6 A. Zieba

Clearly it is not supposed that guch ah «* belongs to 4 but of course

(see section 2) the following inequality holds:
M > maxwv(a*, b;) >0.
j=1.2

By 5° the function b(p., 1) is a continuous mapping of the closed
dise P into itself; thus by the fixed point theorem there exists such a
2(b)eP that

b (Papy 1) = =(b).
Since p,(1) = #, it is clear that
0<m< Stunf@(a'za h) < SLI'[)U((Z,,([,), b) = lpz(b)(l)‘_b<pz(b)7 1) = 0
bsB zeP beB

and m = 0.

Therefore M > m, q.e.d.

8. A game of pursuit and evasion of two points in the space R has
a value since the optimal strategies (in the sense of section 3) are

o q—p@®) e PD—a()
P (t) = €y Hq(t)—P(f)H i q (ﬂ 123 Hp(t)___q(t)“ !
PO) =1y, q(0) = G-

Therefore it is essential in owr example that P and @ should not be
whole plane. It is not so if the number of moving points of the two players
is greater. Consider the game described briefly as follows. The pursuer
9( has three moving points in the plane, situated at the moment 0 in the
angles of an equilateral triangle with side 1. The evader B has one point
situated at the moment 0 at the cenfral point of this triangle. P = @ = E2.
The velocity of all points is at most 1/1@ . Again, under some very general
assumptions regarding the classes of strategies (2 must have some straight
line strategies, the strategies of B must be continuous on the set of straight
lLine movements of 2, and B must have some appropriate finite set of
strategies) this game has no value. The idea of the proof is the same as
that of section 7. .
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Analytic functions of polynomial growth
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J. MIKUSIXSKI (Katowice)

In this paper we give simple proofs of some theovems (of type Paley-
Wiener) on the representation of analytic functions in the form

o) = [ fna,

where f(t) is a distribution. Usual proofs are based on similar theorems
of classical Analysis [1], [2], [8], [4]. This way is circuitous for distri-
butions, for in this case it suffices to start from a class of very regular
functions, which makes proofs easier and shorter, the tools of the theory
of the Lebesgue integral being then superflous. This idea is followed in
this paper.

The proof of the fundamental theorem is essentially similar to that
in [5], but some further simplifications are introduced.

_A function @(z) is said of polynomial growth in a set G if there exists
a polynomial P such that

@) <P(r)in & (r=[]].

The aim of this paper is to prove the following
THEOREM. If a function @(2), analytic in Rez >0, is of polynomial
growth, then it can be represented in the form

00

(1) ()= [ eTfmat(y),

—00

where f(t) is a distribution, temperated for t >0 and vanishing for 1 << 0.

Here, by a distribution temperated for t >0 we understand every
distribution which is a derivative of some order of a continuous function
of polynomial growth for ¢ >0.

(1) The meaning of this integral may be understood in the sense of [6]. See
also [7].
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In section 1 we give the proof of the above theorem. In next sections
we characterize the general class of funetions of the form (1), and state,
as simple corollaries, some theorems of Paley-Wiener type.

1. The function
= j @(s)ds

1
is also of polynomial growth in Rez > 0, together with @ (z). Moreover,
it ean be completed to a continuous function in the closed half-plane
Rez > 0. For properly chosen positive integer n, the function

(142)"
is bounded in Rez > 0. Let
O() — P(z)
? (z) - (1+z)n+2 ’
we have
1 ds
@ 0@ =5 [260)-=,
Cr

where the contour Cr (R >|2|) is composed of the semi-circle

(3) sl =R, Res=0

and of the segment of the imaginary axis embraced

0 7 by this semi-circle. On the other hand, given any real u,
we have
- 1 g
(4) 0= — f.()(s);—*———ds,
Fig. 1 2w A §—2

Ar the integrand is analytic inside the contour Cxr and continuous on it.
odding (2) and (4) we get

1 sy 8
20 = 5 f!)(s)e“‘s_) =

§—=2

If v > 0, the part of that integral belonging to the semi-circle (3)
tends to 0, as R — oo, and 5o we get

e (ly—-2)u

(5) z)——— f@ ay.

Y —z
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But )
6»(3—3)14 ®
= _je(s‘:)fdt for

—1

Res < Rez;
2—8

substituting this into (3) and interchanging the order of integration we
get

- L =
0@) = J it | " iyay.
—u =S

Since the formula holds for every u >
depend on w, the funetion

0 and its left side does not

1
(6) g(f) = o

f " Q(iy)dy

vanishes for { < 0 a,ﬁd we can write

oo

) Q) = [ e

—00

Fg(t)at.
Since

. M
Qiy)dy) < ——,
1+ y|
the integral (6) represents a continuous and bounded function in
—oo < < 0.
From (7) we get
o5

(1+2)20) = [ e

—

“gu(t)dt (),

where g.(¢) = g(t)-+¢'(1), and g¢'(t) is the distributioual derivative of
g(t). Of course g,(t) is a distribution temperated for ¢ > 0 and vanishing
for ¢ < 0. Similarly,

| e nwa,

—co

(1+2)20(z) =
where g,(f) = g,(t)--g;(t). After » similar steps we get

Yz} = ¢y, (1) dt,

3.

(*) The properties of the Laplace integral of a distribution and their proofs
.are analogous to those of Fourier integral (see [6] and [77). Remark that, in the com-
plex domain, thé -difference between the two integrals is inessential.
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where ¢,(t) is a distribution temperated for ¢ >0 and vanishing for
i < 0. Hence, on diffeventiating, we obtain (1) with f(f) = — g, (t).

