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NSTYTUT MATEMATYCZNY POLSKIE] AKADEMII NAUK Introduction
MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES
Regu par la Rédaction ls 8. 8. 1961 R.C. James has given the following characterization of reflexive
Banach spaces ([8], theorem 1):
THEOREM (J). A Banach space (1) E with a basis {,} is reflexive if
and only if

n
(a) For every sequence of scalars {a,} such that sup||Y ez < +o0
20 n i=1

the series Ea@-mi is conwergent,
i=1
(b) Yim ||f]l, = © for all functionals f «E*, where ||fl, denotes the norm

N—s>00

of the restriction of f to the closed linear subspace of B spanned by Tn..,
Loy eee

In a recent paper [11], V. Ptak has completed the picture of the
structure of reflexive Banach spaces given by theorem (J), characterizing
reflexivity in terms of bounded biorthogonal systems.

The purpose of the present paper is to continue these investigations
of the structure of reflexive and non-reflexive Banach spaces by charac-
terizing the reflexivity of a Banach space with a basis in terms of the
behaviour of its basic sequences.

Since we are dealing with Banach spaces having a basis, we shall
freely use in our proofs theorem (J). '

Let us first recall briefly some definitions and notation, which will
be used in the sequel.

It B is a Banach space, we shall denote by B* its conjugate space.

If {z,,} is a sequence of elementsin a Banach space B, we shall denote
by [2,], or sometimes by [, %2, ---1s the subspace of B spanned by the
sequence {z,}; by “subspace” we shall always mean “closed linear sub-
space”.

(1) Throughout this paper, by Banach space we shall mean infinite-dimensional
Banach space.
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A sequence {z,} C E is called a basic sequence [2]if {=} is a basis
of the subspace [z,]. .
Any sequence of the form
Py
Yn = @i 2y,

i=Dp_3+1

Yu #0 (}’b =1, 2,...),

where {p,} is an increasing sequence of positive integers, 'j)o =0, and where
{a,} is a sequence of scalars, is called a block basis (with respect to {z,})
[2]; it is, necessarily [2], a basic sequence (2). We shall call block subspace
of F (with respect to {,}) any subspace spanned by a block bagis.

Let E be a Banach space with a basis {z,} (with a basic sequence
{#:}). We shall say that the basis {#,} (the basic sequence {z,}) is boundedly
complete [4] if it satisfies condition (a) of theorem (J). We shall say that
the basis {,} (the basic sequence {z,}) is shrinking [4]if it satisties con-
dition (b) of theorem (J) (and, respectively, condition (b) for Ifll, =
= “fﬂ[z11+1-zn+2v“])'

Theorem (J) asserts that a Banach space F which has a basis is
reflexive if and only if one (and thus every) basis of X is both boundedly
complete and shrinking. .

In § 1 we shall introduce three types of basic sequences, l,, P and P*,
and we shall give several characterizations of them, as well as a detailed
analysis of the relations between all types of basic sequences considered
in this paper (except the type P°, which occurs only incidentally in a re-
mark in §2). Though not all of the results of § 1 will be applied in the
sequel, we have given them because they might prove interesting for
other applications.

In §2 we shall give various characterizations of reflexivity in terms
of basic sequences. E. g. the first of them (the equivalence 1° & 20 of
theorem 2) involves only boundedly complete basic sequences: since every
subspace of a reflexive space is reflexive, (a) of theorem (J) is inherited
by all basic sequences in 7, and here we prove that this fact characterizes
reflexivity. Moreover, we find that it is not necessary to consider all basic
sequences in K, but it is sufficient to examine only the bases of block
subspaces of B (with respect to a given basis of E). Some of the results
of §2 constitute an improvement, for Banach spaces with bases, of the
regults of V. Ptik [11]; however, our methods differ completely from
those of [11].

Finally, §3 contains some remarks and wunsolved problems. The
first of these problems (P1 of § 3) has recently been solved by Pelezyniski

(*) Obviously, in general a block basis.is not a basis of E; therefore it would

be better to call it a block basic sequence, or shortly a block. However, we shall retain
the terminology of [2].

icm
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[10]; however, we have left unchanged its formulation and our remarks
concerning its solution.

The author wishes to express his gratitude to Dr. A. Pelezyriski
for reading the manuscript and making a number of valuable remarks.

§ 1. Basic sequences

1. Basic sequences of type I,. We shall say that a basic sequence
{#,} in a Banach space E is of type I, if sup|fe,|| << 4ooc and if there exists

a constant >0 such that we have, for every finite sequence t, ...
vy ly =0,
n

M.
=1

) T

For any such sequence we must clearly have infllz,| > .
n

PrROPOSITION 1. For a basic sequence {z,} with supliz,|| < oo, the
following statements are equivalent: ”

1° {#,} is o basic sequence of type L.

