 \leq |\beta| < k - S(2))$ can be made under the sign of integral, when this last derivation is taken in the strong sense.

5. Application of the spaces $H_{m,n}(Q, B)$ to the study of weak solutions of some non-elliptic equations

5.1. Let A be the class of all differential operators defined in Q, which can be expressed in the form

$$L u = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^2_{\alpha} (a_{m, n} D^2_{\alpha} D^2_{n} u) + \sum_{|\beta| \leq m} (-1)^{|\beta|} D^2_{\beta} (b_{m, n} D^2_{\beta} D^2_{n} u) \quad (m, n \geq 0)$$

for sufficiently differentiable u and which satisfies the following assumptions concerning the coefficients:

1° $a_{m, n}$ and $b_{m, n}$ are complex-valued functions infinitely differentiable in Q and having all derivatives bounded in Q,

2° $a_{m, n}(x, y) = \bar{a}_{m, n}(x, y)$ for $(x, y) \in \Omega$,

3° let ξ be the system of complex numbers $\xi_{m, n}(|a| = m, |\beta| = n)$; when one puts

$$Q(x, y; \xi) = \sum_{|\beta| \leq m} a_{m, n}(x, y) \xi_{m, n} \bar{a}_{m, n}(x, y)$$

there exists a positive constant δ such that the inequality

$$Q(x, y; \xi) \geq \delta \sum_{|\beta| \leq m} |\xi_{m, n}|^2$$

holds everywhere in Q.

The expression on the right of (6) shall be called *canonical form* of the operator L. From assumption 3° it follows that the operators of class A are not elliptic in Q. In the special case $u = 0$ operator L has the canonical form

$$L u = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^2_{\alpha} (a_{m, n} D^2_{\alpha} D^2_{n} u) + \sum_{|\beta| \leq m} (-1)^{|\beta|} D^2_{\beta} (b_{m, n} D^2_{\beta} D^2_{n} u)$$

It is elliptic in Q and its coefficients depend on the parameter $y \in \mathbb{R}$. So the study of operators belonging to A gives us some information about the elliptic operators depending on a parameter.

Denote by A_e the differential operator $I - \sum_{r=1}^{\infty} \lambda^r |\partial^2_{x} \xi|^{2}$; A_e has the same meaning, when x is replaced by y. Simple calculations show that

$$(A_e)^r u = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} \lambda^r |\alpha| D^2_{\alpha} u$$

and similarly for $(A_e)^r (r = 1, 2, \ldots)$. From the definition of class A follows in a simple manner

Lemma 9. When $L \in A$, the formal adjoint operator L^* and all the products of L with A_e and A_e are also in A.

101
3.2. In the following we apply the Hilbert spaces defined in chapter 1 to the study of the weak solution of equation

\[L_0 w = 0, \]

when \(L \) belongs to \(A \) and \(r \) is an element of some space \(H_{r+2} \). Our procedure is similar to the method used by Lax [7] in the case of an elliptic operator. We start with some energetic inequalities, which are analogous to the well-known inequality for elliptic operators given by Gårding [4].

Lemma 10. Let \(L \) be an operator of class \(A \) with \(m, n > 0 \); so each of the differential expressions \(A_L^r A_L^s L_{r+s} u, A_L^r L_{r+s} A_L^s u, L_{r+s} A_L^r A_L^s u, L_{r+s} L_{r+s} A_L^s u \) \((0 \leq r \leq \tau, 0 \leq s \leq \tau, u \in P^m(\Omega))\) can be brought to the canonical form

\[\begin{align*}
\sum & (-1)^{m+s+r+s+D_0^r D_0^s (A_{\omega, r,s} A_0 D_0^r D_0^s u) + \\
& + \sum_{|s|=\tau, |r|=\tau} (-1)^{|r|+|s|} D_0^r D_0^s (e_{\omega, r,s} A_0 D_0^r D_0^s u).
\end{align*} \]

Denote by \(I_{\tau,r}(u) \) the corresponding Dirichlet integral and let \(\Omega \) satisfy the assumptions of section 2.1. There are some positive constants \(t_1, c \) (depending on \(\Omega, L, r, \tau \)) such that the inequality

\[|L_0 u| \geq c \| u \|_{H_{1+r, 1+r, \tau}} \quad \text{for } u \in P^m(\Omega), \quad 0 \leq r \leq \tau, 0 \leq s \leq \tau \]

holds, when the functions \(\text{Re} b_{w, \alpha} \) \((|\alpha| = m)\), \(\text{Re} b_{w, \beta} \) \((|\beta| = n)\) and \(\text{Re} b_{w, \gamma} \) have a lower bound in \(\Omega \) exceeding \(t_1 \).

