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STUDIA MATHEMATICA, T. XXII. (1963)

On the structure of quasi-modular spaces
L

TETSUYA SHIMOGAKI (Sapporo)

§ 1. Introduction. Let B be a wniversally continuous semi-ordered
linear space (1) (i.e. a conditionally complete vector-lattice in Birkhoff’s
sense [1]) and ¢ be a functional satisfying the following conditions:

(p-1) 0 < g(a) = g(—a) < +oo for all ackR;

(p-2) e(a-+d) = g(a)+o(d) if & Lb(%);

(p-8) for amy orthogonal system {a;}es with Do(ay) < oo, there

Aed
ewists ageR such that ay = Y a; and g(ag) = Y'e(a;);
AeA AeA

(p.4) Tim g(aa) < oo for all acR.
a~»0

R associated with o (denoted by (R, ¢) shortly) is called a guasi-
modular space and o is called & quasi-modular. The quasi-modular space
was first defined in [3] and discussed in [3] and [4].

In [10] Nakano established the theory of modular spaces (%), where
a modular m{a) (acR) is a functional on R satisfying (p.1), (¢.2) and the
additional conditions: )

(i) m(£a) is a convew funotion of real &> 0 which is mot identically
zero but finite in a neighbourhood of 0 (depending on a) in [0, +oo) for each
0+ aell;

(i) |a] < [b] implies m(a) < m(b);

(iil) 0 < a;ticq tmplies m(a) = sl;am(al).

A modular m is called monotone complete, if supm(a;) < -+oco and
A
0 < a;4peq imply (Ja,eR [10]. From above, it is easily seen that the
2e4
(*) This term is due to Nakano [10].
(®) ald, a,beR, means that |a| ~ |b| = 0 and for any set M c B we denote

by ML the set {m:zeR, v Ly for all ye M} .
(3 Correctly it is called a modulared semi-ordered linear space in [10].
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coneept of a quasi-modular is a generalization of that of a momnotone
complete modular (*). On a modular space (R, m) we can define a norm. as

l 5
[Halll —;gﬁm H )

(aeR),

and hence we can congider (R, m) as a normed space by this norm. If
the modular m is monotone eomplete, the norm is complete ({10], Theo-
rem 38.6).

We denote by R the comjugale space of R, i.e. the totality of all
universally continuous linear functionals (°) on R. R ig called semi-regular,
if R is total (") on R. R is called non-atomic if 0+ aeR can be decomposed
into @ = b+¢ with b ¢ and b, ¢ 0.

In the earlier paper [3] we proved the following theorem.:

TEEOREM A. If a quasi-modular space (R, o) is semi-regular and
non-atomic, R becomes a modular space (R, m,) with a (convez (%)) perfect (°)
modular m, constructed by o.

A lmea.r funetional & on R is called bounded, if sup|d(s) < 4o

e
for all 0 < ae R, and the totality of all bounded linear fllmctiona.ls on R
i ealled the associated space of R and denoted by R. From. the defini-
tion, it is elear that R C B and the equal sign does not hold in general.
The main aim of this paper is to improve Theorem A by replacing
the asswmption that R is semi-regular by one that R is total on R.

First we prove that, if B is total on R = (R, ), there exists the nor-
mal manifolds R, and R, such that R = R,@R, ("), where R, is semi-
regular and R, is g-singular, i. e. g(a) = 0 or +oo for all aeR, (Theorem
2.1). R, is also decomposed into Ry = R @N, where R, has a strong
wnit and o(a) = 0 for all ¢eN (Theorems 2.2 and 2.3). The space N iy
extremely pathological, if it exists, and intrests us by itself. § 3 is devoted

(*) Recently the concept of a modular was also generalized and discussed by
Musielak and Orlicz in [7] and [8].

(°} Tt is called in [10] the second morm by m.

(6) A linear functional f on R is said to be umve’rsallg/ continuous if mf [f(aa)| = 0
for any system of elements {a;}ies with a3 440

() This means that if a(z) = 0 for all @ek, then z = 0.

(8) As is shown above, the essential difference between guasi-modulars and
modulars is that the latter m(£a) (acR) are convex functions for real coefficient &.
To emphasize convexity of a modular, we use the term “convex modular’ in place
of “modular”.