2° There exists a constant n >0 such that we have, for every sequence

oo
W20 (m=1,2,..) with }1; < +oo,

=1

(2) H Zfizi
3° There eaists o functional feE* (or, which is equivalent, a Sfunctional

fel#nl*) such that

(3) flaa) =21,
Proof. The implieation 2°=> 1° is trivial. Conversely, 2ssume that

we have 1° and let ¢; >0 (91:1,2,...),i=21‘ti< +o0. Thenig;tizi is

n=1,2,...

convergent and from (1) we infer

oo n " . n _ oc '
Hg;tizz =7}if:%|§tizi]| 271?;77;% = ﬂ;tu

i. e. 2°. Finally, the equivalence 1° <= 3° is & consequence of a theorem
of 8. Mazur and W. Orliez [9]. N )
Remark 1. The equivalence 1° <D 2% above justifies the term “of
type 1.”. Moreover, we also have the following: . )
Iff{zn} is an uneonditional basic sequence of type 1., thel} {.z,b} is equi-
valent to the natural basis of the space I (and thus [z,] i8 isomorphic
to 1).

Studia Mathematica, XXI.

23
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:‘:') . , . o0 . \
In fact, if Y42 is an arbitrary series such that DIl < 4o, then,
i=1 tod=l !

i<
applying (1) separately for the subseries with all positive #’s and the sub-
series with all negative ¢;’s and then applying the well-known charac-
terization of unconditional bases (see [8], formula (2)), we obtain

sup ||z, Ul = \ el >0 t;
ikl 1 > || Y] >0 3 1,

where the constant C' >0 depends only on the bagic sequence {z,}.

2. Basic sequences of types P and P*. We shall say that a basie
sequence {y,} in a Banach space F is of type P if inf|ly,]] > 0 and if

(4) sup U Zn‘?/i
L=

For any such sequence we must clearly have sup”gjnﬂ < oo,
n

|<+c>o-‘

We shall say that a basic sequence {z,} in a Banach space B is of
type P* if sup|j#,| < -+co and if
n

o) s ' < oe,

where {h,} C[z,]* is the sequence of funetionals biorthogonal to {z,}.
PROPOSITION 2. For a basic sequence {y} with iﬂfll?/n\! >0, the fol-
" :

lowing statements are equivalent:
1° {,} is @ basic sequence of type P.

2° The sequence of functionals {9:3 C [y]*  biorthogonal to {yn} s
a basic sequence of type P*. ‘

3° sup |lgnll < 400 and the sequence {#} defined by
n

n
(6) zn=2yi, n=12,..,
qa=1

s a basis of [y,] = [2,].
4° There exists a constant M > 0 such that we have, for every finite

sequence of scalars ty, ..., t,,

M - ‘ lﬁ’ti

where {g,}C [y, 1* denotes again the sequence of functionals biorthogonal to {y,}.
. 5° There exists a functional Dely,]** (or, which is equivalent, a func-
tional De[g,1*) such that ‘ S

(8) Plg,) =1, n=1,2

?

n
<M| S
i=1

g oo
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6° The sequence {g1— sy §o— g, ...} 48 not Sfundamental (3) in [g,].
7 There ewists a constant M >0 such that for every monotonic se-
oo

quence {a;} lending to zero, the sum Y o;y; exists and satisfies

(9) Hgai.u,-[

Proof. Since infly,]| > 0 and since {y,} is a basic sequence, we have
7 :

< Miay.

sup [lgall << ~+oo.
n

Assume now that we have 1°. Then, since the sequence {y,} C [g,}*
biorthogonal to {g,} is nothing else but the restriction to [g,] of the cano-
nical image of {y,} in [,]**, we have
< oo,

n n
Do <o S
1 T i=1

sup
n

=
i. e. we have 2°.

Assume now that we have 2°, i. e. that there exists a eonstant M > 0
such that

Hi’y;ngM, n=1,2,..,
j=1

where {y,} denotes the sequence of functionals |biorthogonal to {g,}.
Then we have, for every finite sequence i, ..., ¢, of scalars,

~[([ 393 sai]| < 2] Sva

n
| X :
i=1
i.e. we have 4°.
The implication 4°=> 5° is a particular ease of a classical theorem
of B.Helly ([1], p. b, theorem 4).
On the other hand, if we have 5° then by [12], lemma 1,

n n
sup|| Sy = swn || 3 Bladw ]| < +oo,
L s | n =1
i. e. we have 1°. Thus we have proved the equivalence of 1°, 2°, 4° and 5°.
The equivalence 1° <<= 3° is a consequence of a theorem of B. R.
Gelbaum ([7], §4, theorem 1) (*).

h (®) We use the term “fundamental”” in the sense of [1], p. 58.
(*) In the formulation of [7] it is assumed that llya] =1 (n = 1,‘%, ...), but
it is easy to see that for the proof of the implication 1° = 3° we need only lﬁfﬂynl: >0

while for the proof of 32 = 1° we need only sup|lynll < +cc.
n
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The equivalence 5° <= 6° is an immediate consequence of a theorem
of 8. Banach ([1], p. 58, theorem. 7).

The implication 7°=» 1° follows by applying (9) successively to the
sequences {a{} (n =1,2,...) defined by

= = =1, il =all, = ... =0.