Proof. Let \(I_{\tau,r}(u) \) be the Dirichlet integral corresponding to the first sum in (8). According to the condition 3 (section 3.1) we have

\[|I_{\tau,r}(u)| \leq \frac{\sum}{|s|=\tau, |r|=\tau} (-1)^{|r|+|s|} D_0^r D_0^s (e_{\omega, r,s} A_0 D_0^r D_0^s u). \]

The second sum can be presented in the form

\[\begin{align*}
\sum & (-1)^{m+s+r+s} \left(\int_{|\alpha|=m} D_0^{r+s} D_0^{s+r} \left(\text{Re} b_{w, \alpha} A_0 D_0^{r+s} D_0^{s+r} u \right) \right) + \\
& + \sum_{|s|=\tau, |r|=\tau} (-1)^{|r|+|s|} D_0^r D_0^s (e_{\omega, r,s} A_0 D_0^r D_0^s u).
\end{align*} \]

When the coefficients \(\omega_{w, \alpha} \) do not depend on the functions \(\text{Re} b_{w, \alpha} \) \((|\alpha| = m)\), \(\text{Re} b_{w, \beta} \) \((|\beta| = n)\), \(\text{Re} b_{w, \gamma} \) (they depend only on the derivatives of these functions of order at most \(r \) with respect to \(x \), and at most \(s \) with respect to \(y \)). Denoting by \(I_{\tau}(u) \) the Dirichlet integral corresponding to the sum \(\sum(1) \) in (11) \((j = 1, 2, 3, 4)\) we obtain

\[|I_{\tau,r}(u)| \geq t_1 \left(\| u \|_{H_{1+r, 1+r, \tau}} + \sum_{|s|=\tau, |r|=\tau} \| D_0^{r+s} D_0^{s+r} u \|_{L^2(\Omega)} + \sum_{|s|=\tau, |r|=\tau} \| D_0^{r+s} D_0^{s+r} u \|_{L^2(\Omega)} \right). \]

From this and similar estimates for \(I_{\tau,r}(u) \) and \(I_{\tau}(u) \) follows

\[|I_{\tau}(u)| \leq t_1 \left(\| u \|_{H_{1+r, 1+r, \tau}} + \| u \|_{H_{1+s, 1+s, \tau}} + \| u \|_{H_{1+r+s, 1+r+s, \tau}} \right). \]

The remaining integral \(I_{\tau}(u) \) can be estimated with the aid of inequality (9)

\[|I_{\tau}(u)| \leq \sum_{|s|=\tau, |r|=\tau} \| D_0^{r+s} D_0^{s+r} u \|_{L^2(\Omega)} \leq \psi(t) (t \| u \|_{H_{1+r, 1+r, \tau}} + t \| u \|_{H_{1+s, 1+s, \tau}} + t \| u \|_{H_{1+r+s, 1+r+s, \tau}}) \quad (t \geq t_0), \]

when \(\psi(t) \to 0 \) as \(t \to \infty \). Suppose \(t_1 \geq t_0 \); so from (10), (12) and (13) we obtain for \(t \geq t_1 \)

\[|I_{\tau}(u)| \geq (d - \psi(t)) \| u \|_{H_{1+r, 1+r, \tau}} + t_1 \| u \|_{H_{1+s, 1+s, \tau}} + t \| u \|_{H_{1+r+s, 1+r+s, \tau}}. \]

Let

\[\psi(t) \leq \frac{d - 1}{2} \]

for \(t \geq t_1 \). So for \(t \geq \max(t_1, t_0) \)

\[|I_{\tau}(u)| \geq \frac{d}{2} \| u \|_{H_{1+r, 1+r, \tau}} + \frac{t_1}{2} \| u \|_{H_{1+s, 1+s, \tau}} + \frac{t}{2} \| u \|_{H_{1+r+s, 1+r+s, \tau}} \]

and according to the estimate (3) we get the inequality (9), q. e. d.

