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On the analytic functions in p-normed algebras
hy
W. ZELAZEKO (Warszawa)

A p-normed algebra is & complete metric algebra in which topology
is given by the meaning of & p-homogeneous submultiplicative norm o=
(1) lloal] = |af” =},

) eyl < Nty
where « is a scalar, p — fixed real number satisfying 0 <p < 1.

It is known that every complete locally bounded algebra is a p-normed
algebra. These algebras were considered in papers [4], [5], and [6]. The
greater part of Gelfand’s theory on commutative complex Banach algebras
is also true for p-normed algebras. In this paper we give an extension’
of Gelfand’s theory of analytic functions in Banach algebras onto p-nor-
med algebras [1]. We note that the clagsical method based upon the
concept of abstract Riemann. integral cannot be applied here, because
the algebras in question are nob locally convex (ef. [31).

Let 4 be a commutative complex p-normed algebra with a unit
designed by e. Let I be the compact space of its multiplicative linear
funetionals (= maximal ideals). The spectrum of an element zeAd is de-
fined as
(3) o(z) = {f(@): feM}.

It is a compact subset of the complex plane. Here we give the positive
angwer to the following question stated in [6]:

“Let @(z) be a holomorphic function defined in the neighbourhood U
of spectrum. o () of an element zed. Does there exist a yed such that
for every feM ’

(4) fly) = O(f(@)?” _

We shall give a step by step construction of such an element y. It
is natural to write y = @ (z). So we give a natural definition of @(z) in
locally bounded algebras.

As a corollary we obtain the generalization of the theorem of Lévy
[2] on trigonometrical series.
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LemmMA 1. Let D(2) be an analytic function defined on an open subset

U of the complex plane, and let 27 nor
b plex p X et @ be an element of a p-normed algebra A such

(5) 0-(w)CIf(l(le)_CU7

where K (L, 1) = {A:|A—Ao| <r). Then there emists
holds for every f «M. ’ ] ists sueh o yed that “

Proof. It may easily be verified th: —
o y ied that o(a— Ade) CK (0, 7). By (5]

Slzlp{ A" Lea(@— Age)} = lLim V[(m— Age)"].
Hence
(6) Iz — A0)™]| < ¢**

for large n and suitable ¢ < . But in K (2q,7) we can write @ in the form

BA) = D ay(d—1,)"
and we have "
(7) 7 < (limsupa,]) .
Now we put
(8) ¥y = Z a’n(a}‘“loe)n or Yy = ¢(.’lz‘)
n=0 .

This series is absolutely convergent in 4. In fact, by (6) and (7), we have
?

Dlento—10)"| < Ylan?lia— eyl < Ylao™

and

. [y —
¢ <" < (limsup Via,))™* = (limsup V]a, ).

The desired conclusi
we have nclusion follows from the fact that for every feOR

1) =1{Zanta=2o0) = S, (fle) = 1" = o (o).

cmm;;a;gz»;iui.d izf fb z’si (zn ;’nalytic Junction defined on an open simply
ded subset U of a complex pl [
then there exists a yed such that (41; holig.:m’ o) C U for an e,
- PTro:)f. Let ¢(4) be a 1-1 conformal mapping of U onto K (0,1).
i qu_l(K—((t)nalx{lﬂ:Zeqa(u(m))}. We have 1—7r =5:>0. We put ’ Uy
S Ot k=125 and T = g (S(0,1—ak)], whore
o R,mlge We— . 0!]1_ r}. We have ¢(o(2)) C p(U,), and by a theorem

n. choose such a polynomial p (1) that |p(d)— ()] < &
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for eU,. The equation @(1) = 1, has exaectly one solution for every
20K (0,1—2¢); moreover, for a fixed A,eK(0,1—2¢) we have

1},1111?1¢p(1)~20| > ¢. Hence, by a theorem of Rouché, equation p(d) = 2,
eI’y
has in U, exactly one solution. We thus have

pola)) C E(0,1—35) Cp(Us),

and p is a 1-1 conformal mapping of U, onto p(Us) = K(0, 1— 2¢).
Nowe we may easily verify that p(o(z)) = o(p ()}, and so we have

o(p(@) C (0, 1—3¢) Cp(Ts).

The function ¥(1) = ®(p~%(4)) is a holomorphic function defined
on p(U,). Thus, by lemma 1, we can define an'element y = P(p(a)),
and for every feN we have

fy) = flp @) = 2(p(f@)) = 2(f@), a.e.d.

LrvmA 3. If wed, o(@) U, where U is a simply connected open subset
of a closed complex plane whose complement has an interior point Zo, then
for every @ holomorphic on U we can choose such @ yeA that (4) holds.

Proof. The function ¥(A) = ®(1/A+2,) is a holomorphic funetion
defined on the bounded simply connected open set V =(U—1)™
We have also a((ac—loe)”‘) C V. Thus by lemma 2, we can define ay =
¥((z— Ape)”"), and for every feM we have .

fly) = Plflo— o)) = 0(f(@);
TmMyA 4. The conclusion of lemma 3 is true also in the case where U
is connected provided its complement consists of a finite number of compo-
nents, each of them having interior poinis.
Proof. Using the Cauchy integral formula, we can write every
holomorphic function @ defined on U in the form
B(2) = D, (A)+Da(A)+...+Pal2)s

where @; is a holomorphic funetion defined on a simply connected seb
U;, which is a complement of any component of a complement of U,
k

q.e. d.