Finally, assume that we have 1° and let o, > «, > ... be a sequence
tending to zero. Using sequence (6), we have
n—1

k3 n .
Z;ai?/i = a1z’1+Zai(zr“zi_1> = 2 (o— aiy1) 8+ apy,.
=

1=2 fe=1

Since {y,} is of type P, we have sup|ie,| <M , Whence, since o, — 0,
n

) ai>ai+1

we obtain a,#,-+0. On the other hand, from lll] < M.
® 0

(t=1,2,...) and .2;(0%"“%41) = o, it follows that } (o — ag4y)%; exists
= i=1

o0
and satisfies || 3 (a;— a;y1)2;]| < M |ay|. Consequently, we have 7°, which
=1
completes the proof.
PROPOSITION 8. For a basic sequence {z,} wiih Sup |lo,ll < oo, the
n
Sollowing statements are equivalent:
1° {,} is @ basic sequence of type P*.
2° The sequence of fumctionals {h,}C [2,]* biorthogonal to {z,} is
@ basic sequence of type P. ‘
3° The sequence {v,} defined by
(10) V=28, Vp=f_i—, n=1,2,..,
s a basis of [#,] = [v,].

4° There ewists a constant L >0 such that we have, for every finite

sequence of scalars 1y, ...,%,,

n n'
(11) ’Zt,» <L)’2t¢zﬂ[
=1 =1
5° There exists a functional heF* (or, which 4s equivalent, o functional
he[2,1%) such that
(12) Ma) =1, n=1,2,...

6° The subsequence {v,, v, ...} of (10) is not fundamental in [2,]
7° There emists a constant L >0 such that, for every monotonic se-

o0
quence {a;} tending to zero, the sum 2 il exists and satisfies
i=1

a9 |3 e

< Llay).
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8° There exists a sequence of functionals {y,} C B* biorthogonal to
{2} such that

(14) sup | 3% < +oo.
n 'I.=1

Proof. Since supllz,)| = M < +oo0, we have
€n

o) 1 1
Pnion)l >—, n=1,2,...
Wl == = Weg ~ 3 P LT

whence inf ||k, > 0. This, together with (5), shows that 1°=> 2°.
n

Agsume now that we have 2° and denote by g, the restriction (?f
hy, (n=1,2,...) to the subspace [;, s, ...] of [2,]. Then {p,} is & basic
fequence. By biorthogonality we have [, = |l for = =2,3,...,
whence, by inf|k,)| > 0 we infer inflp,|| > 0. Furthermore, by (5) we have

n n

gupHZn’(piH < -+oco. Hence, by the implication 1° > 3° of proposition 2,
n A=l ’

the sequence {p,-+...-F@,} is a basis of [p] = [@y+-..+@z]. Sinee
{p1+...+ @} is the sequence of funetionals biorthogonal to {?3, g,y },
it follows (see e.g. [1], p. 107, theorem 2) that {vz,:vg, ...} is a basic
sequence. Since obviously [, Ds, Vs, -..] = [2.], and since ?1¢[vz, Us, |
(becanse Of 2;¢[2y, 2y, --.1), it follows that {v;, v, vs,...} i8 a basis of
[2,]. Thus 2° implies 3°.

Assume that we have 3°, and let

O = @1t tny 0= 1,2,...,

where {p,} is as before. Then {g,} is Ebiorthogonajl to the basis {vs, 'os,l .
of [v,, s, ...]. Consequently, in order to prove that st:p llgall < o0,

it will be sufficient to prove that inf |[j»,] > 0. However, gince {v,} is
RECASE ]

a basic sequenece, there exists a constant K, > 1 (ef. [2], p. 152) such that

= K, |lell, m=2,3,...,

s = floal < I = 3o

whenece inf|z,| > 0. On the other hand, gince {z,} is a basic sequence,
n
there exists a constant K, > 1 such that
”zn—ln < Kznzn—l_zn” = -K2I|77n“7 n=2,3,...

This, together with inf|j2,]| > 0, proves that inf [, >0, and hence

2N 400

n X )
that sup|jg.| << 4-oo, i. e. that sup HZ_:)%“ < 4oco. Since, by biorthogona:
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n n ’ n
lity, || 3k = | 2 el torn =2,3, ..., it follows that sup “2’%“ < + o0,
T=2 T2 n i=1
i e. that we have 1°, which completes the proof of the equivalence
of 1°, 2° and 3°.
Let us now prove the equivalence 1° &> 8°. If we have 1°, then we
can take y, = an extension (to F), with norm |j,|, of Biy %2 = (i +-

+ xe)—x1, Where y,+ y, = an extension with norm. by~ hyl| of b+ hg,
and so on.

n

= 3 wlew) =3 i

F=1
The proof of the other equivalences of proposition 3 follows the same
lines as that of the corresponding equivalences of proposition 2 (applying

[12], lemma 2, instead of [12], lemma 1, in the proof of the implication
5° = 1°).

n
Conversely, if we have 8% then we have (58) by virtue of Dh=
K =1

Remark 2. 1° 1t {2} 138 an wunconditional basic sequence of type
P+, then {z,} is equivalent to the natural basis of the space I (and thus
[2x] is isomorphic to 7).