(°y This means that every universally continuous linear functional is |||-||-
bounded.

(1% A manifold M C R is called mormal, if (ML)l = M. B =
that N =

M®N means
(ML)l and each acR is decomposed into a = b+t¢, belM, ceN.
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to diseuss N and it is proved that every spectrum of b by a (@ = 0, a,beN)
8 @ point spectrum.

In §4 we prove the main theorem (Theorem 4.1) which improves
Theorem A, as is stated above, and some remarks are given in this direc-
tion. The improvement of Theorem A enables us to discuss (R, o) from
the standpoint of linear topologies on R. In § 5 we paraphrase the results
obtained in § 4, [3] and [4] in terms of linear topologies T on (R, ¢) and
consequently show a generalization of a theorem due to Mazur and Orlicz
([6], 2.9). In fact we obtain that if a quasi-modular space (R, g) is topo-
logized by a locally convex separated linear topology T which is compatible
and monotone complete, we may define a (convex) modular m, on R such that
o-convergence (') coincides with that of the norm induced by m,. It is to
be noted that as for the Mazur-Orlicz’s Theorem there is the nice and
faithful generalizations to abstract semi-ordered linear spaces and fune-
tion spaces by It6 [2].

§ 2. Decomposition theorems. Let (R, g) be a quasi-modular space
with & quasi-modular g. We denote by [p] (p <R) the projection operator

defined by the set {p}‘', that is, [pJa = U (n|p|~a) for all 0 < aeR

N=1

and we call [p] (peR) a projector by p.
From the definition of p we ean easily prove that

(2.1) 0(0) =0, ofla]) = o(a)
and
(2.2)  o(lpla) = §?PQ([pﬂa) for each aeR and [p,;] t;e40p].

In [4] we proved the following theorem:

THEOREM B. If R is a quasi-modular space with a quasi-modular o,
the functional o' defined by the formula

(2.3) o'(a) =supp(x) (ack)
1z1<lal
8 also a quasi-modular on R satisfying
(0.5) la] < |bly @, beR, implies p'(a) < o’'(b) ([4], Theorem 2.1).

In the argument below, it is convenient to utilize property (p.3)
which is not fulfilled by general quasi-modulars. So far as investigation
of the strueture of (R, o), however, we may assume that the quasi-mod-
ular o satisfies (p.5) by itself without loss of generality in virtue of
Theorem B. Thus we let quasi-modulars ¢ satisfy (p.5) in § 2 and § 3 (*2).

(™) A sequence of elements {a,} C R is called g-convergent to a if there is a fixed
(21)

constant K > 0 such that limg(&(a,—a)) < K for all £> 0 [3].
P00

(1) The final result, however, comes to be free from (p.5) (Theorem 2.3).
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An element ae¢R is called p-finite, if o(aa) < +oo for every real
a = 0. Let F, be the totality of all p-finite elements. Now we have

Lemma 1. F is o semi-normal manifold (1. e. a linear manifold with
the condition: aeF, and |a| = |b], be R imply beFy) of R.

‘Proof. The facts that |a| > [b] and a<F, imply beF, and that
‘@, implies 2aeF, are easily verified from the definition of F,. Since
elaud) <ola)+o(d) and |a+b| < 2(a| v |b]) hold for any a,deR,
we can conclude that F, is a linear manifold, q.e.d.

For any @R we denote by @y, the functional & restricted on F, ,
i.e., dp (z) = &(z) for all z<F,.

Leywma 2. For any GeR, g, 18 a continvous linear functional on F,
(i e. infldp ([p,]a)l =0 for any [p,]4;2,0 and acF, (9).

21

Proof. Sinee & is writtenas & = a*—a~, 4", @ > 0 (*)and 4+ | a-,
we may assume that & > 0 and o > 0 without loss of generality. Since
[p.1¥,210 implies infg([p,]va) = 0 for each » > 1 in virtue of (p.2) and

=1

(2.2), we can find a subsequence {[p, 1}, Of {[p,J}usy sueh that
o([p,lva) <1/2" for all v >1. We put [g]= [pﬂy]_—[pl,v_l_]] and
b, =»[q,]a for all v > 1. Since {0,}p=1y 18 an orthogonal sequence with

Z:g(b,) < +oo0, there exists 0 < b, = Y'b,eR by (p.3). Then it follows
V= ve=1
from above

([p,0) = a(j[ma) = a(g‘% [2,] eal

o=v

< %—E( Z.: [qg]ga,) IS %d(bo):

which yields infd@([p,]a) = 0. Therefore @y, is continnous, q. e.d.