i.e. U = () U;. Thus we can define y; = @, (x) in such a way that (4)
=1
holds, and the desired element is y = Y1+ Yate o+ Y
LA 5. Let o(@)C U, and U = Uy~ Uy, where Us is a connected
open set (1 =1,2), and Uy~ Uz = 0 (@ denotes the void set). If o(@) ~ U;
# 0 (4 = 1, 2), then there exists such an element z <A that f(z) = 0 for every
FeM such that f(x)e U, and f(2) = 1 for every feM such that fl@)eUs,.
Proof. Let o and § be two distinet complex numbers which lie in


GUEST


348 W. Zelazko

that component of the complement of U which contains the boundar

points of U, and U,. Now take two open disjoint sets P, and P, in suci
& way that ¢, f¢8 = U, v Py v U, v P,, 8 is connected, and ~oc and g
a..re. n(?t in the same component of the complemention of § (two possible
situations are schematically shown in the figure). We now take any branch

¢1(4) of log{l/(a—f)—1/(A—p)) defined on U, v P,v U,, put ps(4)
= ¢y(4) for AeU, and extend it analytically onto P, and U,. We haave
g1 = 0on U, and ¢,—¢p, = ¢-2ni on Uy, e =1 or —1. The func-
tions ¢, and g, are analytical on the connected open sets U, v P, v T,
and Ulu.Pz w U, containing the spectrum of z; thus, by Lemma 4,
we can define elements @, = ¢, (%), #5 = @,(#). It is clear that the desire({
element z of 4 may be given by the formula 2 = (2, — ,) Je-2mi, q.e. d.
) THEOREM 1. Leét A be a commulative complex p-normed algebra with
unit e. Let U be an open subset of a comples plane containing the spectrum
olx) of an element weA. Then for every holomorphic function D(A) defined
on U there emists an element y = O(x)eA such that (4) holds. I f A is semi-
simple, then such an element y is unique.
Proof. For every Aeo(z) we can c¢hoose such real ; > 0 that K (A, 73)
cr. By the compactness of ¢(») we can cover it by a finite number of
. such neighbourhoods. Thus we can assume that U is a finite sum of sets
K, or that U is a finite sum of connected sets U = Uy Uyv...v Uy
gach .eomplement of U; having a finite number of components containing
interior points. We may also assume that o(w) ~ U; #£ 0 (1 = 1,2, ..., k).
Now, ‘t?y lemma 5 and easy induction, we can construct elements el, é
...y & in such a way that Y

01+62+...+8k = e
and

1 if
0 if

Fl@)eUs,y fe M,
fla)eUs, feOM.

fle:)
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We now put
r; = (2—aze)e;+ aze,

where a;¢U; ~ o(2). We have o(;) C U;, whence, by lemma 4, we can
define an element

yp = D)) —DPo){e—e), ¢=1,2,...,k.
We now put ¥ = ¥1--¥s+...+ ¥z Taking any feN we have f(z)e Uy
for certain n, 1 <n <k Hence f(y,) = O(f(x)) = @(f(x)), and, for

i % mn, fy;) = @(e)—P(e) = 0. So
k

f = D Fwa)

i=1

D(f ().

The uniqueness of “y in the case where 4 is semisimple is obvious,
q.e. d.

Applying theorem. 1 to the algebras l,, 0 <p < 1, of all sequences
& = ()7 _ Such that [z}l = D |P < oo With convolution multiplication
we get by [5], theorem 16, the following generalization of the theorem
of Lévy (see also [5], theorem 18):

TumorEM 2. Let ¢(i) be a complex function of a veal rariable 0<CI<C
< 2n equal to its Fourier eLPANSION

o
2(t) = Z z, 6™
N=—00

and let 3)|a,[? < oo for 0 <p <1 Then, if @ is a holomorphic function
defined on an open subset of a comples plane containing the compact set of
values of x(t), the function @(w(t)) may be written in the form

Dlat) = Dume™,

where |y,7 << oo.
In a similar way we get the following theorem (ef. [5],

TrEoREM 3. If #(4) is an analytic funciion in K(0,1) such that @(%)

< 1, and if @ is an analytic function

theorem 17):

= Z% 2, where 3|y |" < 00, 0 <P
n=0
defined in a neighbourhood of the set %(E(0,1)), then

where D) |yl < oo.
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NSTYTUT MATEMATYCZNY POLSKIE] AKADEMII NAUK Introduction
MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES
Regu par la Rédaction ls 8. 8. 1961 R.C. James has given the following characterization of reflexive
Banach spaces ([8], theorem 1):
THEOREM (J). A Banach space (1) E with a basis {,} is reflexive if
and only if

n
(a) For every sequence of scalars {a,} such that sup||Y ez < +o0
20 n i=1

the series Ea@-mi is conwergent,
i=1
(b) Yim ||f]l, = © for all functionals f «E*, where ||fl, denotes the norm

N—s>00

of the restriction of f to the closed linear subspace of B spanned by Tn..,
Loy eee

In a recent paper [11], V. Ptak has completed the picture of the
structure of reflexive Banach spaces given by theorem (J), characterizing
reflexivity in terms of bounded biorthogonal systems.

The purpose of the present paper is to continue these investigations
of the structure of reflexive and non-reflexive Banach spaces by charac-
terizing the reflexivity of a Banach space with a basis in terms of the
behaviour of its basic sequences.

Since we are dealing with Banach spaces having a basis, we shall
freely use in our proofs theorem (J). '

Let us first recall briefly some definitions and notation, which will
be used in the sequel.

It B is a Banach space, we shall denote by B* its conjugate space.

If {z,,} is a sequence of elementsin a Banach space B, we shall denote
by [2,], or sometimes by [, %2, ---1s the subspace of B spanned by the
sequence {z,}; by “subspace” we shall always mean “closed linear sub-
space”.

(1) Throughout this paper, by Banach space we shall mean infinite-dimensional
Banach space.
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