2° If {e,} is an wncondstional basic Sequence of type P, then {z,}
is equivalent to the natural bagis of the space ¢, (and thus [z,] is isomor-
phie to ¢,).

In fact, 1° is a consequence of theorem 1,4° below and of remark 1,

while 2° can be deduced from an attentive examination of the proof of
[8], lemma 1. -

3. Relations between various types of basic sequences. We have

TuEOREM 1. 1° Hvery basic sequence of type P is non-boundedly com-
plete. The converse implication is ot valid. )

2° Bvery non-boundedly complete basic sequence {x,} admits a block
basis {y,} of type P.

3° Buery basic sequence of type P is of type non-l, . The converse im-
plication is not valid.

4° Every basic sequence of type P* is of type l,. The converse impli-
cation s not valid.

5° Buwery basic sequence of type 1. (and hence every basic sequence of
type P*) is non-shrinking. The converse implication is not valid.

6° Buvery non-shrinking basic sequence {y,} admits a block basis {z,}
of type 1.

7° Bvery basie sequence {z,} of type 1 + admits o “contraction” f{w,}
of type P

8° A basic sequence cannot e simultaneously of types P and P*.

9° A subspace Z of a Banach space B has a basis {y,} of type P if and
only if it has a basis {2,} of type P*.
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10° Between the ten types of basic sequences: bo:undedly completg
shrinking) 1., P, P*, non-boundedly comple?e, 1?on-sh'rmk'mg, 'm-m«l i mmiu ]
and non-P*, we have 22 relations of implication (the 10 trﬁzma,l ones pbe
the 12 given by 1°, 3° 4° 5° and 8° above). All the other T8 relations be-
tween them are: -non-implication.

Proof. 1° If a basic sequence {y,} of type P were boundedly complite,

then by (4) and the definition of; bounded completeness the series glyi
. . ; s
would be convergent, which contradicts the property mfllynll >0 o

sic sequences of type P. ' .
o On (ihe other hand, it is easy to verify that the basis

(15) 4, ={1,1,...,,1,0,0,...} (n=1,2,...)

of ¢,, the Schauder basis of ([0, 1]), and the Haar basis of the space
IY[0, 1]) are neither of type P nor boundedly cqmplete. o T Tat

27" Let {z,} be a non-boundedly complete basic sequence in .
{a,} be a sequence of scalars such that

(10 [ Swe] <, w=1,2,
i1 .

and that Ea-m- is not convergent. Then there exists an increasing sequence
LM

’ i=1

of positive integers {g,; such thatb

! n

; - —0).
inf y ;P =K >0 (qO
17 2 P
Let
an
(18) o= D s, n=1,2...
i=ay—1+1

Then, by (18) and (17), {y.} is a block basic sequence which is, by (17)
]

and (16), of type P. |
E(’:" 131' a basic sequence {y,} of type P were of type 1.

have, by (1) and (4),

, then one would

< oo,

n
gupyn < Sup ]l‘ 2 Y
n 3 i=1

S . v
Whlegﬁstﬁéloiﬁz:rﬁ;n}:i, the Schauder basis of the space C([0,1]) and the

i [
‘Haar basis of the space L*([0,1]) are neither of type P nor of type [,
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4° The first assertion can be derived either from propositions 2 and
3 or directly from the definitions, since for every finite sequence i, ...

.oyt 20 we have
1 n l n
4
() (S 5L S

H gt{zi‘ ||]=21' I “ sy oy Slip ngl by || =1

On the other hand, we shall exhibit in ¢, a basis of type 1, which is

not of type P*. Let us recall that B. R. Gelbaum has constructed in [6]1
the following basis of ¢,:

(19) = {(=1)"*, (=1)"*, ...

n

>

an
y (=1)%,0,0,..}, n=1,2,..
We now eclaim that the sequence {v,} defined by

4k—3 o2
2 i = N u =
(‘-‘0) (DPEY < 'MH '047:—‘_‘ 2 ui,

=1 f=1

4k ~1 4k

0;4k_1=22 Ug 1)4k=22ui (k=1,2,..),
Ta=1 =1

where {u,} is the basis (19) of the space 0o, sabisfies all our requirements.

