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Regularly increasing functions in connection with the theory
of L**-spaces
by
W. MATUSZEWSEKA (Poznah)

In order to investigate the structure of various spaces of g-integrable
functions [1], [6], information on some properties of continuous positive
functions as regards the orders of growth of such funetions is necessary.
The so-called conditions (A,), (A,) (see [5] and [6]) or indices s,, o, (see
[10] and [9]) occurring in the theory of spaces L**(a, b) make it possible
to compare the function ¢ with functions ". It may be expected that
regularly increasing and slowly varying functions, well-known in various
problems of asymptotic behaviour of functions, are of importance in the
theory of spaces L*"(@,b). The purpose of this paper is to investigate
a number of problems connected with the above-mentioned notions.
The main stress is laid on a systematic and elementary presentation of
the subject, treated as an introduction to the theory of spaces L**(a, b).
Sections 1 and 2 are closely connected with the fundamental papers
[2] and [3] of Karamata concerning regularly increasing funections. We
avoid integral representations of these functions, starting from the fun-
damental lemma 1.3 as in [4]. In section 3 the notion of a regularly in-
creasing function appears in connection with functions complementary
in the sense of Young. Here, some additions to a theorem of Krasno-
gelskii and Rutickii [5] are made. Taking in consideration the purposes
of this paper we include some results already published, however, gsomewhat
alternatively. Some results of [10], [9] and [7] are also included.

1. In this seetion we denote by f, g, h, ... veal functions defined for
—oo < U < oo. We ghall also write
gr(p) = Im (flu+p)—fw), elw) = U'hgl(f(u+ﬂ)—f('n));

it g/(u) = g;(p) for a certain u, we denote this common value by or(1).

1.1, The following relations arve immediately obtained from these
definitions:
(a) g (—u) = —or{p),

(b) 07 () For(is) < gl ) < B+ t2) < Bylpa) + @7 (pa)s
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the above inequalities are valid for arbitrary u,, u, with the exception
of the case when one of the terms of the sum on the right-hand side (or
on the left-hand side) is co and the other —oco.
Let € = {uigr(p) =0}, Oy = {u:les(w)] < oo}, By= {u:lim |f(u+ )
U000
—f(u)] < oc}. The above relations imply the following:
1.2, The sets €3, C; and B, are rationally linear, i.e. an arbitrary

linear combination with integer cocfficients of elements of one of these sets
belongs to the same set.

1.3. Let f be measurable. If
(2) o/(n) = 0 for an arbitrary p, then
(*) Jlut p)—Jf(u)
tends to zero uniformly in every finite interval of values of I aS U — oo
(ef. [2], [41);
(b) lgr ()] < oo, lgs(w)| < oo for an arbitrary u,
then the fumctions (+) are bounded wniformly in every finite interval of
values of w for sufficienily large w.

In order to prove (a) let us write B,, = {u:|f(u+u)—Ff(u) <e,
M S # S figy % 20} The sets B, are measurable, {u,, g> = |JE,,. Hence

at least one of the sets E,, must be of positive meagure, say B,,. If
w,u' eB,,, we have

Pt p" —p)—flu—p) <e, |flu—p)=flu) <e for o m+p,
whence |f(u+u'"'— u')—flu)] < 2. As is well known, there is a y, >0
such that all pe(—py, po> may be expressed in the form o= pu'—u,
where u', u'" eB,,. Since

[f (w24 p)—F ()] < |f(u+ A+ ) —Flu+A)| + |f (wt 2)—F ()]

and |f(u+ A+ u)—f(u+2)| < 2e when u belongs to {—Hos Pods % 2 M+
+upa— 4 |f(ud-2)—f(uw)| < & for u = u;, we have

flut w)—flw)] < 3
for u = sup(m-+puy— 4, u,) and for u' belonging to an interval obtained

b_y‘a, translation of (—pu,, ue> by 1. Since {1, y> may be covered by a
finite number of intervals which are tranglations of {—tho, thop, We obtain

If(ut+u)—flu)] < 3¢
for sufficiently large % and ey, -
The proof of part (b) of the theorem follows by analogous arguments.

Remark. The above theorem remains true if we replace the assump-

tion of measurability of f by the assumption that f satisfies the Baire
condition.
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1.4. If f ds continuous (measurable), then any of the sets 0%, C;y By
is cither of the first category (measure 0) or identical with (—o0, co).

To prove this theorem, let us first note that if f is continuous, then
the sebs CF, C; are F,; and By is Py, and if f is measurable, then the above
sets are measurable. The theorem follows from the well-known fact that
a Borel set of the second category or a set of positive measure contains
a rational basis, i. e. a set B such that an arbitrary « may be written in
the form % = ny%;+ Naty+...4n,%,, n; being integers and ;< R. Bvid-
ently, a rationally linear set containing a rational basis is identical with
(—o0, c0), and it is sufficient to apply 1.2.

1.5. A function f will be said fo satisfy the condition (k,), resp. (k),
if 0] = (—o0, ), resp. C; = (—oco,oc0). Bvery function of the form

U

f(w) = g(u)+ [Rh(t)di, where g, b are continnous functions (resp. where g
0

is measurable and % is locally integrable), g(u) — ¢ as % — oo, h(u) — 0
as 4 —» oo, satisties condition (k). Applying 1.3 (2) we may prove (cf.
[4]) that, conversely, an arbitrary continuous (resp. locally integrable)
function satisfying (k,) may be written in the above form; h(u) may be
assumed to be equal to f(u+1)—f(u). It may be deduced from the in-
tegral representation that the set of continuous functions satisfying
condition (k,) and vanishing for % <0 is a Banach space with the
usual definitions of linear operations and with the norm, say

Ifl = sup ]h(u)Hr(sup |f(u)—fuh(t)dtj, where  h(u) = f(u-+1)—f(u).
(0,02 0, c0) 0

1.51. If f satisfies condition (k), then o;(u) is an additive function
(as follows from 1.1 (b)); if, moreover, f is measurable, then o;(u) is also
measurable, whence o;(p) = au. As follows from 1.9, measurability may
be replaced by local boundedness of the function f.

(It is easily seen that some assumptions regarding function f are
necessary in this theorem, since Hamel’s function f, for example, obviously
satisfies condition (k) but Qf(,u) = f(u) is not a linear function.)

An immediate consequence of the above theorem is that an arbitrary
measurable (or locally bounded) function satisfying condition (k) may
be expressed in the form f(u) = au--g(u), where g(u) sabisfies condi-
tion (k). )

1.52. It may happen for a continuous function f that C; consists
only of numbers of the form nu,, where n = £1, £2,... In order to
get such a function we take, for example, u, = 1 and a continuous periodic
funetion 2 with period 1. Then

onlp) = sup (h(ut+p)—h(w), oulp) = inf (A(utp)—h(w).

o<us<l oul
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If p =1, we have g, (1) = g,(1) = 0. Now, if we take, for example,
h(u) = sin2=u, then g, (u) # on(u) for 0 < p << 1.

1.53. If f is o non-decreasing function for w =0 and i & number
4o > Q belongs to CF, then f satisfies condition (k).

Indeed, we then have 0 < pg;(p) <g(w) <gs() for 0 <p<p,
or(npg) =0 form=1,2,...

