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A comparison of weak and strong continuity
by

J. V. RYFF (Stanford, Cal.)

It is always interesting to learn the degree to which a property giver
in the weak topology of a Banach space B is valid in the strong (normy
topology. In this paper we shall be concerned with functions ¢ — (%)
from ‘a subset of the real line taking values in a fixed Banach space, in
short, vector-valued funections.

By and large, if for each continuous linear functional f in the conjugate
space B*, the function f(z(f)) as a complex-valued function has pro-
perty s, then x(f) is said to be weakly-w. An exception to this will be found
in the definition of weak differentiability. Not only is it required that
d(a(t))/dt exist for each feB* but further, there must be someé element
£ (usually written «'(f)) in B such that df(w(f))/dt = f(&). In reflexive
spaces there is no problem, otherwise the existence of & is not guaranteed
by the existence of the derivatives alone. In the following resumé we shall
try to give an acecount of some more familiar properties of vector-valued
functions which have meaning in both the weak and strong sense.

(a) It z(t) is weakly differentiable in a measurable set B to ' (t),
then #(f) is strongly differentiable to #’ (1) almost everywhere ([1], p. 193).

(b) If x(t) is of weak bounded variation it is also of bounded varia-
tion bubt not necessarily of strong bounded variation (see [5], p. 59-60,
for definitions and proof). .

(e) If x(f) is weakly measurable and if, except for a set of zero measure,
the range of «(t) iz separable, then z(t) is strongly measurable ([5], p. 72-73).
In particular, when B is separable they are equivalent (see also [2]).

(d) If x(¢) is a weakly holomorphic vector-valued function in a do-
main D of the complex plane, then z(¢) is holomorphie in the strong sense
([5], p- 92-93). We shall give a sharper statement of this later.

It appears that a rather interesting possibility has yet to be consi-
dered: Tf x(?) is weakly continnous on an interval [a, b] are there points
of strong continuity?

1. Weakly continuous vector-valued functioms. In this section
#(t) will be a weakly continuous vector-valued function from an interval
[a,b] to a Banach space B. The main result ig then

.
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TuEOREM. The set of points of strony discontinuity of x(t) forms a set
of first category.

The proof is modeled after one given by Boas ([3], p. 99-102) with
modifications necessary because of the infinite dimensional range.

Levma. x(t) cannot be strongly discontinuous at each point in [a, b].

Proof. By contradietion. If ¢ is & point of strong discontinuity then
the images of arbitrarily small neighborhoods of ¢ do not shrink to x(f).
Thus, to each t in [a, b] there is an integer n such that the diameter of
the image of each mneighborhood of ¢ is at least 1/n. Let D, be the collec-
tion of those ¢ in [a, ] with this property. Bach D, is closed, for if ¢,
is an accumulation point of D,,, then any neighborhood of ¢, is a neigh-
borhood of some # in D,. Moreover

[a,0] = UI D,

since each point ¢ is supposed to be a point of strong discontinuity. By
Baire’s theorem. some D, contains an interval, say I,. The range of (1)
is separable (consider the closed linear extension of the points x(r), where
r 18 rational) so that we may cover the range of #() by a denumerable
number of closed spheres 8, centered at points w(f) having diameter
less than 1/n. Denote by H; the inverse image of the intersection of
the sphere S, with the range of #(¢). The H; cover [a, b] and so cover I,.
On the other hand, no H; can cover any subinterval of I,. By Baire’s
theorem, some H; must be dense in a subinterval of I,. If {1} is a sequence
in this H; converging to ¢, then x(t') belongs to the corresponding sphere
8. If not, @ (t") would not belong to the convex closure of the points {x(t)}.
But by the weak continuity of x(t), the point z(¢') is a weak limit of the
sequence {z(t,)}, and such limits always belong to the convex closure
of the sequence. This proves that H; is closed and, since it is dense in a sub-
interval of I, it must actually cover this subinterval. This gives the con-
tradiction.

The proof of the theorem is now fairly easy. Let ), be the set of
points ¢ in [a, b] such that a sequence {1} can be found with ¢, — ¢ and
flot)—2 @) =1/n, n =1, 2,... The sets 1), cover the points of strong
discontinuity of »(t). If the closure D, of some D, contained an interval,
then by our lemma we can find a point of strong continuity ?, in D,.
For & =1/2n determine § >0 such that [t—1,) < & implies ||n(2)— (f)||
< 1/2n. Take teD, to satisfy [t—t,| < d/2 and then find ¢, such that
lt,—1t < 6/2 and

@) L et —o@) > .
n

icm
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Then ]
lle (8) — 2 (D]l < ll@(8,) — (@)l 4 o (t) =2 (@O < llo(t) —2 )+ 5--

But [t,—1,] < 8, gives |x(t,)—2z(%)| < 1/2n, contradicting inequal-
ity (1). A

It is fitting that we include here an example which seems to have
about as many strong discontinuities as possible. The interval will be
[0,1] and the Banach space is to be the real Hilbert space ly. .

