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il existerait une fonction @(t) mesurable et essentiellement bornée telle

que
7

(1 [fuye@ar = o
et '

r
(2) (g*k) () D(t)dt = 0,

0

quelle que soit la fonetion continue %. En posant ¥V (f) = &(T'—1),
r T
nfk(t)(g*‘?)(T—t)dt =Tx(g*P)(T) = ((k#g)+P)(T) = of(g*k)(t)@(t)dt =0,

d’ou l’on déduit que gx¥ = 0 presque partout. En vertu du théoréme de
Titchmarsh et de I'hypothése faite sur g on & ¥ = 0 presque partout,
ce qui contredit (1).

Nous pouvons maintenant démontrer notre

THEOREME. Pour tout opérateur %e‘)ﬁ tel que g w'est pas identique-
ment nulle au voisinage de Vorigine, il ewiste une suite {¥n}y FneCl0, o),
telle que k, — K dans M.

g

Démounstration. D’aprés le Lemme, il existe des fonetions ¥k,
continues sur [0, n] telles que

n

1
®) [ lgxkn) (0 —F(2)1d8 < =
P 3
Ceci entraine [lxgxk,—1xf] <1/n pour 0 <t << n. On peut supposer
que k,e0[0, co), ce qui ne restreint pas la généralité. Cela étant, on
a lxg#*k, — 1xf dans C[0, o0), donc

1xgxk, 1xf f
ettt A

fey, = = am
i, Trg Tag g dans )

la division étant ici entendue comme l'opération inverse de la convolution.

Ajouté pendant la correction. Le résultat ci-dessus a été im-
plicitement obtenu par M. I. Feny§ (qui nous a obligeamment attiré
lattention) dans son ouvrage A Mikusinshi-féle operdtorfogalom és dise-
tribiicid fogalma Tdeti kapesolatrdl, A Magyar Tud. Akad. Mat. és Fiz.
Tud. Osztalyadnak Kézleményei 8 (1958), p. 385-392.

Regu par la Rédaction le 24, 12. 1960
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Weak* bases in conjugate Banach spaces

by
I. SINGER (Bucharest)

Introduction. The notion of & basis introduced by J. Schauder [8]
has & natural extension to topological linear spaces [2]. A basis in a to-
pological linear space U is such a sequence {®,} C U that to every =
in U there corresponds & unique sequence {a,} of scalars for which the
following equation holds:

1) & = 2 oy, G-
n=>0
Convergence of the series is that of the topology on U. Here the
coefficients are obviously additive and homogeneous funetionals on U:

(2) ay =op(w), n=1,2,...

When all these coefficient functionals are continuous on U, the basis
{@,} is called [2] & Schauder basis.

In the present paper we shall examine the particular case when U
is the conjugate space E* of a Banach space B (over the real or complex
field), endowed with its weak topology o(B*, B); this space is locally
convex. In this case we shall use for the bases and the Schauder bases
of U, the terms: weak™ basis and weak”* Schauder basis of E*, respectively.

[>=]
We shall also use the notation 3* for the series in the weak topology
n=1

o(E*, B); thus,

(=]
Zl* =9 (g g
PN
means that
[=4]
Zgw(m) =g(w) for all wamekl.
N==1

In §1 we show an example of a weak”® basis which is not a We:-»k*
Schauder basis. § 2 contains our main result which is the eonstruet}on
of a ¢(B*, E)-separable conjugate Banach space E* in which there exists
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no weak® Schauder basis. Finally, in §3 we prove that the existence of
a weak® Schauder basis in the conjugate space H* of a separable Banach
Space H, is equivalent to the existence of a basis in E.

§1. A weak” basis which is not a weak* Schauder basis. It i
known (see [2]) that several classes of topological linear spaces U, such as
Fréchet spaces and strict inductive limits of Fréchet spaces, do not to-
lerate non-Schauder bases (i. e. every basis in U is a Schauder basis).
On the other hand, in [2], § 6, there is also given an example of a bagis
in & fopological linear space U, which is not a Schauder basis; however,
the space U in that example is not locally convex.

In_this paragraph we shall give such an example in a locally convex
space U, We shall prove that the non retro-basis {fu} of B* =1 (B =¢,)

constructed by B. R. Gelbaum in [6] is o weak™ basis, but not & weak® Sehauder
basis.

In fact, the sequence {fn}' is defined [6] by

3) Fal@) = (=" &4 &, for all @ = {£}ec,
(n=1,2,...)