=1

R is said to be superuniversally continuous, if for any {a;};, with

Ua;.

Aed
Remark 1. A continuous linear functional & is not always univer-

sally eontinuous. On superuniversally continuous space R, however,

every continuous linear functional on R is obviously universally continuous.

%; < o there exists a sequence {1},

Aed, such that Ualu =
v=1

(*}) From this it follows that d(a,)—> 0 as »— co for any a, ¥, 0.

() a* (a~) is the positive (resp. negative) part of a,i. e. at =au 0
(resp. @™ = —a v 0).
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The following lemma was proved by Nakano in the case of modular
spaces ([10], Theorem. 35.4). As the proof of Lemma 3 is obtained by the
quite same way in virtue of (2.2), we omit it here.

Levma 3. For any aeR with 0 < p(a) < —oo, there exists [p,]
(0 # poeR) such that ¢([pola) = e(a) and ¢([pla) = 0, [p] < [po] implies
p =0. [p]R = {[po]: <R} is superuniversally continuous as a space.

We denote by F' the least normal manifold ineluding F,.

LevmA 4. If R is total on R and [p]F is superuniversally continuous,
then [p]F is semi-regular.

Proof. For any 0 < a,e[p]F there exists aeF, such that 0 <a
< . Since R is total, there exists also 0 < de¢R such that d(a) > 0.
Putting d@,(z) = sup d([ply) for any 0 < zeF and dy(z) = dy(a™)

o<y, ¥eF
—@ay(z~) for any zeF, we obtain a linear functional d, on [p]F and
do(x) = @(x) for all xeF,.

Since @y, is eontinuous by Lemma 2 and [p]F is superuniversally
continuous, dp, is a universally continuous linear functional on [plF,.
Henee d, is also such a one on [p]F by the definition of d,, beeause, for
any @ = 4V 240, @, 1¢[p]F (led) we have

inf iy (0,) = ind {@ (3) — (0 — 2;)}

A€ ieA

= [io('”)_f:l}-" Go(x—1;) = dy(@)— 511}3{

sup

0SU<T—3, Yy

a([ply)

= Go(w)— sup A([ply) = & (x)— d(z) = 0.

oy, ¥eF

As @g(ay) = d(a) >0 and dye[plF, [p]1F is semi-regular, (. e. d.

A manifold M of (R, o) is called p-singular, if p(a) =0 or =
for all ae M. Now we obtain a decomposition theorem:

TEEOREM 2.1. Let (R, o) be a quasi-modular space. If R is total on R,
R can be decomposed into R = R,@D R,, where R, is semi-reqular and R,
8 p-singular.

Proof. Let R, be the totality of all acR such that [a]R is semi-
regular. Then it i clear that R, is a normal manifold of B and {E,*}
= {0}, because, if &(x) = 0 for some @e¢ R and weR,L, then there exists
[»] (peR,*) such that [p]R is semi-regular ([10], Theorem 24.1). There-
fore it suffices to prove that R\ = R, is g-singular.

Let 0 < g(a) < +oo hold for some 0 < aeR,. Then, in virtue of
Lemma 4, we may assume without loss of generality that [a]R is super-
universally continuous and o([p]a) = 0 implies [pJa = 0. Let B, (v > 1)
be the totality of all [p] (p «R) such that [p] < [a] and ¢(v[pla) < +oo.
Putting [p,] = U [p], we have to consider the following two cases,
that is, [Pl<E,

+oo


GUEST


256 T. Shimogaki

(i) [»,] = [a] holds for each v>1;
and
(ii) [9,,] 3 [&] holds for some v = 1.