1.54. A function f is called locally bounded for large  if there exists
#, such that f is bounded in every interval <u, ).

If f is measurable and satisfios condition (ko) or (k), then T is locally
bounded for large w.

Let f satisfy condition (k). By 1.3, [f(u-p)—f(u)| < 1 for u = Uy,
0 <u <1, whence |f(u)] <1+4|f(uy)| for ey, Uy+1>, and, more
genemlly, [F)] <1+ [f(ug+n—1)| for uelug+n—1, uy+nd, n = 1,2,..
If f satisfies condition (k), then g;(u) = au and the function flu)y—au
satisfies condition (ko), whence it is locally bounded for large u, and so
is f.

Remark. The assumption that (k) is satisfied may be replaced
in this theorem by the assumption B; = (—oco, oo).

1.6. Lot us assume that f is locally bounded for large w. Then the fol-
lowing inequalities hold:

or(1) ghini(_“_) <imf® L) PR

14 s W wsoo U y

(+)

(+-+) 2(m) ghmM gﬁ_n{M < o (m)
1 oo W Ueroo U u

for p <0,

We give _thef proof of this classieal theorem for completeness, and
also because it is sometimes quoted +without the exact formulation of
the assumptions. Let 4 >0, ¢ > 0, g,(s) < co. Since

FluAd-Te)—f(u) = [f (W) — f (w+ G —1) @) T+ ..+ [F (e ) — F ()]
<lg(p)+le for wzuy(e)andl=1,2,...,

we have
FO)—flo—1u) < 1g/(u)+1s
for w =o—lu >sup (wo(e), ) =%, where w, denotes u, mentioned

In 1.54. Taking 1(v) so that 7 <v—lu <¥+u and v —oo We obtain
o[l — ‘u,u<81<11‘3+ {f(w)]jv — 0, whenece
U<TA 1

EM<@(#)+_E__
>0 U “ M
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The second of the inequalities (+) is proved analogously. 1.1 (a) and
(+) immediately imply (4 +).

Let us remark that the local boundedness of f for large « is a necessary
condition of (+) in the ease when —oo < g;(u) < gy(u) < co. Indeed,

it f is not locally bounded for large u, we have sup |f(u)]=co for a
Uy Uy +1

sequence 1, o oo. However, for v, snitably chosen, u, <wv, <u,+1,
we then have lim [f(v,)|[v, = co.

>0
1.7. Given a positive u, denote by a,, resp. b,, numbers satisfying
the inequalities
flutuw)—flu) =a, for u Z=u(p),
resy.
fluduw)—fluw) <b, for u =us(p).
Let us assume that f satisfies one of the conditions
(a) —oo << gp(p) < gr(p) < oo for every p, f is measurable,
(b) f is monotone for u = 0.

The following formulae hold:

? a,
() lim 2 sup o) p—
pooo M u>0 M u=0 M

LA

9 ] b
tim 2 g B g P
p—rco M =0 M =0 M
As regards the meaning of the symbols supa,/u, infh,ju, the fol-
u>0 u>0

lowing convention is here adopted: if there exists a finite value of a,
(vesp. b,), we take the supremum (resp. infimum) with respect to all pos-
sible choices of a, and u (vesp. b, and u), where g > 0. In other case we
put supa,/p = —oo (m(j}_’b”/‘u = co).

>

u>0 [ i
We shall prove the first formula for instance. Assumption (a) means

that By = (—oo, co) and, by 1.3 (b), for every p, >0 there exist &, u,
such that

(+) If(u+p)—Ffw) <k for 0 <p <y U 2 U
T fu-+po)—flu) = ay,, for u =11 (u), then
Flutnpg)—f(u) =na,, for w = u (o) and » =1,2, ...
Hence, choosing (n— 1)y, < p << Ry, We obtain

Ffludp) —F(u) = nay, +Flutp)—flatng).

Studia Mathematica, XXIL
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Since
I ) , M
Ny > ;;al,o for a,, >0 and Wl >(;; -+ 1)4/10 for a,, <0,
we have
Jutm—f) _ op | flut w)—flut np,)

Sy
" Ho I

and 1o0r @, >0. By (4), we obtain

for  w > g (uy)

Rl > —
J Ho M
whence
lim Qf(:“)_ > ity ]

e Ho
The proof of this inequality for a,, < 0 is similar. Sinece g, is an arbitrary
positive number, we have

Hm o/ (u)/pe = supa, ju.

e . #=0
Take any s < sug)gf(u)/y. Then of(ug) /sy >s for a certain p, >0,
>3

whence
Flotpo)—fu) > 800 = a,,  for  u = uy(u,),

i.e.
a
sup & o Mo _
w0 [ Fo
Thus we have proved
a —_—
sup 2 > sup or(w) > fim &)
p>0 U a>0 U u—co M

The proof of formula (++) is similar.
Now, let us assume (b) to be satisfied. Then we obtain

flutw)—f(u) = (n—1) @+ fu+ p) — flu+ (n—1)pg) > (n—1)a,,

#or W 2 1y () and any u satistying the inequalities (n— 1)uy < ' < fp,

if f is non-decreasing for » > 0. It f 18 non-inereasing for « > 0, we have

f (w4 u)—f(u) > 1, for u = uy (u,). Arguments analogous to the preced-

ing ones lead to the inequalities lim o1(u)/u > supa,fu and the further
#>0

P00
argumentfs do not differ from these in the proof under assumption (a).
If f is non-increasing for w > 0, then for u >0 a finite constant
@, may not exist. This is possible if and only if g;(u) = —oco for u>0.
In this case we have Lim o, (u) [pe = sup g/ (u)/u = —oco.
H~700 B»>0
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The following statements are consequences of 1.54 (Remark), 1.6
and 1.7:

1.21. By the assumption that either f is measurable and —oo < pf(p)
Lop{p) < oo for every u or f is monotone, the following inequalities are
satisfied :

. . fluy = flu .
(*) Hm M < hnlf—u < lunM ghmgj—(ﬂ)—.
p—co ——. oo U oo M

Remark. This remains true also in the case when f is locally bounded
for large w and the limits limg;(p)/p and lim os(u)/p exist.