Let us show that {f,} is a weak® basis of I. Since {f.} is a basis of I
[6], every fel admits a unique representation

oo
f= Z Wyt
n=1

the convergence of the series being the strong (i. e. the norm) convergence
on I Consequently, every fel admits a representation

(4) C =,

=1

and it remains to show that this representation is also unique. Assume

that
o0
Tk
D bufy =0,
N=1

i. e. that

'
(5) lim: Zb,,fn(m) =0 forall weq,.

k00 55
For #; = {0,..,,0,1,0,...}eq, (1 in J-th place) we have, by (3)

fal@) = (=1,

?

n=1,2,3,..
and 14y 90,
Jal®s) = by5, n=1,2,3 j=2,8,...

oo}
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Consequently, applying () for 2 =w; (j =1,2,...), we obtain
by—Da+byg— ...+ (=1, +... = 0,

by=by=..=b,=...=0,
whence
b, =0, m=1,2,...,
which proves the uniqueness of the representation (4). Thus {f,} is a weak™
bagis in 7.
On the other hand, it is easy to see that the first coefficient funetio-
nal ¢, is given by

(6) P (f) = mtna—mtn—ns+...

In fact, this may be obtained either as a consequence of.the above
uniqueness of the representation (4), together with [6] (*), or from (3),
by a simple dirvect computation. Now, since ¢, ¢¢,, it is not o(l, ¢,) —con-
tinuous on I, and thus {f,} is not & weak™ Schauder basis. This concludes
the proof of our assertion.

for all  f = {n.}el.

§ 2. The Schauder basis problem for separable locally convex
spaces and its solution. A locally convex space U which possesses @
Schauder basis {#,} is clearly separable: the set of all linear combina-

tions of the form
Ht

Z Yoy,

=l
where the 7, are rational numbers and where m is a positive integer, con-
stitutes a countable set everywhere dense in U. It is natural to ask whether
or not the converse is also true, i. e.:

THE SCHAUDER BASIS PROBLEM. Does every separable locally conven
space (2) possess a Schauder basis?

In this paragreph we shall prove that the answer to this problem is
negative, by exhibiting a o(B*, E)-separable conjugate Banach space B*
in which there exists no weak™ Schauder basis.

THEOREM 1. If the conjugate space B* of a Banach space B possesses
o weak* Schauder basis {f,}, then the space B has a basis.

(1) In this case we must take into account that in the first line of [6], p. 189,
there is a misprint:instead of f; = {1, —1,1,...}should bef; = {1, 1, —1,1, —1,...}.

(%) It would not be reasonable to formulate this problem for more general to-
pological linear spaces. E. g. the spaces L? for 0 << p < 1 admit no continuous linear
functional ([4], Theorem 1) and hence no Schauder basis is admitted.
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Proof. Since {f,} is a weak* Schauder basis in E¥, the coefficient
functionals

Ay = ‘Pn(f)7

are all o(F*, B)-continuous, and consequently, there exists a sequence
{®,} C F such that

n=1,2,.

on(f) =flw,) for all feB* (n=1,2,..).

Then, from ¢;(f;) = é; we infer that
filw) = 6y, 4,i=1,2,...,
i. e. that (@,,f,) is a biorthogonal system. Since {f,} is a weak™ basis

in B*, we have, in the sense of the weak topology o(E*, E),

n m

lim Zf (2, fn = lim Z‘Fﬂ fn =

N~>00 4 — M—>00 ;=

for all fen*.
Consequently, by a theoerem of S. Karlin ([7], Theorem 2), {m,}
is a basis of the space F.
CoroLLARY 1. If the conjugate space E* of a Banach space B possesses
@ weak”® Schauder basis {f,}, then the space E is separable.

COoROLLARY 2. Let E be a non-separable Banach space, such that its
conjugate space E* is separable for the weak topology o(B*, B). Then E*
has no weak® Schauder basis.

Now we shall show that such a Banach space E exists, i. e. that the
converse of [3], p. 124, Theorem 4 (%), is not valid. This will algo yield
the negative angwer to the Schauder basis problem,

Let us denote by @, a compact (¢) non-metrizable topological space,
containing & countable everywhere dense set. Such a space exists, see e. g
[1], Remark 4 of the first complement to Chapter VII. Denote by C(Q,)
the space of all scalar-valued continuous functions defined on @,, endowed
with the usual vector operations and with the usual norm |z(-)|| =

max | (g)].
26

TeEOREM 2. The Banach space B = C(Q,) constructed above is non-
separable, but its conjugate space B* is separable for the weak topology o(T*, B).
Consequently, E* has no weak* Schauder basis. .

Proof. Since @, is non metrizable, the space B = ('(Qy) is non-
separable (see e. g. [5], p. 437, Exercise 17).

(*) Let us recall this theorem of Banach: If o Banach space B is separable, then
its conjugate space B* is o(E*, B)-separable.