If (i) holds, then for each v > 1 there exists a mutually orthogonal
sequence of projectors: {[p, ,‘]} v, such that [p,,JeB, for all 1< u<k,
and

e o

We put also U{‘_'py o] =[g,] for each »=>

k,

4'=

1
[7.,:]4) < 5 0(@)

p=1

in virtue of (2.2). >1 and

Since

[p'1=@]<[a1—[qg : ]
e((81~[4.)4) < 37 0(@)

1, we have

o([p'la) <2 of(

=1

holds for each » >

e(a).

I

[6]—[g.]a) <

Therefore o((1—[p'])e) > to(a ), hence [p'] = [a]l—[p'] #0 and
[p”] <[gl for all » > 1. Sinee g(v[p, ,la) < +oo for each p with
k,

1< p <k Dby the definition of E, and [p"Ive < y” [p,,.]va, we have
=1

(»[p""]a) < +oo for each »>1. This implies [p"]aeF and [p"1F,
(;[a:[li’ is semi-regular. From Lemma 1 and Lemma 4 we conclude
that [p'']R is also semi-regular. This is a contradiction, because [p"'1R
C[a]RC R#.

On the other hand, if (i) holds, we can see that [p,]e¢ is a sirong
unit in [p,] R, where [p,] = [a]—[p,;] (i. e. for any w<[p,]R there exists
% real number &,> 0 such that || < &,[p,]e holds). Indeed, if such
a &, does not exist for some ze[p,]R, then [¢,] = [{|lz} —»e&)T1[po] # 0
for all v > 1. Now [¢]|z] = »[g,]a and ¢(v[g,]a) = +oo for all v >u,.
This implies, for any x> 1 and for some o with (u+o)/p > v,

1 1 4+o
e (; le) = 9(; [qwlw) = @( p

which contradiets (p.4) too.
Now we put, for any 0 <

(1;4«) n] (}b) +o0,

yeR,
(2.4) Joly) = sup {2 £o(p,]a)

(o]= [Pa]+..+[p), Y &IDIa<y)

e ©
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and for any yeR
T =foly") —foly™)

It is not diffieult to verify thet f is a universally econtinnous linear
functional on R and f([p,]a) = o([p,]a) > 0. This contradicts also
R} = R,. Thus we have proved that R, must be g-singular, q. e. d.

Remark 2. Since a discrete space is semi-regular, R, is always
non-atomie. ’

Ag for the singular part R, we have

THEOREM 2.2. R, can be decomposed into R, = B @ &, where N
= {2: @eRy, o(&x) = 0 for each &} and R, is the mormal manifold N-.
R, has a strong unit e.

Proof. It is clear that N is a semi-normal manifold. Let 0 <

a=Ua,

€A

where 0 < a,¢9 for each ded. Then, putting [p,] = [(2a;—a)*] (Led),
we see that 2[p;la, > [p;]a and [p;145¢,4[a], hence 0 <p(a) = sup o([p.le)

< sup (2[p;la;) = 0. From this it follows that N is a normal mamfold
€4

Thus we obtain obviously that B, = N PR, because of NL = R.
Now we denote by 8§ the set {a: 0 < aeR,, o(a) = 0}, and we see
c]eaﬂy that § is directed (with respect to the relation < ). In the sequel

* we shall show that {J & exists.

acsS

First we shall prove that for any [p] (peR,) we can find 0 # [q]
< [p] such that the set {lg]a}ues) is order-bounded.

Suppose the contrary case. Then, there exists an element 0 < peR,,
such that the set {[p'1a}(ues) 18 not order-bounded for any 0 = [p'] <
<[p]. Putting [p] = [(la| —np)*] (seS,n =1,2,...), we hive o(n[pZ]p)
< o([pala) = 0 and [pyltus[p] for all n > 1, because J [pa] = [Pl 5

acS
= [p] for some » >1 implies n[p']p > [p’']a for all ae§, i. e. the set
{[p’]a}(a@ is order-bounded, where [p'] = [p]—[p,] #0. Now, since
e(np) =sup o([pz]p) by (2.2), we have
e
g(np) =0 (n=1,2,..),

whieh contradiets that peR,.

Secondly, let the set {{¢]a}qe be order-bounded and b = ) [q]a.

aes

Sinee [p.] = [([g]a— 3b)"] +ses[q] and o([g]a) = O for all aeS, we have
0(3[P.10) < o([pala) = 0 and o(4b) = 0 on aceount of (2.2).