=00 P00

1.22. If f is locally bounded for large u and if

() limM = ﬁé(—#—) =y

Py P ]

(g may also be equal to oc), then the relation

U
1i1nz(—) =y
U U
(the generalized 1'Hospital rule in Cauchy’s form) holds.
1.8. Let f possess a positive derivative ' for u =0 and let f' satisfy
the condition

[t )
o lim=—————=1 jfor ecery p.
) - T
Then
]me = Vliral—lf’(‘u) = Q/—(’u—(]) for every  py >0,
usoo U U Ho
hmi(——u—) = lim f'(u) = M Jor every  p, >0.
e ¥ frimes Ho

Given u =0 and u, >0, denote by v(u) a number satisfying the
conditions »(u)e(0, u,) and such thatb

Fluct po)— (o) = flutv(w)] o

holds. Then we have _
— 0
Hm f(utv(w) = i(ﬁ_oz'
U300 (]
Define the function

lgf'(u) for %=0
hu) = gf ’

g for  w<o0.
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By (o), h satisfies condition (k,), whenc
) . , e, by 1.3 (a) b+ p)—
—‘h(u)—>0 uniformly in <0, ue> a8 % — oo, i.e. (o) hold’s unifofxgll
with respect to pe{0, ug>. Thus v

lim ffu+o(w) = Lim f/(u),  lim f(ut-o(w)) = lim f(u).
—00 frawes Urco
1.81. By ihe same assumptions regardi i ;
By garding f as in 1.8, 4f 1.72
then the limit of the derivative as u — oo owists, namelq;, d o) hold,

Lim f' (u) = g.
U—r00 .
1.9. By the same assumptions regarding f as in 1.6, we have

o{p) = au  for ueCy;

in partioular, if f satisfies (k), then or(p) = ap for —00 < § < 0
This follows from the fact that, by 1.6 = f -
where & — Homfla) o » by 1.6, o/ () = ap for weCy, u 0,

U—s00
2. In this seetion (with the excepti
pion of 2.12 and 2.8) ¢
:.lways denote measyable positive functions defined for % > 0’ Kc}éggd’ing
g [(i], s_uch a fl.mcmon is called a g-function if it is continuous and non-
eeleasmg, defined for u =0 by (0) = 0, and tends to infinity as
% — co. We shall apply the symbols

. ( -~ —
Bo(h) = lim 2 Hotsy = T 2

Jim (p(ML)- for 1 >0.
Iflli_zq,(l) = h,(A) = hw(Z?, where #,(2) is ﬁnﬁ:e for 2 >0, and b 1, we
(]ifa.h (pzregulaﬂy mereasing, according to the terminology of [2] and’[?»].
o [q:)(] ) ;—S; fsciz 11> 0, Is a slowk:./ varying function. (In the terminology
mﬁng’ wly varying functions are regularly inereaging.) Substi-
() flu) = lgp(e”),
v:_r(ei redufze the.investigation of functions ¢ to the funections we have con-
zller%d in seet.mn 1 and a number of theorems may be obtained immedia-
: EQ}; y appﬁlymg the results of section 1. It is clear that @ is regularly
f(u)eas?gf,' 1fesp. slgv‘vly varying, if and only if the corresponding function
f) saitisfies cor.xch‘tlon (k), resp. (ko). If ¢" = 1, then 1gh,(4) = —po;(p)
=¢/(—p), and similarly 1gh,(3) = g;(—u). If 4 — 0, then —pu — —lgi

— oo, and applying 1.7 we obtain £ it funeti i
of the Tollominy Lot in for an arbitrary g-function the existence

-—OO</LL<oo,

o — 1 185

a0 —lgA ’

(*) 5, = lim 8t (%)
A0+ —~1g'}» "
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The indices s,, o, play & part in the theory of the spaces L**(a,b)
({101, [9]). Obviously, we have o, > s, > 0 for an arbitrary ¢-function.
Indices (*) may exist also for ¢ which are not ¢-functions (in the termi-
nology of [9]; such ¢ are called quasi p-functions or briefly ge-functions).
By 1.7, every non-increasing or non-decreasing ¢ is a gp-function. If @
is regularly increasing then r, =s¢, =0, 0 (r, is called the index of
regularity); if @ is slowly varying then r, = s, = o, = 0. (In the following
we term @ to be of indes , if either ¢ is regularly increasing, i. e. r, = 0,
or ¢ is slowly varying, i.e. r, = 0.) This is obvious for slowly varying
functions, sinee then 7, (1) = hy(1) = 1, and follows from 2.1 for regularly
inereaging functions.

2.1. ¢ is reqularly increasing with the index of regularity r if and only if

(##) plu) = wyplu),

where v =0 and v is slowly varying (see [2]).

The easy proof of sufficiency will be omitted. To prove the necessity
we apply 1.51 and we decompose the funetion (+p) into a sum of a linear
function and a function f, satisfying condition (k,). If f, satisfies condition
(k,) then e/%8¥ — y(u) is slowly varying.

Tet us remark in connection with the assumption of measurability
of ¢ in the above theorem that @o(u)= ¢"2Y, where Rh{u) is a non-
-measurable Hamel function, is not regularly increasing and the indices
84,7 Og, (0 DOt exist, although k(1) = ROES ~MeD 1gh, () —1gA
= h(—lgi)/—lgA for every A >0. If a finite limit s, existed, 7 would
be bounded in a certain interval, whence eontinuous. If s, were equal
t0 oo, h would be bounded from below (from above) in a certain
interval, but this is impossible. Thus the index s, does not exist; it is
similarly proved that o, also does not exist.

If 5, = 6, = 7, Where r, 5= 0, |r| < o0 for a gg-funetion ¢, we call ¢
quasi-regularly increasing; it s, = o, =1, =0, We call the gp-funetion ¢
quasi-slowly varying. Also in this case r, is called the index (of quasi-
-regularity). If s, = g, = 400, We say that ¢ is of infinite index of quasi-
-regularity and write 7, = too.

2.41. If @ is regularly increasing or slowly varying, then

¢(7ll) > Z-r(p’
p(u)

as U —> oo,

(+)

" uniformly in every interval 0 < ' <A <A

We apply the substitution (xp) and 1.51, 1.3. We obtain ¢(iu)/p(%)
4 if 1>0, u—>oco. Applying the definition of the indices $,, 0,
we obtain s, = o, = 7,. .


GUEST


326 W. Matuszewska

2.12. If we replace the assumption of measurability of ¢ in the de-
finition of a regularly increasing or slowly varying funetion by the local
boundedness of lgg, relation () remains true for every A > 0, although
the uniform convergence may not hold. Identity 2.1 (++), where y is
of index 7, = 0, remains alse true.

This follows by applying the substitution (+p) and 1.9.

2.13. If ¢ is regularly increasing (quasi-regularly increasing) or slowly
varying (quasi-slowly varying), thew lgg s locally bounded for large .

This follows by applying the substitution (xp) and 1.54.

A function g is called locally bounded if it is bounded in an arbitrary
interval (0, v). It follows from 2.13 that replacing a regularly increasing
(slowly varying) function ¢ by a function ¢, such that @1(u) = @(@) for
0 <w <%, ¢,(u) = @(u) for u > %, where @ is sufficiently large, we obtain
a regularly inereasing (slowly varying) function which is loeally bounded.

2.2, Let 1gp be locally bounded for large u.

(a) If the limits s,, o, emist, then

s, < lim _-_lgq:(u) < lim lge() < 0,
¢ lgu oo 1g 0 7

(b) If the limils s,, o, exist and 8y = 0, = 7, (n particular, if ¢ is
regularly increasing or slowly varying), then

Jim 87 (%) _ y
e P 7

The above theorems are obtained immediately by applying the
substitution (+p) and 1.54, 1.72.

2.3. Denote by Z, resp. #,, the clags of regularly increasing, resp.
slowly varying, funetions g.

y (@) If @, ypeR, then Top =To+7y, and ppeZ for v, 0 and ppeR,
or To, = 0.

(0) If @, peRy, then ppek,.

