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An example in pursuit theory
by

A. ZIEBA (Wroctaw)

1. The pursuit and evasion is a game between two players in which
the pursuer wants to catch the evader or to approach him as near as pos-
gible and the evader has the opposite tendency. One can imagine for
example a ship which wants to overtake another ship, or, more generally,
such a war between two fleets. We congider here only the case in which
each player has complete information-on the moves and future possi-
bilities of his antagonist. If one wants to formalize these intuitions
in terms of the theory of games, it is clear that there will be then obtained
a construction analogous to the games in an extensive form with perfect
information (*). Therefore in most cases such games have values.

To perform this formalization three mathematical tools giving fhree
different theories have been used:

1° differential equations;

2° difference equations;

3° approximation by discrete positional games.

The first theory will be described in section 3 of this paper. The second

"ig described in [3] (?). The third, in which continuous moves of ships and
fleets are represented by sequences of points such that consecutive points
are near, will be published-by J. Myecielski (c¢f. [37) (%).

As has been nientioned, every theory which aims at describing a real
game of pursuit - 1d evasion must give a game with a value (see sections
4 and 5).

Tt is the purpose of this paper to show that the first theory is essen-
tially unsuccessful siuce it often gives games without values. We give
two oxamples of such games. The first, called I' (an exact definition
is given in section 6), is the following:

(") For the definition and the theory of these games cf. [2].

(?) I have been informed by J. Myecielski that he is preparing a paper containing
gome corrections to [3] and a further development.

(8) Of. [1] (other references can be found there).
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There arve two ships, the pursuer p and the evader ¢. The sea § is
a circular dise. In the initial moment ¢ = 0 of the play p is situated in
the middle and ¢ on the border of 8. Then p and g move freely in 8, pos-
sibly also on its border. The velocity of p is bounded by a constant c.
The strategies of p and ¢, denoted by the letters a and b respectively,
are rules defining the direction and velocity of the motion of ships at
each moment of the play according to the mofion and position of the
antagonist up to this moment. It is supposed that all available b are
continuous in that sense that a small modification of the route of p pro-
duces a small modification of the route of ¢ determined by b. The result
of the play is the distance between p and g at the moment ¢ = 1. It is
proved (section 7) that such a game I' has no value.

In the second example (section 8) there are three ships of the pursuer
and one ghip of the evader and the sea is the whole plane. The result
is analogous.

In spite of our examples there are such games of pursuit and evasion
in which 1° gives a good theory and the games have values (see section 8).
In this case the first theory has a great advantage over the remaining
two theories since it gives the possibilities of effective solutions of the
games.

A general theory of pursuit and, evasion can be obtained by means
of 2°and 3°. These theories give alarge class of games with values (see [3]).

I am indebted to Jan Mycielski for the wording of this paper and
some simplifying modifications of my original idea.

2. A 0-sum 2-person game is a triple <4, B, v}, where 4 and B are
two sets and v = v(a, b), is a real-valued function defined for a<d4 and
beB. The elements of 4 and B are called sirategies.

(One plays in the following way: there are two players € and B;
2l chooses a strategy aed, independently and without information regar-
ding the choice of 2 player B chooses a strategy beB and U pays to B
the value v(a, b).)

Let us put

M = infsup v(a,b) and
aed beB
‘of course M = m.

{4, B,v) is said to have a value it M = m and this number is called
the wvalue of <4, B,v) (*).

(The game-theoretical meaning of M and m is well known — see [2]).

m = sup inf v(a, b); -
beB ped

(*) Some authors reserve this terminology for the more restrictive situation
in which there exist such aped and byeB that supw(ag, b) = infe(a, by). Such ap
beB asd

and by are called optimal stralegies. We do not exclude the possibility that the value
of the game is 400 or — co.
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3. Now we give a brief description of a theory of pursuit and evasion
suggested in section 1. This will be a game <4, B, v> defined as follows:

P and @ are two subsets of the m-dimensional and #n-dimensional
vector-spaces R” and R" respectively. Two points, p,eP and gyeQ, are
given. P, and Q, are certain spaces of functions defined over the interval
T =<0,1) (), with values in P and @ respectively, satisfying the Lip-
schitz condition with certain fixed Lipschitz constants, ¢, for P, and ¢,
for @y, and such that p(0) = p, and g(0) = ¢, for any peP, and q<Q,.