In fact, since {u,} is a basis of type P (because of |, =1, | Dui]|=
i=1

=1, n=1,3,..), the sequence {Zut} Is, by the implication 1°= 3°
=1

of proposition 2, a basis of the space 6o, Obviously of type P*. Hence,
by virtue of the implications 1°=> 5° of proposition 8 and 3°>1° of
proposition 1, sequence (20) is a basic sequence of type I,.. However,
it is not of type P~ In fact, if {p,} denotes the sequence of functionals

biorthogonal to {u,}, then the sequence of functionals biorthogonal to
{vn} is nothing else but

Var—3 = Qak_3— Par—2, VYake—2= Pak—2— Par_1,

Yar = %(9”47ch(]74rk+1)7 k=1:2:"'7

whence, sinee ¢, = {0,0,...,0,1,1, 0, 0,..} (n=1,2,...), it is eagy
A G

-1
to find that

Yareor = F (P — Pax))

n

5° Let {z,} be a basic sequence of type 1. Then there exists, by
the implication 1°=> 3° of proposition 1, a functional he[z,]* such that

=

h’(zn)>1, n=1,2,...

icm®
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Sinee sup |z, = M < +oo, it follows that -
n

1
"TL'{“;
which shows that the basic sequence {z,} is not shrinking.

On the other hand, one can verify that the basis (19) of ¢,, the Sehau-
der basis of the space C([0, 1]) and the Haar basis of Z1([0, 1]) are neither
shrinking nor of type 1.

6° Agsume that {,} i8 a non-shrinking basic sequence, amnd let
feB* be a functional such that lim {|f],, s 0. Then there exist a number

N—00

17l = ”77'|[zn+1,zn+g....]“ = n=1,2,..,

¢ >0, an inecreagsing sequence of positive integers {p,}, a sequence of
sealars {b,} and a sequence of elements {¢,} C & such that

Pt
(21) o= b, w=1,2,..,
=P +1
(22) lleall = 1, n=1,2,..,
(23) flaa) >e, n=1,2,...
By (21) and (22) {#,} is a block basis, and from (23) it follows that
for every finite sequence %,...,%, =0 we have
n n n n
LS - X
8| 2 o o) = o L (z) = — by
| Z e > 3 () = Z T 2

o1
i. e. that we have (1) with 5 = &/||fl. This, together with (22) shows that
the block basis {z,} is of type I, . '

7° Let {z,} bena*balsic sequence of type I, . Then there exists, by the
implieation 1° = 3° of proposition 1, a functional fe&* such that

(24) f(zn)Zl’ %:1,2,.‘.
Let us define a sequence {w,} by
1
(25) “’n=mzm n=1,2,..

This sequence {w,} is a “contraction” of the basic se.quence_{zn}, sinee,
by (24), 0 < 1/f(e,) <1 (n=1,2,...). Hence {w,} is @ basis of [z ]=
= [w,], and

1
sup [lwy|| = sup-———
n n

[f (2)!

lenll < supllenll < +-o0.

Finally, we have

) =1(;5m) =1

n=1,2,...
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Consequently, by the implication 5° = 1° of proposition 3, {w,} is a basic
sequence of type Px.

8° This is a consequence of 3° and 4°. It can easily be seen also directly
from the definitions. ’

9° This is a econsequence of the implications 1° =>3° of proposition
2 and 1°=> 3° of proposition 3, since basis (6) is necessarily of type P,
while basis (10) is necessarily of type P.

10° The ten trivial implications are: boundedly complete implies
boundedly complete, etc. Each of the propositions 1°, 3°, 4° and 8° contains
two implications, e.g. 1° contains the following ones: type P implies
non-houndedly complete and boundedly complete implies non-P, Finally,
5° contains four implications, and thus we have obtained 22 implications.

On the other hand, ten non-implications are trivial (e. g. P #»> non-P,
non-P s> P, ete). Furthermore, the examples of basic sequences given
above are sufficient to prove, and we shall not bore the reader with details,
that all the other 68 relations between the ten types considered, are:
the relation of non-implication. This completes the proof of theorem 1.

§ 2. Characterizations of reflexivity

THEOREM 2. For a Banach space F with a basis {2} the following
statements are equivalent:

1° E is reflexive.

2° Bvery basis of every block subspace (°) is boundedly complete.

3° No basis of any block subspace is of type P.

4" No basis of any block subspace is of type Pr.

5° No. basis of any block subspace is of type | -

6° Hvery basis of every block subspace is shrinking.

Proof. The implication 1°:>2° is an immediate consequence of
the fact that every subspace of a reflexive space is reflexive and of the
necessity of condition (a) in theorem (J).

The implication 2°:% 3° is a consequence of theorem 1,1°.

The implication 3° =>4° follows from theorem 1,9°.

The implication 4°= 5° is a consequence of theorem 1,7°.

In order to prove the implication 5° = 1°(%), assume that ¥ is nou-
-reflexive. Then, by the sufficiency part of theorem (J), the basis {®,}
is either non-boundedly complete or non-shrinking,

(°) Let us recall that by a “block subspace” we always mean a block subspace
with respect to the given basis {0},

() We cannot prove directly the impHeation 5° =» 6°, In fact, if we assume
that E has a block subspace I with a non-shrinking hasis {yn}, then, by theorem
1,6° we may conclude that {y,} admits a block basis {en} of type I, but in general
[a] will not be a block subspace with respect to {2y} (since {yn} is not a bloek hasis).
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:Assume first that {,} is non-boundedly complete. Then, by theorem
1,2°, the basis {@,} admits a block basis {y,} of type P. Then, by theorem
1, 9% the block subspace Z = [y,] admits a basis {z,} of type P*. How-
ever, by theorem 1,4° {z,} is of type I, .