(e) If pe, then Tye = —Tp and 1/ped.

(A) If peZ,, then 1jpe,.

(&) If @<, then T =kry, ¢ <R, when k % 0.

®) If peRy, then e, for an arbitrary real k.

(g) If Py ped, p(u) —>o0 as u — oo, then o (p) e, To() = Toly-

(-h) By the same assumptions on ©,p as in (g), if at least one of the
functions @,  belongs to &, and the second one belongs to Z, then p(y)eZ,.

W) If @ is a striotly inereasing g-function and pe®, then p-'e® and
71 =1/r, (cf. [2]).

icm

. . . N D
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Remark. The above theorems remain true if we omit the assumption
of measurability in the definition of a regularly increasing, resp. slowly
varying, function, replacing it in (a), (¢), (e) by the assumption of local
boundedness of the functions lgp, lgy in (g) by the assumption of mea-
surability of ¢ and local boundedness of 1gy.

Theorems (a)— (f) follow from the definition of a regularly increas-
ing, resp. slowly varying, function and from 2.12 immediaztely.

Ad (g). Let p(iu) = e(u)p(u), 1 >0, whence &(u) —>-/uﬂ a8 u —>oo.’
By 2.11, ¢(pu)/p(u) — @7, as 1 — co, uniformly in each interval 0 << pu
< u < u”’. Hence

o (v (M)
plp(u)

o (e(w)p(w))
ply(w)

Thus ¢(w) is regularly increasing and 7, = ¥y

(h) is proved similarly.

Ad (i). Let g(u) =wv, g7 (v) =u, 1 < p <o, P(Ayu) = pv, Wheae
1, >1 is defined uniquely. There exists a constant A, slllich that A, < o
for v > v,; indeed, otherwise we should have 4, > (2u) v for a sequence
2, — oo. If p=1(v,) = %y, then

U — 0.

— (e)e  as

b 1/
RN T I
@(Un) @ ()
which is a contradiction. Let A, —g; since, by 2.11, o (Au)jp(u) — 4'®
uniformly in 1 <24 <k, We obtain
‘LL — (P(ll‘nun) __)grq,,
@ (ttn)
i.e. g = p'>. We have thus proved that 7, — whe as fv—>oog .tt‘h:s
7 (uv) fp(v) = Ayufju — @i’ for p>1 and hence for an arbitrary
l‘ > 0. 1 % 770
231. If ¢ is a strictly inoreasing g-function and geAy,, then the follow
ing relation holds for the inverse function:

o~ (un)
@ (w)
rsely, i holds, then @eZ,.

for every u >1. Conversely, if (+) , .

Let u, A, have the same meaning as in the pro40f’of 2..3 (i). Suppose
A, —> g for a sequence v, — oo, Where ¢ is a finite limit. Since qp(lu)/c;f (u)
—1 uniformly in 1 <1 <g+e we have u= @ (A, ) [0 (t0n) -1, i.e.
u =1, which is a contradiction. Thus we have proved that A, — oo as
v > oo and, consequently, ().

— oo as U —> 00,

(+)


GUEST


328 W. Matuszewska

In order to prove the second part of the theorem leb us write ¢(iu)
= v, A>1. Since A = ¢~ (u,0)/p7(v), We have u,—>1 as % — oo,
by (). Thus @(u)/p(w) 1 for A > 1 and hence also for 0 < A 1.

2.4, We now introduce some notions which are of importance, par-
ticularly in the theory of the spaces L**(a, b), but which are also of in-
terest in studying the order of growth of functions. We shall say that ¢
is I-equivalent to v (equivalent to v for large #), in gymbols ¢ L y, if the
inequalities
(+)

hold for u > u,, where @, b, ki, k, are some positive constants (see [6]).
@ ~ 1, Tesp. ¢ ==y, Will mean that ¢ and y are asymptotically similar,
resp. asymptotically equal, i.e. that p(u)/y(u) —¢ a8 u — oo, Where
¢ #0, resp. ¢ = 1.

Evidently, ¢ ~ v implies -~ p but not eonversely. Similarly to

ap(kyu) < plw) < dp(kau)

~, & i3 also an equivalence relation and elementary rules of caleulus
for ~ are valid also for & . For instance if ¢, p are non-decreasing (non-
-increasing), ¢ gy, v py, then dp+e¢'ypL opta 'y (¢'ye” >0),
oy 4 iy, ete. If ¢ i8 a gp-function, then every function l-equivalent
to ¢ is also a gp-function. It is also easily seen that for a gp-function
the indices s,, o, are invariants of the relation A . However, the property
that ¢ is regularly increasing (resp. slowly varying) remains valid for
an asymptotieally similar (vesp. equal) function, but in general does not
remain valid for a function l-equivalent to the given one. The following
remark makes clear the advantage of applying the notion of I-equivalence
in place of the less general notion of asymptotic equality, when investigait-
ing orders of growth of functions.

2.41. If ¢, v are striotly increasing p-functions, ¢ ~ v, then ¢=* Ly~
(see [9]). .

If g~ p, then ¢~? ~ ¢~ does not need to hold. For instance the
ﬁ.mctions pu) =lg(l+w), ¢ (u) = o(u)lg(l+ ), where o(u) is a con-
tinuous function strietly increasing from 0 to 1, are asymptotically equal.
However, if we ¢hoose ¢ suitably, their inverse functions are not agympto-
tically similar. It is sufficient to choose an arbitrary sequence a, 7 1
and v, Uy, Uy, 80 BhAb U, < Uy < Upt 1 < Uy, Uy = P —1, (" —
—1)(r—1)"* >n, and to define @(u) = @, for U, < U < Uy, 0(¥) =2
linear funetion in (t,, tn,).

242. If ¢ is a gp-function, then @, (u) = p(v") and @.(u) = (pw))s
7 >0, are gp-functions, and s; = sz, = 18, 0, = 0,

Since — ’ i

‘ r (%)

9 ?r (1) ( p(u) )’
@ (Au) )]

wln)  \p(u

= 70,.

_ o)
@ (Zr’ll,r) ?
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we have T (2) = by (), T, (1) = Ty, B3 (2) = (b (A5 T, (2) = (B2,

1 1 lghz (A 1 "
L = Lim gha (D) _ ypp, 181l
¢ T ¥ a0t —IGA in0e —I1g A

= = 84,
and similarly in the remaining cases.

Tet us note that, in spite of the fact that the indices of ¢, and @,
are equal, these functions need not be l-equivalent if » = 1. For instance
let ¢(u) = w(lg(1+ ), where p is a regularly inereasing or slowly varying
p-function. Then g (u")/p(w) 1% ag 4 — oo for r >0. I @, L, then
p 2, Loe ap(ku)fp(n) < (p () fp(w) < by(kyu)/p(u) for large u. But
this is impossible for r # 1, because, according to 2.3 (g), ¢ is a slowly
varying p-function.

2.5, A function ¢ is said fo satisfy condition (A,) for large w if a >1
and if the inequality

plow) < dp(u) for == Uo(at)

holds for a constant d, > 1. ¢ is said to satisfy condition (A,) for large
if ¢« >1 and if the inequality

plavye, <g(uw) for w= ug(a)

ig satisfied for a constant ¢, > 1. For non-deereasing ¢ the property that
condition (A,) (condition (A,)) holds with an o >1 is an invariant of
l-equivalence (ef. [6]).