First we define a sequence 4,(t) of continuous real-valued functions
on [0,1] in the following manner: X

It 0, = (%,%), take ,(f) to be zero outside of C; and . (3) = 1.

2

Then complete p, (f) linearly. That is, for ; <t <3
pi(t) = 1—6t—q].

Next, for Gy, = (%, é) and G, = (;, %) define y,(f) to vanish in the
complement of these intervals, set -

@) =nE) =1
. . " 12 _ % ﬁ)
and complete as a linear funetion. With Cy; = (G553 - Csp = Grr3n

define v, (f) to be zero outside these intervals, equal to u.nity at t-he mid_—
point of each Oy, and linear otherwise. Thus, at each stage In removing mid-
dle thirds in the construction of the Cantor set we define a continuous
function w,(t) which peaks to unity at the midpoints of each removed
interval and vanishes outside. Now set

@1(t) = p1(8)

1
Pu(t) = '271_—1%(1)4----+5%_1(i)+%(t)-

Each g¢,(t) is continuous, bounded by unity and Va,nisl.les on the
‘Cantor set. If ¢ is the midpoint of the interval Cy, removed in the con-
struction of the Cantor set we have

97m(tk,,,) =0 (m < F),

1
om(tr,) = = (1

N

kE<m).

Define the function z(f) from [0,1] to I, by

z(t) = (¢ (1), vy )y o00).
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It is necessary to show that for each ¢ this sequence belongs to I,.
But the largest values the ¢,(f) can take are at the midpoints b, IE
7 is such a point, we have in fact

o0 oo 1 0 ‘
29")»(1)2 = 2(2n—_1) =3
ft=1 . n=1

On the other hand, if ¢ = (a;, @y, ..., Gn, ...) 18 an arbitrary element
of 1,, the funetion

o a(t)y = D' agu()
=1
is & confinuous funetion of t, so that () is weakly continuous on [0,1]
(< > represents the inner product in 1).
We now demonstrate that z(¢) is (strongly) discontinuous at each
point ¢ of the Cantor set. At these points & (c) is the zero sequence. Choose
& sequence {£} of midpoints converning to ¢. Then .

() — (el = o ()] = i

Acecordingly, strong continuity must fail at each such point. If,
instead, we extracted middle fourths or less it would be possible to con-
struct sets with measure arbitrarily close to unity. Defining a sequence
on(t) a8 we did for the Cantor ternary set it is clear that one may construct
weakly continuous funetions which are strongly discontinuous on sets
of measure 1—e¢, for any 0 < ¢ < 1.

‘Whether the result can be sharpened to strong discontinuities only
on nowhere dense perfect sets in place of sets of first category is not known.

2. Weak continuity with respect to a fundamental set. Following
Alexiewicz ([1], p.186), define a subset Bj of the conjugate space to
be fundamental for B, it for any ¢ >0 and  in B there exist elements
Jis-osfa in BY and real numbers a,, ..., a, such that

Wi=1 If@) = lall—e where f=ayfi-t...-apfp.

This means that |jz| can be found by taking the supremum. of |f(x)}
over those functionals of unit norm in the real linear extension of B;.
A funetion @ (1) is called Bi-weakly continuous at 4y if f(# () is continuous
at 4, for each f in B}. One may define Bj-weakly differentiable functions
ana_logously. Although a weakly differentiable function is strongly differ-
entiable almost everywhere, Gelfand ([4], p.265) gives an example of
a Bj-weakly differentiable function which ig strongly differentiable
Powhere. ‘We shall show by example that this complete breakdown occurs
in the case of Bj-weak continuity. This makes all the more interesting
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the fact that if, for any set By fundamental for B, f(#({)) is holomorphic
for ¢ in some domain D and all f in By, then () is itself holomorphic
in the stromg sense (see [5], p. 92-94, and [2], p. 67). The illustration
we give is of an elementary nature.

If a Banach space Y is known to be the conjugate space of a Banach
space X, then the image of X in ¥* = X*" under the canonical embedding
will be fundamental for ¥. With this in mind, we take the Banach space
M of essentially bounded functions on the interval [0,1] and identify
the space I, of integrable functions on [0,1] with a subset of M* funda-
mental for M. Bach function ¢(s) in L, determines a continuous linear
functional F, on M according to the equation

F,(m) = [m(s)p(s)ds

for each function m(s) in M. ‘
Define a funection x; from the interval [0, 1] to the space M by setting
#; equal to the characteristic funeti_on of the interval [0, ¢]. That is,
1 for 0<s<t, '
xy(s) =
0 for ft<s<1.
For each function ¢(s) in L, we then have
1 t
Fo(a) = [a(s)p(s)ds = [p(s)ds,
0 0
a continuous function of ¢. But clearly, as a vector-valued function, x
has no points of strong continuity.
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