4 and B are two sets of three argument continuous funetions a(r, s, 7}
and b(r, s, t) defined for reP, se), and te7, with values in R™ and R™
respectively. We suppose that the funetions a(r, s, t) and b(r, s, t) satisfy
the following fundamental condition:

(1) For every pair acd aond beB the system of differential equations
P'(t) = alp(t), q(%), 9,
q,”) = b(P(i): Q(t)y 1) ?
with the condition p <Py and q<Qy, has a unique solution p, q.

Let f(p,q) be a real-valued function defined for pe<P, and qeQ,,
and v(a, b) = f(p, q), where p, ¢ is the solution from (1).

We give the following interpretation of this involved definition
of 4, B.v,. T'is the time interval. The points of P indicate the possible
positions of the fleet of 2 and those of Q of the fleet of B. At the initial
moment these positions are fixed as p, and ¢,. Then using their chogen
strategies @ and b, the players fix their velocity vectors at every moment
according to the information about their own position, the position of

their antagonists and the time. Their maximal veloeities are ¢; and ¢,
respectively.

4. The above game has not much in common with a game with perfect
information. In fact perfeet information would require larger sets of
strategies — the existence of strategies which use not only the present
position of the players during the play, but also the whole history of
the play.

There are, however, conditions for a finite game in an extensive
form which imply the existence of optimal strategies of a special kind,
in which the actual choice depends only on the actual position. In our
sibuation (where the moves of one player have no impact on the set of
possible moves of the other player) a natural counterpart of these con-
ditions (in a strong form) is the following:

(2) The value of f(p, q) depends only on p(l) and q(1).

(%) It will be seen in the sequel that the choice of the interval <0, 1) is not
essential.
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5. Supposistion (1) implies in a known way the following fact:

(3) p and q depend continuously on the strategies a and b, with the to
pology of uniform convergence in Pq, Q,, A and B.

Tt is the purpose of this paper to show (sections 6-7) that (3) is the
reason why the game may be without value, which is inconsistent with
our intuitions on pursuit games satisfying (2). Therefore a general theory
of pursuit cannot be based on the theory of differential equations.

6. Now we define the game I', which gives the example promised

above:

P =0 ={z:]¢e] <1} (¢ is a complex variable), p, =0, ¢ =1 and
T = ¢0,1) (a closed interval). .

P, is any class of functions p(t) defined for T with values in P
and satisfying the following eonditions:

p(0) =0, [plt)—p) <[—t for

Moreover, we suppose that p,ePr for any zeP, where p,(t) =t

for any teT. . _
Q7 is any class of functions ¢(t) defined for teT with values in

and satistying the following condition:

pePp.

q(0) =1 for qe<Qr.
Moreover, we suppose that
91,9:<Qr;
where
o ¢ for 0 <t<4},
) =65 @O =)0y g r<i<1,

where ¢ is a constant with 0 < ¢ < 2=/3.

A and B are any classes of functionals a(g,?) Tesp. b(p,?) defined
for pePp resp. qeQr and teT, with values in P, satisfying the following
conditions:

1° a(qy,t) = a(gy,t) for any aed and ¢ <1/2;

2° for every ancA and beB there exists a unique solution p, ¢ of the
equations

p() =alq,t), q(t)=>0b(p,1), PePr,qeQr;

3° g,ed for every zeP, where a,(q,1t) = p,(t) for every qeQp, teT
and zeP;

4° b, byeB, where bi(p,t) = q,(f) and b,(p,?) = q.(t) for every
pePr and tel;
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5° for every beB the point g(1) determined by

q(t) = b(ps, 1),
i. e. the point b(p., 1), is a continuous function of z;

fp,q) = p1)—qL)j; v(a, b) = f(p, q), where p, q is given by 2°,
and I'" denotes the game {4, B, 7> defined above.

At some points I" is more general and at some points more specialised
than the games of section 3. P, Q, p, and ¢, are fixed, but the sets Pr, Qr,
4 and B are very undetermined. First it should be noticed that the eon-
ditions for these sets are cousistent since they are fulfilled if we put Pr =
= {p::2¢P}, Or=1{¢:,qs}, 4 ={a,:2<P}, B={b,b}. It is more
interesting that these sets con also be very large. Condition 1° is satisfied
it the strategies of 2 do not use any information regarding the future
during the play (since qy(t) = q,(f) for ¢ <1/2). Stronger conditions
regarding the strategies of 2 and B will be necessary if one wants to have
a game of pursuit and evasion, but this is not needed in the reasoning
below! Condition 2° corresponds to (1) and condition 5° to (3). Of course
(2) is satisfied in I

The fact that q, is not differentiable in ¢ = 1/2 is not essential in
our example since ‘“‘small” modifications of g, are permitted (see the
proof of the theorem below). For other remarks see section 8.