2.51. If ¢ is a gp-function, then the conditions

(8) 8, >0,

(a') (Ag) s satisfied for sufficiently large a,
are equivalent, and the conditions

(b) 0o < 00,

(b') (A,) is salisfied for sufficiently large o,
are also equivalent.

Tn order to prove (a)==(a’) let us note that h,(4) = hi(a)
= limg (au) /), if a = 1 0<i<l I s, ~0 and s, >s >0, then

U=t

lghy (Z) >slga for a > @, whence olau) > d'p(u) for u = wy(a), i.e.
we may take of = ¢, >1. If ¢ sabisfies condition -(Auo), the;l e lagu)
> 0g,p(w) for u = u(a); o >1, ¢, >1; hence o) = (0,) ¢ (u) for
W= ugla), k=1,2,..., lghy(a)> kgt for o= di, lghe(a)/lga >
> 1g6,, /g o, 8, =180, /1800 > 0-

(b) == (b") is proved similarly. )

Remark. Let us note that for a non-decreasing ¢ (in partieulha.r
for a p-function), (A,,) for an o implies (') and {A,) for an a, jmplies
(A,) for every a > 1.
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2.52. Let ¢ be a g-function.
(a) If s, >0, then

(+) Sp = sup(lge,/iga),

where the supremum is taken over oll pairs of numbers a, ¢, which ocecur in
the definition of condition (A,);
(b) if o, < oo, then

(++)

where the infimum is taken over all pairs of numbers a, &, which occur in the
definition of condition (4,).

This follows from 1.7 (b) by applying the substitution ().

253. If conditions (A,), (A,) are satisfied for suffictenily large «, then
@ 48 a qy-function, s, >0, o, < co, and formulae 2.52 (+), (+--) are
satisfied.

Applying the substitution (@) in this case we can easily see that
the corresponding function f satisties the inequalities — oo < g{u) <ios(w)
< oo for large u, whence these inequalities are satisfied for every g, by
1.4. Formulae 1.7 (), (++) yield the proof of existence of the indices and
formulae 2.52 (+), (++), simultaneously.

2.6. Given a function g, write

o, = inf(lgd,/lga),

s2(u) = supp(t) for

vl

u >,

so(u) = si(v)ufv  for O<u<o if v >0,

$¢(u) = s5(u),

t3(u) = sup o(t) for w>=w,
usi<oo

Bu) =) for O<u<wo,if v >0.

Obviously, if s°(u) < oo for u >0 and s°(x) — oo asg % —co, then
88 ~ §°,

A funetion p is called pseudo-increasing for large u if

(+) () =me(nuy)  for uy = uy >

for some constants m,n > 0; it is called pseudo-decreasing for large w if

(++) olus) = mo(nuy) for  uy =u, = u,.

. 2.61. A function o is pseudo-increasing (pseudo-decreasing) for large
if and only if @ is l-equivalent with a. non-decreasing (non-inereasing)
function.

icm
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The sufficiency follows from the definition of I-equivalence immedia-
tely. In order to prove the necessity let us note that (4-) implies

u
g(;) > msd(u) > mo(uw) for w0 = Sup(ty, MU},

and (-4 -+) implies

o

elw) < (u) < mo(nu) for u = uy,

whence ¢ L ¢ in the first case and g»-’—dtf,ﬂ in the second case.

From the above it follows that

2.611. If a function pseudo-increasing for large a is mnot l-equivalent
to a constant, then §§(u)— oo as u — oo.

2.62. Let us assume that the function o(u)u® is asymplotically equal to
a non-decreasing function for an & > 0.

(a) If o is pseudo-increasing for large u, then the inequality

Uy = Uy = UF

(-+)

holds for a constant k > 0;
(b) If o is pseudo-decreasing for large w, then the inequality

ol(us) = ko(uy) for

Uy = Uy = UF

(++)

holds for a constant k > 0.

We shall prove (a) for example. We may restriet ourselves to the
cage e = 1. Let 0 < n <1, uy = atly %y = U[RN, a = 1/n. Since wup == %y,
we have g(au) = mo(u) for u = nig, by 2.6 (). Since for every 0<n
<1, wap(us) = (1—ntag(uy) for us =1 >u(n), we have g{au)
> (L—n)no(w) for u >wu(n) and 1 <e < 1jn. ¥ n >1 and o >1, then
applying the inequality w,o(us) = (1—n)ugo{ny) for u, = nu, Uy =14,
we obtain g(nu) = (1—'}7)-};@(%) for u > u(y), i.e., by 2.6 (), elow)

olug) < ko(uy)  for

= mo(nu) = %(1——77)9(11,) for u = sup(uo, 14(77)). Thus we have proved
(4) with a constant k = inf(m,n(1—n), (1—n)m/[n), where 0 <7 <1
may be chosen arbitrarily.

The arguments in the case (b) are similar.

2.63. If ¢ is regularly dncreasing and v, >0, then ¢ =57 for a cer-
tain v. If, moreover, ¢ is locally bounded, then ¢ == s".

Choose an arbitrary a, >1, 1—& > a;’? By 2.11, ¢liuw) = (1—
— o) Heg(u) = (1—e)p(u) for © >0, 1 <A< oy i.e. @(du) = ¢(u) for
w>% and k =1,2,..., gldiiu) > (1—e)g(w) for k = 0,1,2,... and
u > Consequently, ¢(an) > (1—e)o(¥) for % >W, a>1, whence
@) = (1—e)si(w). But ¢(u) =00 a8 U = o0, by 2.2 (b); thus s§{u) oo
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and if ¢ is bounded in a neighbourhood of 0 then, according to
2.6, 8% (u) << co for every # >0 and s ~s”. Hence in thig case o) >
(31— 2¢)s% (1) = (1—2&)p(u) for sufficiently large u, 1—2¢ < lim ¢ (u) /s* (u)
U—>-00

< Hm g(u)/s®(u) < 1)(1—28), i. 6. ¢ ~ 5"

U

The first part of the theorem is obtained by modifying ¢ in a neigh-
bourhood of 0 in order to get a locally hounded function.

2.64. A function @ is slowly varying if and only if p(u)u® is asymplo-
tically equal to & non-decreasing fumction and @(u)u™ is asympiotically
equal to a non-increasing function for every ¢ >0 (see [2] and [13]).

Sufficiency. Let a >1, >0 be given. We choose ¢ > 0 so that
i+7n21+eea, (1—e)fd® 21—~y Then the inequalities ou’p(au)
= (1—&u'e(u) and o *u p(au) < (14 e)u’p(u) hold for sufficiently
large «, whence

14g > T2 o g 20

woon @(U) T ise ()

=1—9.

Necessity. Given:any & >0, the functions g,(u) = wp(uw) and
¢2(u) = 4°[p(p) are regularly increasing with index e. By 2.63, p, ~ i,
1jpy =~ 1/[s32. '

2.65. A function @ is quasi-slowly wvarying if and only if for every
€ >0 the function p(u)w’ is pseudo-increasing for lurge v and the Junction
@(u)u™* is pseudo-decreasing for large u.