(*) We use the term “compact’ in the sense of Bourbaki (i. e. bicompact Haus-
dorff).
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On the other hand, let T = {i;} C @, be a sequence, everywhere
dense in @,. We shall show that the countable set of all finite linear combi-

nations of the form
m

Zﬁf‘k;’

=1
where &, ...y b, T, 7y, ..., 7y are Tational scalars, and where the f, (q¢T)
are defined by
(7) falm()1=w(g) forall a(-)eC(Q),

iy everywhere dense in I* for the weak topology o(E*, E). In fact, let
us recall (see e. g. [6], p. 441, Lemma 6), that every extremal point of the
unit cell §* of E* is of the form af;, where ge@y, a is a scalar with |o| = 1,
and where f, is defined by (7). Let us also recall that by the Krein-Milman
theorem ([5], p.440, Theorem 4), S* is the o(E*, H)-closed convex hull
of the set of its extreme points. Consequently, if fyeS* and if

Ve..aone(fo) = (FeB|If (@) —fola)l < e,j =1,...,m}

is @ given o(E*, E)-neighbourhood of f,, then there exists a finite linear
combination (5)
m n

(®) D Mfye Ve fo) (D) 1241 =1).

Now, since T = {#} is dense in @, and since the mapping ¢ — f,
(g €Q,) is & homeomorphism if we endow E* with the weak topology o(E*, E),
(see e. g. [B], p. 442, Lemma 7), it follows that for every ¢ > 0 there exist
m elements #, , ..., &, T such that

f a:l, T, & fq1 1=1,...,m,
i. e. that

Ifai(mi) f =1,..,

Furthermore, for every y > 0 we can choose mrational scalars 7y, ..., Tm
50 that

— i, (@)1 < 0, nyi=1,..,m.

Ah—ml <y, t=1,..,m.

Then we shall have, for suitable § and y,
|thfqb ;) — Z‘qut,, m7')|
i=1

HY

M’i.flli (.’l/‘:; )

1=1

""iftki(mj)l <e J=Lyo,mn,

(°) The coefficients «; with |a;} = 1 we have enclosed in the i;'s.
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whence, taking into account (8),

iZ "’@.ﬁki(%)—fo(%)t < 2e,

i=1

H

Z "’i.ftki € Vrul,...,zmze (fo) -
i=

Consequently 8% and hence also B*, is o(H*, E)-separable.
Finally, Corollary 2 shows that B* has no weak® Schauder basis,
and the proof of Theorem 2 is complete.

§ 3. The restricted weak* Schauder basis problem in conjugate
Banach spaces. It is natural to agk whether or not the converse of Co-
rollary 1 is also true, i. e.: ‘

THE RESTRICTED WEAK* SOHAUDER BASIS PROBLEM. Does the conjugate
space B* of am arbitrary separable Banach space B possess a weak* Schauder
basis?

‘We have seen in the preceding paragraph that the gemeral weak®
Schander basis problem (i. e. does every o(E*, E)-separable conjugate
Banach space possess a weak™ Schauder basis?) has o negative answer.
Now we shall prove that the resiricted weak* Schauder basis problem,
formulated above, is equivalent to the classical basis problem (%) (which
ig till now unsolved). For this purpose we shall prove that the converse
of theorem 1 is also true, i. e. that we have

TurorEM 3. The conjugate space B* of a Banach space E possesses
a wealk* Schauder basis {f,} if and only if the space B has a basis.

Proof. The necessity part is nothing else but theorem 1.

Conversely, assume that the space ¥ has a basis {#,}. Let {f,} C B*
be the sequence of the coefficient functionals corresponding to the basis
{@,}. We shall prove that {f,} is a weak™ Schauder basis of B*. It is known
([3], ». 106, Theorem 1) that every feZ* admits a representation

) f= D f @)t

Now, agsume that
. 00

ok
Z tnfn =0,

=]

i. e. that

k
M M aufu(@) =0 for all wed.

Te—s00 )

() L. e. to the following problem: does every separable Banach BPACE DPORSLRS
a bagis? )
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Then, foro = @;,j = 1, 2, ..., taking into account the biorthogonality
relations f,(#;) = 0y, n,§ =1,2,..., We obtain

=0, j=1,2,..,

which proves the uniqueness of the coefficients of the representation (9).
Thus {f,} is a weak™ basis of E*.
Finally, the coefficient functionals

‘Jf’n(f):f(mn) (fE-E*) 'ﬂ’=1,29---)

of the representation (9) are obviously o(E*, E)-continuous, and thus
{fu} is & weak* Schauder basis of B*. This completes the proof of Theorem 3.

COROLLARY 3. T'he restricted weak® Schauder basis problem is equi-
valent to the classical basis problem.

Added in proof. By using theorem 4 of the paper of J. Dixmier,
Sur un théoréme de Banach, Duke Math. Journ. 15(1948), p. 1057-1071,
one can give a more simple proof of theorem 2 above and one can also
prove the following theorem:

TEEOREM 2'. The conjugate space m* (of the non separable Banach
space m) is separable for the weak topology o(m*, m). Consequently, m*
has no weak™ Schauder basis.
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