.- On the .other hand, assume now that {«,} is non-shrinking. Then,
by theorem 1,6° {@,} admits a block basis {z,} of type I..

Thug, if B is non-reflexive, then in either case E contains a block
subspace Z with a basis {z,} of type I, . This completes the proof of the
implication 5° 3 1°.

The implication 1° = 6° is an immediate consequence of the fact
that every subspace of a reflexive space is reflexive and of the necessity
of condition (b) in theorem (J).

Finally, the implication 6°:2> 5° follows from theorem 1,5°. This
completes the proof of theorem 2.

COROLLARY 1. Theorem 2 vemains valid if we replace in iis formulation
“gvery basis of every block subspace” (“no basis of no block subspace”) by
“gvery basic sequence” (“no basic sequence”).

In fact, the proof of the implications 1°=>2°=>3° > 4" = 5" and
1°= 6° = 5° is the same as that of the corresponding ones in theorem 2.’
while the implication 5° = 1° is an immediate consequence of the impli-
eation 5° 2> 1° of theorem 2.

Remark 3. In theorem 2 above one cannot replace “every basis
of every block subspace” (“no basis of no block subspace”) by “every
block basis” (“no block basis”). In fact, take B = ¢, and {&,} = tl{e.
natural basis of ¢,. Then, according to a remark of [2], every block basis
{y} With [ly,l =1 (» =1,2,...) is equivalent to the basis {z,}. Con- -
sequently, every block basis is shrinking and of types nonjl . a‘nd non-P*.
However, ¢, is non-reflexive. Similarly, every block basis with respect
to the natural basis {x,} of the non-reflexive space B =1 1is boundedly
complete and of type non-P. o )

However, it is possible to give characterizations of reflexivity which
involve only block bases, e.g. the following .

COROLLARY 2.. A Banach space B with a dasis {a,} is reflexive if and
only if all block bases are neither of type P nor of type 1. o

Tn fact, the necessity part is a eonsequence of the 1mph.cat10ns
1= 3° and 1° = 5° of theorem 2. Conversely, assume that ¥ Is nfon-
wreflexive. Then, by the sufficiency part of theorem (J), t.he basis {u,}
is either non-boundedly complete or non- shrinking. In the first case there
exists, by theorem 1, 2°, a block basis of type P; in the second case there
exists, by theorem 1, 6°, a block basis of type [

Remark 4. Bven if in theorem 2, or, in corollary 1 abovg, one starts
with an uneonditional basis {,}, it is not possible to replace “every (mo)
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basis of every (any) block subspace” by “every (no) unconditional basis
of every (any) block subspace”, or respectively, “basic sequence” by
“unconditional basic sequence”. In fact, take B = ¢,, and {#,} = the
natural basis of ¢,. Then, since ¢, containg no subspace isomorphie to I,
it follows from remark 1, remark 2,1°, and theorem 1,6° that every

unconditional basic sequence is of types non-l, , flon-P* and shrinking. -

Similarly, by remark 2, 2° and theorem 1,2° every unconditional basic
sequence in the non-reflexive space B = 1 is of types non-P and boundedly
complete.

However, for Banach spaces with unconditional bases we can give

CoROLLARY 3. 4 Banach space B with an wunconditional basis {&n}
is reflexive if and only if every basis of every block subspace is either boun-
dedly complete, or shrinking.

The necessity part is an immediate consequence of the fact that
every subspace of a reflexive space is reflexive, and of the necessity part
of theorem (J). Conversely, assume that F is non-reflexive. Then by [8],
theorem 2 (see also its proof), either B contains a block subspace isomorphic
to ¢, or E contains a block subspace isomorphic to I. Thus, in order to
complete the proof, it will be sufficient to show that in ¢, and 1 there exist
bases which are neither boundedly complete nor shrinking. However,
it is easy to verify that bases (15) and (19) of ¢, and the basis

(26) % =10,0,...,0,1,-1,0,0,..),
AL

n—2

n=1,2

R

of I have all these properties. This completes the proof.

Remark 5. Let us mention some connections with the paper [11]
of V. Ptik.

If we assume only that {#2} 18 a (not necessarily basie) sequence
which admits a sequence of functionals {vu} C B* such that (y,, y,) is
& bounded biorthogonal system, then a condition of type P for such
sequences {y,} appears in [11], theorem 1, while a condition of type (9)
for such sequences appears in [11], theorem 3,1°. Their equivalence,
proved in 1°<=>7° of our proposition 2 (the same proof remaing obviously
valid for the case of such sequences), allows some simplifications in [11].

Furthermore, if {2,} is a (not necessarily basic) sequence which
admits a sequence {y,} C E* such that (%5 22) 15 & bounded biorthogonal
system, then a condition of type (14) (which is equivalent, by 1° <= 8°
of propesition 3, to P*) appears in [11), theorem 2.