Using similar arguments the following two lemmas can be proved:

Lemma 11. Let \(L \) be an operator of class \(A \) with \(m > 0, n = 0 \) (so it is an elliptic operator depending on a parameter and its canonical form is given by formula (6a)). We suppose that \(\Omega \) satisfies all the assumptions of section 2.1 and we denote by \(I_{\tau}(u) \) the Dirichlet integral corresponding to the canonical form of the operator \(\Delta_L^r \) or \(\Delta_L^r \). There are some positive constants \(t_1, c \) (depending on \(\Omega, L, r_1 \)) such that

\[|I_{\tau}(u)| \geq c \| u \|_{H_{1+r, 1+r, \tau}} \quad (u \in P^m(\Omega), \quad 0 \leq r \leq \tau), \]

when the function \(\text{Re} b_{w, \alpha} \) has lower bound in \(\Omega \) exceeding \(t_1 \).
Lemma 12. We suppose that all the assumptions of lemma 11 are true; let \(L_{\alpha}(w)(0 \leq r \leq r_0, 0 \leq s \leq s_0) \) have the same meaning as in lemma 10. So there are positive constants \(t_1, \epsilon \) (also depending on \(\Omega, L, r_0, s_0 \)) such that
\[
\|u\|_{\alpha, r, s} \geq \epsilon \|u\|_{\alpha, r_0, s_0}(u \in P_0(\Omega), 0 \leq r \leq r_0, 0 \leq s \leq s_0)
\]
when the functions \(\text{Re} a_m, (|a| = m) \) and \(\text{Re} b_m \) have a lower bound in \(\Omega \) exceeding \(t_1 \).

Remark. Simple calculation shows that the inequalities (9), (14) and (15) are true in the case \(L = \Delta^2 \Delta^2 (m, n > 0) \). More generally, when \(a_{m,n} = b_{m,n} = 0 \) for \(a \neq a' \) or \(b \neq b' \) and the remaining coefficients have a positive lower bound in \(\Omega \), \(L \) satisfies the energetic inequality
\[
\|u\| \geq \epsilon \|u\|_{\alpha, r_0, s_0},
\]
although the assumption that some coefficients are large may be not satisfied. \(I(u) \) denotes the Dirichlet integral corresponding to the canonical form of \(L \).

The inequalities (9), (14) and (15) can be brought to a different form when we suppose that the coefficients \(a_{m,n} \) and \(b_{m,n} \) (or \(a_m \) and \(b_m \)) and the function \(u \) satisfy such boundary conditions that after the integration by parts the boundary integrals vanish. We obtain then the estimate
\[
\|L_{\alpha}(u, u)\| \geq \epsilon \|u\|_{\alpha, r_0, s_0}(u \in P_0(\Omega), 0 \leq r \leq r_0, 0 \leq s \leq s_0),
\]
when \(L_{\alpha} \) denotes some of the operators \(\Delta^2 \Delta^2 L, \Delta^2 \Delta^2 L, \Delta^2 \Delta^2 L, \Delta^2 \Delta^2 L \).

3.3. In this and in next section we suppose that \(\Omega \) is the \(N \)-dimensional cube defined by inequalities \(|x| < a \) (\(i = 1, \ldots, R \)), \(|y| < a \) (\(j = 1, \ldots, S \)). Let \(B_p \) be the class of all functions infinitely differentiable in the whole space \(\mathbb{R}^N \) and periodic with \(\Omega \) as the period-parallelogram. Our purpose is a study of periodic weak solutions (see definition 2) of equation (7) with the aid of the spaces \(H_{\alpha, \beta}(\Omega, B_p) \). We begin with the following differential inequality:

Lemma 13. Let \(L \) be an operator of class \(\Lambda \) with coefficients \(a_{m,n} \) and \(b_{m,n} \) (or \(a_m \) and \(b_m \)) belonging to \(B_p \). We suppose that the inequality (17) is true. So
\[
\|u\|_{\alpha, \beta} \leq \epsilon \|L u\|_{\alpha, \beta, \alpha, \beta}
\]
in particular
\[
\|u\|_{\alpha, \beta} = 0
\]
From inequality (17) it follows in the limit that
\[
\|u\|_{\alpha, \beta} = \epsilon \|u\|_{\alpha, \beta, \alpha, \beta}
\]
therefore \(u = 0 \) and according to theorem 1 the functional \(I \) has the norm zero, also vanish identically on \(H_{\alpha, \beta}(\Omega, B_p) \). Thus we have proved that \(\Gamma \) is dense in \(H_{\alpha, \beta}(\Omega, B_p) \).

Let now \(f \) be an arbitrary function of class \(B_p \) and \(\epsilon \) a positive number. When we apply what has been just proved to the operator \(\Delta^2 \Delta^2 L \) it follows that there exists a function \(f \) such that
\[
\|\Delta^2 \Delta^2 f - \Delta^2 \Delta^2 L f\|_{\alpha, \beta, \alpha, \beta} < \epsilon.
\]
Non-elliptic equations

From lemma 13 applied to the operator \(\mathcal{A}_x^* \mathcal{A}_x \) it follows that
\[
\|f_x - Lf\|_{H_{-\mu - \nu}^0(\Omega, B_x)} \leq c \|\mathcal{A}_x^* \mathcal{A}_x f_x - Lf\|_{H_{-\mu - \nu}^0(\Omega, B_x)}
\]
and therefore \(\Gamma \) is dense in the space \(H_{-\mu - \nu}^0(\Omega, B_x) \) \(\mu, \nu > 0 \), q.e.d.

5.4. Definition 2. Let \(u, v \) be two elements of a space \(H_{\mu,\alpha}(\Omega, B_x) \) and let \(L \) be a differential operator with coefficients belonging to \(B_x \). We say that \(u \) is the \textit{periodic weak solution} of the equation
\[
Lu = v
\]
if the equality \((u, L^* \varphi) = (v, \varphi) \) holds identically for \(\varphi \in B_x \).

The following theorem is analogous to the differentiability theorem of Lax [7] for elliptic equations.

Theorem 3. Let \(\Omega \) the \(N \)-dimensional cube and \(L \) an operator of class \(\Lambda \) satisfying inequality (17) with coefficients belonging to \(B_x \). We suppose that \(u \) is the periodic weak solution of equation (7) lying in a (sufficiently large) space \(H_{\mu,\alpha}(\Omega, B_x) \). When \(v \) is an element of \(H_{\mu + 2m,\alpha + 2m}(\Omega, B_x) \), then \(u \) is in \(H_{\mu,\alpha}(\Omega, B_x) \).

Proof. From the generalized Cauchy inequality we obtain applying lemma 13 to the operator \(L^* \) (when we suppose that \(\gamma_1 \) and \(\gamma_m \) are sufficiently large)
\[
\|L^* \varphi, u\| \leq c \|\varphi\|_{\Omega, B_x} \|L^* \varphi\|_{H_{-\gamma_1 - \gamma_m - 2m}^0(\Omega, B_x)}.
\]

So the linear functional \(\mathcal{I}(\varphi) = (\varphi, u) \) is bounded on the dense subset \(\Gamma \) of the space \(H_{-\gamma_1 - \gamma_m - 2m}(\Omega, B_x) \) and therefore can be prolonged uniquely to the linear functional on the whole space. From theorem 1 it follows that \(u \) belongs to \(H_{\mu,\alpha}(\Omega, B_x) \), q.e.d.

It follows from theorem 3 and lemmas 7 and 8 that \(u \) has some differentiability properties in the classical sense, when the numbers \(p + 2m \) and \(q + 2n \) are non-negative and at least one of them is sufficiently large. In the special case \(s = 0 \), from theorem 3 follows the differentiability of periodic weak solutions of elliptic equations depending on a parameter (according to the remarks in section 3.1).

Bibliography

Reçu par l'éditeur le 21.1.1962