Now from above, we can find a mutually orthogonal system of
elements {b,},er such that b, = (J[b,]a, o(}b,) = 0 (rel') and U [b,]

- . assS
= [R,]. From this it follows that | Jib,eR, hence (Jb, = (J Lé[by]a
€r €r yeI ac

=Y UbJe ==

¥ ¥
ecR: This e is a strong unit in R, because
S yer

Studia Mathematica XXII. 17
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weR,, implies p(az) = 0 for some a >0 and consequently a|z| < ¢ from
the definition of e, q.e. d.

Remark 3. It may happen for this e that o(e) = +-co. ¢(a) (aeR,)
is not, therefore, a (convex) modular on R, in general (ef. (iii) in §1).

Now we can remove the additional condition (p.5) imposed on o
and obtain a general result:

THEOREM 2.3. Let g be an arbitrary quasi-modular on R (condition
(.B) 4s not assumed for g) and R be total on R. Then we have R = (R, o)
=R, ®R., ®N, where R, R, and N are the same as in theorems 2.1 and 2.2,

Proof. Suppose o’ be a quasi-modular defined by the formula (2.3)
and g. From theorems 2.1 and 2.2 it follows that k = (R, ¢') = B, ®R,,
@N. As p < o'y o(a) = 0 holds for each aeN. Also g(a) =0 or +oo
holds for every aeR,, since, in the contrary case, we may find feR such
that f(a) > 0 for some aeR,, in the quite same manner as (2.4), q. e. d.

§ 3. A pathological space N. The normal manifold N of R which
appeared in the previous section is very pathological, if it exists. In fact,
N has the following properties: i

(8.1) N 4s universally complete (15);

(8.2) N 4s non-atomic;

(3.3) R is total on N and each AN is continuous ;

(3.4) N = {0}.
Indeed, (p.3)-and the fact that g(a) = 0 for each a<MN imply (3.1).
(3.2), (3.3) and (3.4) follow from the construction of N immediately.

Remark 4. From (3.1) and (3.2) we see clearly that we can define
no semicontinuous (*¢) semi-norm (or quasi-norm) on M which is not
identically zero.

It is interesting that M has the quile similar aspect as discrete spaces
in spite of the fact that N is non-atomie, as i3 shown below.

Now let € be the proper space of N, i.e. the topological space of
all maximal ideals p (") of projectors [p] on N with a neighbourhood
system {Upy} for each pe€, where Uy, is a set of all p'<€ to whieh [p]
belongs (1¢).

(*%) This means that for any mutually orthogonal system of elements {a}aen,
there exists | JazeR.
i€

(*®) A semi-norm (or a quasi-norm) on R is .called semi-continuous, if sup ||
Aed

= lla}| for any 0 < a3 pseq .

(1") The set of projectors p is called an ideal, if @) p2[pl, [p] < [g)] implies [¢]eP;
(i) p2[p], [g] implies p>[p1[g}; (iii) ps[0].

(%) Upp) is both open and compact.
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An element p,e € is called bounded point of M [9], if there exists an
aeN such that the relative spectrum (19) of b by a, (bfa, p,), is finite for
all beN, and an clement peC is called transcendental, if for any sequence

of neighbourhoods {Up, =y of p M Upp,; 18 @ neighbourhood of p too.
r=1

We denote by Oy ((Zecjt) the characteristic set of & in G, i.e.
C; = (U Uy Bince N is universally complete and each 4eN is
a[pl=0

continuous, we infer that, for any @eN, ¢; is composed only of a finite
number of transcendental points p,, Py, ..., Px, by applying the quite
same argument given in Theorem 3.1 in [11]. On the other hand, if & N
and C; = {p,}, then p, is a bounded point of N and

i) =20 e

holds for some &N with U4y, in virbue of Theorem 1 in [9]. Therefore
we obtain (¢f. Theorem 3.1 in [117)

THEOREM 3.1. Let U be the set | Cz. Then we have
aed

(1) C, is composed only of a finite number of elements of € which are
both tramscendental and bounded;

(ii) oA is dense in €, i.e. if p¢Up, for all peA, then [p] = 0 holds.