Finally, let {z,} be a basic Sequence such that sup|jz,|| < +oco and

n

that if {z,} is considered as a basic sequence in the quotient space B/B.
(with the norm {iz]ll), where B denotes the o(B*, B)-closure of the sub-

icm

Basic sequences and reflexivily of Banach spaces 365

space spanned by a sequence {y,} C B* biorthogonal to {z,} and where
By, = {#eB | b(z)= 0 for all beB} (%), then there exists a constant 5 > 0

such that
e

oo
for every sequence %, = 0 (n =1, 2,...) satisfying iZ:ti < -hoo, Then we

[

(27) >n'1

1

shall say that {z,} is of type P°. It is easy to verify that every basic sequence
of type P* s also of type P° (but the eonverse is not true) anfi that every
basic sequence of type P° is of type 1, . Consequently, by virtue of the
equivalences 1° < 4°<-=> 5° of theorem 2 and of corollary 1, we
have

COROLLARY 4. For a Banach space B with a basis {x,} the following
conditions are equivalent:

1° B is reflemive. .

2° No basis of any block subspace (or, which is equivalent, no basic
sequence in ) is of type PO .

TFor (not necessarily basic) sequences -[zn}: C ¥ which admit a sequerce
{xn} C B* such that (s, 1») is & b;)lllmded b;o;:uhogona.l system, a condi-
i pe PO appears in [11], theorem 3,2°
o I(if ct(ﬁcﬁusion,life gee that the equivalences 1° <= ?o &S 4"_ of theorem 2
(and of corollary 1) and 1° <> 2° of corollary 4 comstitute an ‘mprovement,
for Banach spaces with bases, of all theorems of the paper [11]. ) ‘

We can also interpret this remark as follows: Theﬂ equivalences
10653942 4° of theorem 2 (and of eorollary 1) and 1°&52° of eoroﬂa&ylét
remain valid if we replace the basic sequences involved, by (not necessarily
basic) sequences {z,} C B which admit a sequence {out CE"j sul;:h Tﬁhz‘z
(2, %n) be a bounded biorthogonal system. Obvul)usly jﬁhe‘ m?jxl)n ) lzr.e
20251, 50> 1° and 6°= 1° of theorem 2 remain vahdc m{)0 150 ;nao‘
genéra.l gituation. However, the extended 1mphcatlon‘s 1 .:> 2,10 =5
1° =5 6° are not more valid. In fact, for the extended n0101~1mpltcat101;h1 ﬂ—f;l :1-
an example is given in [11] (8), and this also proves 1 .¢> 6°; 0]}111 11e oVe
hand, 1° % 2° follows from [12], theorem 3, aecord@g to v];v. rc;hoeon;yl
boundedly complete sequence {2} C F which admits a biorthog
sequence {g,; C 7* is already a basic sequence.

Con ] %) =0, n=1,2,..} and that
" It is clear that Bu = [gnlL = {#B| xn (@) ), 2, . 2
[xm].l.(f\) [en] = {0}, whence the canonical image of {z;} in E/B. is indeed a basic

sequence. . N
i (8) However, let us observe that such an example is not more possible if we

-tot: this happens
require, in addition, that the sequence {xn ) Cc .[zn]* beh[zn] Eoﬁa&l& d( ?;zpnc;’»gons
in particular when {z,} is a basic gequence). In this case the ex g
10250 and 19 = 6° are also valid.
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§ 3. Some remarks and unsolved problems

1. A geometric interpretation of [Iflke We shall prove
PROPOSITION 4. For any feB* and any positive

g bases) is nothing. else but

(28) ”f”w = disb(f, [fl) "'7fn])7

where {f,} C E* is the sequence of - functionals biorthogonal 1o the basis

@} of B. |
Proof. From the isometry B*/[f,, < fal = ([,

Aist(f, [y -, ful) = If ()]

sup (feE*).
Zelfy,...otnl. ,
[EIES
Thus,

taking into account the definition of 11
that

it is sufficient to prove
[fl; tery fn].l.. = [mn»g-ly LONETIN ]
Now, the inclusion

[fl’ vy ala 2 [mn—i«ly Tngpay .- -1

is obvious by biorthogonality. Conversely, assume that Telfyyoony fule,
i e. that

fil#) = ... = fu(@) = 0.

Then, since {,} is a basis of B, we have ¢ = Sl a;
i=1

Be[Byyyy Bypn,...]. Thus we also have the converse inclusion

[fl? 7.fn]-l.g [mn«;-ly mn+2a ]a

whence the desired equality, and the proof of Proposition 4 is complete.

Proposition 4, together with the fact that {f,} is always a basis
of [f.], sheds some new light on theorem 3 (a) of [8], and on lemma 1,
P- 70, of [4].

Let us mention that, by extending the above method, formula
can also be proved under the weaker assumption that
a biorthogonal system with [#,] = B.