Sufficieney. Take an & >0. Then ¢ (u) = p(u)s® and s (1)
= e(u)u"° are gp-functinos, by 2 and 2.61. Hence @ is also a gp-function.
Sinece 8¢y =S8p+e =20, —eto, = O <0, we have —e < 8 S0, < €
and, consequently, s, = o, = 0.

Neeessit‘:yl. . If s, =0,=0, then Ty = 8p = 0, = &. It follows
from the definition of the indices that if a > ay == 1, the inequalities

P (ou) <
P1(%)

are satisfied for given ¢’ > >¢ 0. Applying the substitution (xg,),
1.4, 1.3 (b) we easily show the inequalities .

o
o <

for  u = wuy(a)

¢ < p1(an)
@1 (u)
to hold uniformly with respect to « in 1 Lae<Kayforu>m Let 1 <<a

P Tl .
d Ka<g for a k=0,1,2,... Sinece « = a’4, where 1 <A<
it follows that S " - o

K0

@ (au) = %(a’élu) > (a{.‘)e(pl(lu) >cp(w) for w > Sup(uo(ao), Q—L)

Similarly we prove that g, (u) is pseudo-decreasing for large u.

%
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2.7. (a) Let ¢ be such that p(u)u"' is asymptotically equal to a non-
-decreasing function for an & > 0. The function @ is l-equivalent to a convex
o-function if and only if the inequality

() (1)

T >, U
"y =k v for  wy, =uy =, ,

(+)
is satisfied for a certain constant k > 0.

(b) If @ 4s & @-function and we change in () the sign > in <, we
oblain o necessary and sufficient condition of l-equivalence of ¢ to a
concave p-function (cf. [6] and [7]).

First, we consider the case of l-equivalence to a convex function.
Let @ -~ , where p is a convex g-function. Inequality 2.4 (+) holds
for 4 > Uy, whence, for u, > u; = U = sup(uy, kaUfky),

(i)
i — U
p(ky104) . 7'1'_9 ky

= ]
b

k
(1) >a 1 (B ts) >a
Uy U Uy
because p (o) < ap(u)for 0 < e < 1. Since g(u) = ¢(u)/u satisfies 2.6 (+)
and o () is asymptotically equal to a non-decreasing funetion for a cer-
tain ¢ > 0, inequality (+) follows from 2.62. In order to prove the suffi-

- ciency-let us define the function s{u) = s§(u), where p(u) = o(u)jw and

v is equal t0 u, from (+). Arguments as in the proof of 2.61 imply ¢ (u)/k
> us(u) > ¢(u) for ¥ > u,. The function
u

plu) = [s(t)at
0

is a convex g-function and since Jus(fu) < w(w) < us(u) for u >0,
we have ¢ & y. . .

Now, we consider the case (b). Adding to ¢ & continous fwinotm'm %«
strietly increasing from 0 to 1 as % —- oo, We obtain a g-function ¢ .strlc’c]y
inereasing, asymptotically equal to ¢ and such that the inequality
@(ug)_ <7 @ ()

t++) 2 <k Uy

holds for certain IZ, % if and only if the inequality

for s 2 Uy =g, k >0,

plus) _, olw)

< for s = Uy = Uy, kB >0,

Uy %y
is satisfied for some &, w,. Obviously, inequality (4 +) is equivalent
to the inequality
—-1 -1 —
P (%) = i P (%) for vy = vr 2 @(Uy).
Dy kv
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Since, by (a), g~ ~ 7, where  is a convex g-function, by 2.41 we
have ¢ &~ u, where » = ™' is a concave g-function, and since P=p we
have ¢ ~ .
Remark. The following question arises: is it possible to define a func-
tion y in a way analogous to that in the case (a)? Let t(u) = ¢ (1), where

0 (%) = @(u) Ju and v is equal to u,. As before, we have (u) <t(u)u < kp(w),

U
but the concave function v (u) = f t(7)dr is not necessarily I-equivalent
0

to . However, this holds if we assume that s, > 0 or that condition
(A,) is satisfied for an « >1 (both these assumptions are equivalent),
for then we have s, > —1 and 2.92 may be applied. The same remark
concerns the application of s(u) = inf me(nt)/t in place of the function
wglu

t(w) given in [7] on p. 127. T mightonotice here that the method of proof
in the above-mentioned fragment of [7] may be applied, for example,
if we assume (A,).

2,21, (a) A convexr @-function is superadditive, 1. e.
(+) Pluytug) = @(uy)+-p(us)  for

a superadditive g-function is l-equivalent to a conves p-function.

(b) A coneave p-function is subadditive, i. e. (~+) holds, where the sign
= has to be changed inio <; a subadditive g-fundtion is l-equivalent to a con-
cave g-function.

Ad (a). Since p(u)ur’ <e(u)us' for u, > u, >0, we have

o (u,) @ (us)

(g4 ) [
o(Uy+ 1) = u +u >u Uy ——
1 2 1 Yy -0y 2 Yy 10y = Uy y -+ Uy g

Uy = Uy = 0;

Let us suppose that ¢ is superadditive. Let Uy = uy >0 and let n
denote & non-negative integer such that 2™, < u, < 2"+ Yu,. It follows
from the superadditivity that

Plu) _ 92"y 2" plu)
=4 = onl
Uy Uy 2 Uy

and it is sufficient to apply 2.7 (a).

2.72. In the following properties ¢, y, v denote p-funetions, 7 > 0:
A oLy, x(w) = (@u), ¥ conven.

B. L%, 7(u) = (pw), % conves.
C. o+ % % 8 superadditive in @ generalized semse:

2 (%1t u,) > [(Z (ul))l/?'i_ (X('N'z))l/r]r for

D. o(u) = u'g(u), where o is pseudo-increasing for large w.

(+)

Uy = Uy 2= 0.

Regularly increasing functions 335

Properties Ay, B, will be obtained from A, B by replacing the word
“gonvex” by “concave”, property C, will be obtained from C by replacing
the sign > in inequality (+) by <, i. e. by replacing generalized super-
additivity by generalized subadditivity. Finally, property D, will be
obtained from D by replacing the phrase “p is pseudo-increasing for
large u” by “p is psendo-decreasing for large u”.

2.73. Any two of the properties A-D are equivalent; moreover, any
two of the properties Ay-D, are also equivalent.

This theorem is a consequence of 2.7, 2.71 by the fact that property
D, resp. Dy, means that g(u'’"), (p@)}'" satisty 2.7 (<), resp. 2.7 (-++),
with the sign > replaced by <.

2.74. Let ¢ be a g-function.

(a) If s, >0, then ¢ possesses property D for every 01 <T8y; if @
possesses property D for a certain 7, then s, >0 and 1 < §,.

(b) If o, < oo, then ¢ possesses property Dy for every v > 6,3 if @ pos-
sesses property Do for a certain 7, then o, << oo, o, <1 [10].

Let @(u) = wo(u), where » >0. By 2.62, ¢ is pseudo-increasing
for large w if and only if, for every a > 1,
where k >0, u > u*.

(+) o(au) = ke(u), .