2, An analytic function @(z) is said temperated n @ if it is, in @, a

derivative of some order of a function of polynomial growth.

CoROLLARY 1. A funciion ®(2), analytic in the half-plane Rez >0,
is temperated in that half-plane, if and only if i is of the form (1), where f(t)
is o distribution temperated for t >0 and vanishing for 1 < 0.

In fact, if f(t) is temperated for ¢ >0 and vanishing for ¢ < 0, there
is a continuous function F () of polynomial growth for ¢ >0 and
vanishing for ¢ < 0 such that f(1) = F® (1), There is a positive integer n
such that .

is bounded. Let

F (1)
IR
The function

=5}

[ e*a()dt

~00

is analytic and bounded in Res >0. The function

F e""(1+t)G(t)dt‘

—o0

i (2) = P(2) =¥ (2) =

ig analytic and temperate in Rez > 0. After n-2 similar steps we obtain
the funetion

o

V()= [ e*Fa,

which is analytic and temperated in Rez > 0. Hence

zkgln-;-i(z) = f e—gtF(k)(t)(Zt, )

which proves that the funetion (1) is analyfic and temperated in Rez >0.
Conversely, suppose now that @(z) is analytic and temperafed in

Rez > 0. Then it is a derivative of some order k of a function @(z) of
polynomial type in Rez > 0. By Theorem, we can write

B(2) = f e L,

icm
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where f(f) is a distribution temperated for ¢ > 0 and vanishing for ¢ < 0.
Hence, on differentiating % times, we obtain (1). with f(t) = (—*f(1)-
COROILARY 2. The only entire functions temperated in the whole com-
plex plane are polynomials.
In fact, such a function can be represented, for Rez >0, in the
form (1). On the other hand, we can apply the same argument to the
funetion V(_D(z) = &(—=z); thus we have on Rez >0

o

[ et

—00

D(z) =

where the distribution 7(#) is temperated for £ >0 and vanishing for ¢ < 0.
Replacing ¢ by —1, we find that

f&y = f(—1).

This implies that the distribution f(f) vanishes also for ¢ < 0. Thus the
support of f(¢) is reduced to the single point { = 0 and, comnsequently,
(&) is of the form '

f(t) = 8 (t) R 6(1;‘) (t) 3

where @; are numbers and 6(¢f) is the Dirac delta-distribution. Hence

| S
ThaE .

D(z) = ay+...

3. The following two corollaries are concerned with functions @(z)
of exponential type in Rez > 0.

COROLLARY 3. The function ¢~ ®(2) (a real) is analytic and tempe-
rated for Rez >0 if and only if P(2) is of the form (1), where f(1) is a
distribution temperated for t >0 and vanishing for t < —a.

In fa,ct; we have

oo

EDe) = [ e,

where f,{f) is a distribution temperated for ¢ >0 and vanishing for
t < 0. Hence

o

[ e+ a)a.

—0

(8) D(2) =

The distribution f,(t-+ ) is temperated for ¢ > 0 and vanishing for
1< —u.

COROLLARY 4. If, for every a >0, ¢ ¥ P () is @ temperated analytic
function in Rez >0, then so is D(z).
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In fact, then (8) holds for every « >0 and the distribution f,(i-+ a)
vanishes for t < — a. But this distribution does not depend, in fact, on «,
for it i3 determined uniquely by @(z). Thus it vanishes for ¢ < 0.

4. In order to obtain theorems of Paley-Wiener type, we need also
the following Lemma, whose proof is based on the theorem of Phragmén
and Lindelof and is entirely independent of the preceding considerations:

LeduA. If @(2) is analytic in Rez > 0, temperated in the neighbourhood
of the tmaginary axis, and such that the product e~ @(z) (a real) is of po-
lynomial growth in Rez > 0, then the product e~ D (z) is temperated in
Rez > 0.

In fact, there exigts a positive integer & and a function ¥(z) analytic
in Rez >0, continuous and of polynomial growth on the imaginary axis,
such that ¥¥(2) = &(z) in Rez > 0. Moreover, e W¥(2) is of polyno-
mial growth. There exists a polynomial P (z), whose all zeros are negative,
such that

D(z) i
1 for i inar
} ) | < 1 for imaginary 2z,
and
e PP (z) |
— | < for Rez =0
P(z) 1
The function
eCY ()
P(z)

is of exponential type in Rez >0, and less than 1 on the imaginary
axis and on the positive part of the real axis. By the Phragmén-Lindelot
theorem, it is less than 1 in the whole half-plane Rez > 0. Thus e~ *¥(z)
is of polynomial growth in Rez > 0. Henoce it follows easily that ¢~“®(z)
i8 temperated in Rez > 0.

On combining the preceding lemma with Corollary 3, we obtain

COROLLARY 5. If ®(2) satisfies conditions of Lemma, then it is of
the. form:(1),.where f(t) is a distribution temperated for t >0 and vanishing
for t < —a.

Our last corollary will be concerned with entire functions:

COROLLARY 6. An entire function (2) of exponential type is temperated
on the imaginary axis if and only if it is of the form (1), where f(t) is a distri-
bution of bounded support.

It is eany to verify that if () is of bounded support, then (1) is an
entire function, temperated on the imaginary axis. Suppose, conversely,
that P(z) is an entire funetion, temperated on the imaginary axis. Then

icm
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by Corollary 5, it can be represented in the form (1), where f(t) is a distri-
bution whose support is bounded from below. The same result can be
stated for the funetion @(2). Reasoning as in the proof of Corollary 2,
we find that the support of f(¢) is also bounded from above.
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