Proof. (i) was already stated above. (ii) is a direct consequence of
(3.3) because, in the contrary case, we can find 0 £ peN such that
UM A= @ and consequently d(p) = @([p](p)) = 0 for all 4¢9N, which
yields that N is not total on N, q.e. d.

Tt is proved by Nakano ([11], Theorem 1.3) that the cardinal num-
ber (%) of any fundamental neighbourhood system of transcendental
point p must be singular, when p is not an isolated point. Therefore, as
N is non-atomic, we have from Theorem 3.1 obviously

Remark 5. If the cardinal number of € is regular, N vanishes.

From the theorem above we obtain the next theorem which shows
the extreme resemblance of N to discrete semi-ordered linear spaces.

THEOREM 3.2. For any 0 < a, beN there exists o mutually orthogonal
system of projectors {[D,1}ae(—co,00) SUCH that

[alb = D' alpdlb,
ae(—e0,00)
9. e. every spectrum of b by a (a,beN) is a point spectrum.

(1%) For the definition of a relative spectrum see [107], § 10.

(®) A cardinal number f is called singular [11], if (i) B> %,; (i) B>y
implies f>2¥; (iii) for any system of cardinal numbers y;<f (led) with the
density < B we have fj_,‘A ¥a< . A cardinal number y is called regular, if there is

no singular cardinal number < y.
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Proof. Let 05 a,heM and po = (J 0z with Upy2py. As py is
aedt ‘
a bounded point of N in virtue of the above theorem, (bfa, po) = 4,
< 4oo. Since the set L, = {p: peUpy, (b/a,p)—A,| <1fr}” is open
and eompact for any » > 1, we can find a sequence of projectors {[p,1},.1
such that

Upy=8 (r=1,2,..).

Since p, is transcendental, there exists 0+ p,e N with [p,] < N[p,]
Pe=]

and Uy, >p, which yields (b/a,p) = 4, for all pelUy,, hence [py]d
= Xy, [Po]a. Therefore we see that for any pe Uy~ 2 there exists & pro-
jeetor 0 = [p] = [p,] such that [p,]b = (b/a, p)[p,]a holds.

Now we denote by D the set of all real numbers £ for which & =
(bfa, p) = A, for some pe Uiy~ Y holds. Then we put, for ae(—oo, o),

0, it  a¢D,
Ulp,d, it aeD.

a=1p

[pu:l =

Ag Uy ~¥U is dense in Uy, [a]lb = 3 a[p,Je holds, q.e.d.

a€(—00,0¢)
§4. The main theorem. In the sequel let ¢ be an arbitrary quasi-
modular on RB. By Theorem 2.3 we have

(B,0) = Rr@)Rm(‘B%)

provided that B is total on R.

In order to exelude the pathological space N, we have to impose
an additional condition on o as follows:

0) for amy acR, there exisis beR such that be[a]lR and 0 < o(b).

It is clear that under the condition (p.0) N does not appear.

Now we obtain

THEOREM 4.1. If R = (R, ¢) i8 non-atomic, R is total on. R and o
satisfies (p.0), then R becomes a guasi-modular space (R, m,) with’ a per-
feot (conves) modular m, constructed from o.

Proof. Let B = (R, ¢) = R,®R,. As R, is semi-regular, we can
define a perfect modular m, on R, in virtue of Theorem A in § 1 ([3],
Theorem 3.1). Since R,, has strong unit e, we can also define a convex
singular modular m,, such as

0, it |al<e

My, (@) =
: * +o0, otherwise.
Now putting

(@) = m,([R,]a)+ my([Bola) (aeR),

e ©
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we obtain a (convex) modular on R. As E = R, ®F, and R, = R} = {0},

we have R = R"r = R™, whence m, is perfect q.e. d.

Remark 6. m, is always monotone complete on R, because, m,(a)
= My () < 400 (aeR,) if and only if |a] < e.