7. Now we prove our chief result.

THEHEOREM. The game I' has no value.

Proof. First note that ¢,(1) = ¢° and g,(1) = 1. Since 0 < ¢ < 27/3
it is evident that the funetional a*(g,?) which is best for minimizing
the number

max o (a*, b;) = max |a* (g;, 1) — s (1)]

F=12 j=12

and can belong to 4 (therefore such that a*(g;,f) satisfies 1°) satisfies
the relations

u,ic,ﬂ
1 .., 1y =
’7{5’0"‘4- (f— >—/—
2 27/ ]

for 0 <t<1/2 and q =q, ov q = (s,

for 1/2 <t <1 and g = ¢q,,

a*(q,t) = B
1. 1) 2
—dry t——)— for 1/2 <t <1 and g = q,,
2 2/ 14l
where
Py exc__l)eu‘,‘il Z -1 %elcll
Since x| = 4| >1/2, we have

la*(g;, 1) —qu(1)] = [P =3 11-1/@=)] >0 for j=1,2
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Clearly it is not supposed that guch ah «* belongs to 4 but of course

(see section 2) the following inequality holds:
M > maxwv(a*, b;) >0.
j=1.2

By 5° the function b(p., 1) is a continuous mapping of the closed
dise P into itself; thus by the fixed point theorem there exists such a
2(b)eP that

b (Papy 1) = =(b).
Since p,(1) = #, it is clear that
0<m< Stunf@(a'za h) < SLI'[)U((Z,,([,), b) = lpz(b)(l)‘_b<pz(b)7 1) = 0
bsB zeP beB

and m = 0.

Therefore M > m, q.e.d.

8. A game of pursuit and evasion of two points in the space R has
a value since the optimal strategies (in the sense of section 3) are

o q—p@®) e PD—a()
P (t) = €y Hq(t)—P(f)H i q (ﬂ 123 Hp(t)___q(t)“ !
PO) =1y, q(0) = G-

Therefore it is essential in owr example that P and @ should not be
whole plane. It is not so if the number of moving points of the two players
is greater. Consider the game described briefly as follows. The pursuer
9( has three moving points in the plane, situated at the moment 0 in the
angles of an equilateral triangle with side 1. The evader B has one point
situated at the moment 0 at the cenfral point of this triangle. P = @ = E2.
The velocity of all points is at most 1/1@ . Again, under some very general
assumptions regarding the classes of strategies (2 must have some straight
line strategies, the strategies of B must be continuous on the set of straight
lLine movements of 2, and B must have some appropriate finite set of
strategies) this game has no value. The idea of the proof is the same as
that of section 7. .
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Analytic functions of polynomial growth
by

J. MIKUSIXSKI (Katowice)

In this paper we give simple proofs of some theovems (of type Paley-
Wiener) on the representation of analytic functions in the form

o) = [ fna,

where f(t) is a distribution. Usual proofs are based on similar theorems
of classical Analysis [1], [2], [8], [4]. This way is circuitous for distri-
butions, for in this case it suffices to start from a class of very regular
functions, which makes proofs easier and shorter, the tools of the theory
of the Lebesgue integral being then superflous. This idea is followed in
this paper.

The proof of the fundamental theorem is essentially similar to that
in [5], but some further simplifications are introduced.

_A function @(z) is said of polynomial growth in a set G if there exists
a polynomial P such that

@) <P(r)in & (r=[]].

The aim of this paper is to prove the following
THEOREM. If a function @(2), analytic in Rez >0, is of polynomial
growth, then it can be represented in the form

00

(1) ()= [ eTfmat(y),

—00

where f(t) is a distribution, temperated for t >0 and vanishing for 1 << 0.

Here, by a distribution temperated for t >0 we understand every
distribution which is a derivative of some order of a continuous function
of polynomial growth for ¢ >0.

(1) The meaning of this integral may be understood in the sense of [6]. See
also [7].
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