2. Duality relations between the types
of their biorthogonal sequences. We
lences 1°<¢==> 20 of Propositions 2 and 3) that a basic sequence {y,}
in a Banach space F ig of type P if and only if the sequence of functionals

{9:} C [y, ]* biorthogonal to {4} is of ty

) ype P* and that'{y,} is of type
P* if and only if {g,} is of type P. We shall now prove a' similar result
for boundedly complete and shrinking basic sequences. * )

(28)
(@, fn) 18 merely

of basic sequences and
have proved (see the equiva-

integer n the quantity
Ifll. ocourring in condition (b) of theorem (J) (and in the definition of shrink-

oo Full)® we have

o0
= D fi@a, i e
I=n-}1
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PROFPOSITION 5. Let {y,} be a basic sequence in « Banach space H,
and let {ga} C [y,]* be the sequence of funetionals biorthogonal to {Yn}-
Then
1° {y.} 18 boundedly complete if and only if {g,} is shrinking.
2° {ya} 1s shrinking if and only if {g,} is boundedly complete.
Proof. Throughout this proof we shall denote by ¢ the canonical
mapping of [y,] into [g,]% i. e. the mapping defined for every ye[y,] by

(29) 1) =g(y)  for all  gelg,].

Agsume that {y,} is boundedly complete. Then (c¢f. [4]) [y.] is ca-
nonieally isomorphic to [g,]*, whence {p(y,)} is a basis of [9.]*. Then,
since {g,} is a basis of [g,] and since {p(y,)} C [g,]* is the sequence of
functionals biorthogonal to {g,}, it follows by [81], theorem 3(a), that
{g.} is shrinking. ‘ .

On the other hand, assume that {y,} is shrinking. Then {g,} is, by
[8], theorem 3(a),(b), a boundedly complete basis of [y,]*. o

Conversely, assume now that {g,} is shrinking. Then, by the impli-
cation just proved, {p(y,)} is a boundedly complete basis. of [g.]*. ‘T]‘ms,
in order to prove that {y,} is boundedly complete, it will be suﬁlc.lent
to prove that ¢ is an isomorphism of [y,] onto [g¢,I* Eowever,osmce
{g.} is total with respect to {y.} (i.e. ye[ynl, gn(y) =0,n :.l’ 250
imply y == 0), ¢ is one-to-one. On the other I}and, since {p(y,)} is a basis
of [g.]*, we have [¢,]* = [¢(¥:)] C @([9a]), 1. e'-‘p ma'pg.[yn] onto [g,]*.
Consequently, by [1], p. 41, theorem. 3, ¢ is an isomorphism of [y,] onto
[g.]*, which completes the proof of 1°.

Finally, by [12], lemma 2, we have

Tt

*

SHPH F?/*(?/i).dx:” < +oo for all  y*ely,]*.
1 F==1

Consequently, if {g,} is boundedly complete, then for every y*e[y,]*
the series f)‘y*(yi)g,-, is convergent. Since its sum is then obviously y*,
11

it follows that [y,]* C [g,], whence, by [8], theorem 3(a), {y,} is shrink-
ing. This completes the proof. ; )
¢ Let us mention that A. Wilansky has proved the following particular
case of one half of the above proposition ([12]-, theorem 2.; &%ee also [8],
theorem 3 (b)): A basis {z,} of B is shrinking if and only if its sequence
of coefficient functionals {f,} is boundedly complete. . -
3. We want to raise the following problems concerning possible
improvements of the results of this paper. . o
P1. Does every non-reflexive Banach space contain a non-reflexive
subspace with a basis?
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An affirmative answer to this problem would imply that corollary 1
is valid for arbitrary Banach spaces (i. e. that we ¢an replace in its for-
mulation “Banach space & which has a basis” by “Banach space”)(?).
At the same time, an affirmative answer to this problem would congti-
tute an improvement, respectively an improvement for non-reflexive
spaces, of the following known results:

(A) (Eberlein [5]). Every non-reflexive Banach space containg a se-
parable non-reflexive subspace.

(B) (Banach [1], p.238). Every Banach space contains an infinite
dimensional subspace with a basis.

Various proofs of (B) have been given in [2], [7] and [3].

On the other hand, a negative answer to P1 (which seems very im-
probable) would imply, by virtue of (A), a negative answer to the basis
problem.

Remark 6. A. Pelezyniski has remarked that a similar problem
for unconditional basie sequences has a negative answer, i. e.: there exists
a non-reflexive Banach space B such that every subspace of B having an
unconditional basis is reflewive.

In fact, let E be the non-reflexive space defined by James in [8],
p. 253. Since B* and F** are separable, no subspace of F is isomorphic
either to ¢, or to ! (by [1], p. 188, theorem 11 and by [2], theorem 4).

- Hence, according to [8], theorem 2, every subspace of E with an uncondi-
tional basis is reflexive.

It is easy to verify that the natural basis of ¢, and the basis (26)
of T are of type P (and hence non-boundedly complete), while the basis
(15) of ¢, and the natural basis of ! are of type P* (and hence of type I,
and non-shrinking). This suggests the following problem:

P2. Ts it possible to replace in the results of this paper “basic se-
quence” (or “basis of block subspace”) by “basis of the space E”?
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