Since g{au)/p(u) = o g(an)/e(w), (+) implies that ¢ satisfies condi-
tion (A,) for sufficiently large « with the econstant ¢, = a'k. By 2.51,
s, >0, and, by 2.52 (a), Ig¢/lga = r+igk/lga <s,, l.e r gs:,. Let
us now assume g, > 0, 0 < § < 8,5 according to 2.52 (a) there exists an
@y > 1 such that » = lge, /18, >, p(ay) = ¢, p(u) for u = g (ap). Liet
a>l,le a= of], where k is a non-negative integer, 1 < A< ag. If
u > u(ay), the following inequalities are satisfied:

>

plan) > (0ogp00) = (e p 00) > o),

— (p(a’ll;) \_1_____93(%) =~1— Uj.
olau) = ou aru w az 9( )

Property D is satisfied for an arbitrary r < s, for it is satisfied for some
r < 8, arbitrarily near o s,.

The proof of (b) is analogous.

2.8. Tn this section  may assume also negative values -amd is always
integrable in an arbitrary interval (0,u); however, speaking a.pout Te-
gularly increasing or slowly varying functions ete., we ghall have 11:11‘ mind

functions ¢ > 0, just as we did previously. We shall write y(u) = of pli)at
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and we ghall agsume y(w) >0 for % > 0. Moreover, we shall write
ug (%)
v (w)
The following inequalities hold:

ehy(h) gk (d)  —
' lim7, fell) Bl o
(+) lim (u) < el S gz < }ill]a(u), 0< i< 1.

h(u) =

for « >0.

We apply the substitution
(=), ¢ =4qa, =0

to the funetion y and we Wlite lgy (e“ = f(u). Since y is absolutely con-

tinuous, we get f'(u) = ' (€")e" [y (") = h(¢") for almost every u, whence
) Ut
1 20— flut ) —f) L
for « >1. However, im y(w)/y(v) = &,(}), where A = 1/a. Thus
V00
Uyt

Igh,(1) <Tm [ f(1)dt < ~lgi-Tmf'(u)
U004, U0

The inequality —Igi- limf (v) <lgh,(4), when 0 < A < 1, is proved
similarly. o

As an immediate consequence of {-4) we obtain

?.81. (a) If h(uw) = a, where a £ 0 is finite, then v is regularly in-
creasing and of index 7, = a; if a =0, y is slowly varying.

(b) If h(u)—oco as u — oo, then

0 for 0<i<1,
“P_@_J for a—1
g v(u) l o
co  for A>1.

2.811. Let ¢ >0 for u >0 and h{v) — & as u — oo, a finite. If & =1,
then @ s slowly mm/mg, and if @ # 1, a >0, then ¢ is regularly increasing
andr, =a—1.

By thg a;b(?ve assumption, ay(u) ~up(w) and since, according to
2.81 (a), v is of index r, = a, we have r, = 1+7,,1i.e. ¢is of index a—1.

Remark. From the proof of inequality 2.8 (+) it follows that the
inequaliby remains valid if we restrict ourselves to w — oo, #e(0, co)—A
in Tm#a(u) and limh(u), A being a set of measure 0. The same remark
applies to 2.81. Taking into consideration the above remark we obtain
the following test of ¢ being slowly varying, resp. regularly increasing:
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2.812. If p(u) >0 for v >0, ¢ is absolutely continuous, A denotes
the set of w for which @' (u) exists and if
ue’ (u)
(*) T a as ued, ¥ —oc,

then ¢ is slowly varying when a = 0 and regularly increasing when a = 0.
For ingtance, the above test may be applied to

u
sint
qn(u):f| 7 idt, a=0.
0

Hence ¢ is qlowly varying; however, ¢’ does not possess this property.

Condition () in 2.812 with ¢ = 0 is not unecessary in order that an
absolutely continuous function ¢ be slowly varying. Every absolutely
continuous non-decreasing funetion tending to 1 as u —oc is slowly
varying, but if in an arbitrary neighbourhood of co there are intervals
in which ¢ is constant and intervals in which ¢'(u) > 1, then the limit
(*) does not exist even if we omit any set of measure 0. However, by
applying the integral representation of Karamata [2] it may be shown
that every slowly varying function is asymptotically equal to a funetion
satisfying 2.812 (*) with a = 0.

2.813. If y(u)— oo as u — oo for a continuous gp-function g, then
the following inequalities hold:

1+8, <8, S0, < 140,
if ¢ is regularly increasing ov slowly varying, then y has the same property
and the index of w is v, = 1+7, [91
L/Hospital’s rule (in the form with limib superior and limit inferior)
yields

| @ (u) o op(w) — w(u) — @)
) m Ap () uoo p (A0) SO ) S dplau)

ie By(A) /2 < By (D) < Ey(A) < Rp(A)/2 Indices s, o, exist, for p iz a
~funet10n Hence from the last inequalities we get 1+s, < s‘, <o, <
140, If h,(4 )__h () for A>0, then (+) implies h, (4 ) h, (%), and
sinee 7, = s, = o,, we have r, = 147,

Remark The assumption of continuity of ¢ may be removed by
a suitable modification of the proof.

2.814. If 5, > —1 for a gp-function, lgg locally bounded for large u,
then (1) — co as 4 — oo.

It follows from 2.2 {a) that if —s, <s <1, then ¢(u) =u~* for
sufficiently large u, whenee p(u) —> oo a8 2% — 0.

Studia Mathematica, XXI. =
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2._82. If a function h{u) is slowly varying and @ 8 o continuous qo-
-function such that p(u) — co as u — oo, then the mequalities

(+) 148, <, =M () <Hmhb(u) =0, <140
U—>c0 U—0Q *

are satisfied.

To prove this theorem we apply the substitutions lew(e¥) —
¢ =1, ¢ =, again. We have EviE) = I,

h(dn) _ fr(utp)

=2 T% 9
h(v) J'(u)

as u — oo for an arbitrary u, for u — co implies »

varying. By 1.8, we have

~»o0o and k is slowly

im h(u) = Hm f'(u) = g(u)fu  dor u >0,
(++) b e
hﬁlgh(%) =1?f’(%) =gy for u>o0,

and by the definition of the indices

8y = limg,(u)/u, o, = limpg(u)/u.
#—+00 H#—>00

=

Inequality (+) follows from (--+) if we take g —
theorem 2.813. (++) e take u—oco and apply

2.'83. If ¢ is regularly tnereasing or slowly varying, then there ewists
a continuous function for u >0 asymptotically equal to g.

Let us define a continnous funetion @(u) as @(n) = p(n) for
%=1,2,..., ¢(u) a linear function between the points (%,(p(n)) and
(n-+1, @(n+1)) and in the interval <{0,1). We have, for n <u <n-t1,
% =nd 1 <1< (n+1)/n, and, by 2.11, ,

plu) _ g(nd) @(n)

o)~ pln) pma)

2.?4. If —eco < 8y S0, <oco for a qp-function o, then there exists
& continuous function g l-equivalent to @.