Theorem 3.2 and 3.4 in [3] hold valid too, if we replace the condition
that R is semi-regular by that R is total on R, as m, is monotone complete
on R, and N vanishes in those cases on account of Remark 4. For in-
stance, we have

THEOREM 4.2. Let (R, o) be a quasi-modular space and R be total on
R. In order that R be a Banach space with e semi-continuous norm |||,
it is necessary and sufficient that we can define a monotone complete mo-
dular m, on R. In this case ||-|-convergence coincides with that of |||-]l|:
the modular norm by m,. '

§5. (R, ¢) with linear topologles. A linear topology ¥ on a semi-
ordered hnea.r space R is called normal, if it contains a fundamental
neighbourhood system {U,};c, of 0 satistying the condition: U,> @, |a|
> [b] implies beU, for each Aed. Also it is called o-compatible if it is
normal and contains a fundamental system of neighbourhood of 0
composed of order-closed sets [12]. If R is total on R, it is clear that the
weak absolute topology TL(R, R) (*!) induced from R is a locally convex
separated linear topology which is normal. Conversely, let € be a locally
convex separated linear topology on R which is normal. From Hahn-
Banach's Theorem it follows that for any 0 # aeR there exists feR’
(the space of all T-continuous linear functionzls on R) with f(a) > 0.
As ¥ is normal and separated, we have B’ C B and R comes to be total
on R. Thus we obtain, recalling Theorem 4.1,

THEOREM 51 Let o quasi-modular space (R,0) be non-atomic. And
let ¢ satisfy (p.0) and T be a locally convex linear topology on R which is
normal and sepa'ra,ted. Then we may define a perfect (conves) modular m, on R.

The modular m, in Theorem 5.1 may fail to be complete. In order
to derive completeness of m,, we have to impose some additional con-
ditions on linear topologies on R.

A linear topology € on R is called monotone complete [12], if 0 ) e
and the set: {#;},., is topologically bounded, then {Jz,¢R. Since each

red
o-closed convex neighbourhood V of 0 which is also T-closed determinos

a semi-continuous semi-norm ||| on R, the o-compatible loczlly convex
linear topology < is given completely by & system of semi-continuous
semi-norms.

(21) The weak absolute topology TH(R, B) is a linear topology generated by the
sets: Vi = {»:|d]|»| < 1} (@<R) as a fundamental neighbourhood system of 0.
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THEOREM B.2. Let (R, o) be & quasi-modular space and a locally con-
vew separated lincar topology T be o-compatible and monotone complete.
Then (R, o) becomes a monotone complete modular space (B, m,) with a (con-
vex) modular m, and g-convergence coincides with that of the norm induced
by my,.

Proof. From Theorem 2.1 and Remark 4 we have B = R, ®R,.
Since € is monotone complete, K = R, bolds by virtue of Theorem. of
[5] stating that every semi-continuous semi-norm is reflexive (22). Hence
m, is monotone complete on R, ([10], Theorem 39,5, or [3], Theorem 3.2).
On the other hand, m, is & monotone complete modular on R,,, whence
my, is also such a one on the whole space R. The remainder of this theorem
is obtained by the same manner as Theorem 3.2 in [3], q.e. d.

In [4] we proved that (R, ¢) is decomposed inte B = R,®R,, where
R, is universally complete and R, has a semi-continuous quasi-norm
[I*llo constructed from g, and that the necessary and sufficient condition
for the completeness of |, on R, is that ¢ satisfies ([4], Theorem 3.2)
(p-4) sup {lim ¢ (az)} < +oo.

Z€R a0

Since the topology ¥, induced by this quasi-norm ||, is o-com-
patible and monotone complete (23), we have on account of Theorem 5.2

TeEEOREM 5.3. Let (R, o) be a quasi-modular space which has no in-
finite dimensional universally complete normal manifold and let o satisfy
(p.4"). If the quasi-norm ||-|l, of B by ¢ is locally convex, we can define a mo-
notone complete (conves) modular m, on R which induces a norm |||-|||
equivalent to |-y (henoe R becomes a Banach space in this case).

This theorem is considered as a generalization of Theorem (r67, 2.9)
of Mazur and Orlicz on Ly, and also those of It6 [2], becanse, in the cases
of [6] or [2], we can see without difficulty that the assumptions on (R, o)
in Theorem 5.3 are satisfied by the condition setteled on M or o pre-
viously.
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