'l‘hel indices s,, o, being finite, for an arbitrary interval (1A', A"),
where A’ > 0, there are constants 62 = ¢y >0 stieh that ¢, = (Au)/p(u)
=6 for 2e(X,4") and » > %, (We make the substitution (*¢) and we
apply 1.4, 1.3 (b)). We define p as in 2.83, 1 =1, 2" = 2. Then we have

a8 U —co.

G P _pd) g _ o

¢ el en) pln) e
for sufficiently large w.
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2.85. If ¢ is & quasi-reqularly increasing (quasi-slowly wvarying) con-
tinuous fumction with v, > —1 and if h is slowly varying, then ¢ is re-
gularly increasing (slowly verying).

By 2.814, 2.813 and 2.82,

h(u) - a =147, >0,

whence, aceording to 2.811, ¢ is regularly increasing (slowly varying,
if r, = 0).

2.86: (a) In order that ¢ be regularly increasing of index r, > —1 &t
is necessary and sufficient that

(+) h{u)—a as

U — 007
where ¢ %1, ¢ > 0.

(b) In order that ¢ be slowly varying it is necessary and sufficient
that () holds with & = 1.

In both cases the index r, and the limit o satisfy the equality =,
=a—1 (see [2] and [3]). .

Sufficiency follows from 2.811; neeessity is obtained from 2.82 by
assuming ¢ to be continuous. If ¢ is not continuous, then, according to
2.83, ¢ ~ @, where g is a continuous funetion. Since r, =r; > —1, writing

p(w) = [Pl

we have p(u) — co a8 & — oo, p ~ 9. If k(u) = up(u)/p(u), then kb ~4,
and since %{u)—>a =1-+71; as w—oo. we have h(u)—> o as u—>oco.

29. In connection with theorem 2.86 and condition () which
means that w(u) ~ ug(u), we shall add some remarks concerning the
case when ~ in the last relation is replaced by . As in the previous
section, we assume the existence of the integral w(u) for » = 0.

291, If ¢ is non-decreasing for w = u,, then
(+) p(u) ~ up(n).

The relation (+4) follows from the inequalities

Jup(du) < p(w)—p(ue) < (u—ug(u) for

and from y(u) — co as % — oo, . )

If ¢ is non-increasing, then () need not be satistied. E. g., Jf p(w)
= (1+u)lg(1+u), then p(u) = 3{lg(1+))? and y is not l-equivalent
to up(u). In this example ¢ is regularly increasing and r, = —1. However,
the following sufficient condition may be deduced:

292, If ¢ is non-increasing for w = g, 8, > —1, then 2.91 ()
holds.

u = 2ug
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According to 2.814, y(u) -+ co as % — co. We have 8p =148, >0
for ¢, (u) = up(u), whence, by 2.51, ¢, satisfies condition (A,) for a cer-
tain @ >1, ¢, >1. Thus ¢(au) > c.(u)/a for % =T > u,; hence

p(au)— p(al) =Vaf¢p(at)(lt = ¢, fq)(t)dt = on(y)(u)—zp(ﬁ)),

i.e. y(aw) > c,p(u)-+% On the other hand,

p(au) = p(u)-+ f{p(t)(lt < plu) 4 (a—1)up(a)
for v > %, whence

pu)(o,—1)+k < (a—L)up(u) for u > i,
and since
p(u)—p(ug) = (1—ug)p(u),
we obtain p(u) L up(u).
3. In this section we always assume ¢ to be a convex g@-function;
:ilen 107, = 8, > 1. The following conditions will be of importance in the
quel:

(04) p)u—>0 as w0

(o04) p(u)u=t—>oco as 4 — oco.

By the assumptions (0,), (co0,) it is known (see [1] and [5]) that
the function

¢*(v) = sup (uv—g(u)),
U0 )

compleme.sntajry to the function ¢, may be defined. It is easily proved
that ¢* is a convex ¢-function for » >0 satistying eonditions (o,),
(c0;) and (¢*)* = g.

34, If ¢* is regularly inereasing and p ~ ¢, then p* ~ 5.

We have (1—s)fp(u) < gu(w) < (1+6)p(u) for u > u,; hence the
complementary functions satisfy the following inequalities ([5], p.23):

" % 3
(1—e)g (—;;) > ) > (14 o) (T%‘) for w3,
1. €.
o) L
i—e * (u) 117
Q—g-——el w7 )
) ) ST

and since @ (u(lte) T fgHn) — (L1467,  gt{ull—o)=)gH(u)
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—(1L—e¢)7""", we have

(1—e) " 1l—¢) >1lim pr(w) . ()

oo PF(U) T S ¢ (u)

= (1+e) "1+ 9),

whenee ¢ ~ ¢*.

3.2. (a) If ¢ is regularly increasing, v, > 1, then ¢* is regularly in-
ereasing and the indices satisfy the relation 1[ry-+1/[r,, = 1.

(b) If ¢ is regularly increasing, r, = 1, then (¢*)* is slowly varying,
and ¥y = oo.

(¢) If ¢t is slowly varying, then v, = co, ¢* is regularly increasing
and 7, = 1.

Let p(u) = @(u)/v for u >0, p(0) = 0. By (o,) and (ool);_'p('u) is

W
strietly increasing ([5], p. 18) and if ¢, () = ufp(t)dt, then ¢ (u) = z)fp-l(t)dt.
According to 2.3, p(w) is regularly increasing of index 7, =1,—1 >0,
and, by 2.86,
¢ (u)

“M_q_(_’u)_ = Y —1+r,=71, as
ﬁf pe)dt

U — 00.
u

frwa

As is well known, every pair of numbers #,v >0 such that p=*(v)
= u satisfies the identity ¢, (u)-+ ¢l (z) = wr, i e.

‘ plw) | i)
(+) wp(u) | opi(r) 1

and since u — oo ag v — oo and up (u) = ¢(u), we have

* 1 7,—1
1 (1) 1— .

W) T

By 2.86 (a), p~*(») is regularly inereasing and 7,—1 = 7 [r,—1—1.
Hence, by 2.912, ¢& is regularly increasing and of index 7,4 =7p—1+1
= 7,/(r,—1). Taking into account the identity up (u) = @(u), we obtain
(1) Jp(u) = 1)r, as w—>o0c0, 1. e. 7@ = ¢. Aceording to 3.1 we have
(rp@u)* =~ g* and since (r,@.(w))]* = 1,97 (u/7,) L (p’f(ﬂ), the function
(r,p1)* is regularly increasing and of index 7,4. Hence it follows that p*
is also regularly increasing and of the same index.‘

In order to prove (¢) let us note that according to 2.31 we have
@A) jp(u) — 0o a8 u — oo, 4 > 1, whence also p (Au)p ('u)* —> 00 as % — oo,
2 >1. Thus p-* is slowly varying, and consequently @} is regularly in-
creasing, 7,5 = 1, by 2.813. The inequalities

(+-+)
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o (u) <g(u) for

w =0

hold for an arbitrary A > 1. Hence the complementary functions sabisfy
the inequalities

()

o*(u) >

1 {1—1
*( w>0.

PR Y u)y P1(u) = ¢*(u)

Hence, taking into account the equality ryy = 1 we obtain

1 A—1 1
——~rp",‘( 7 u,)/qoi‘(u)—>7 ag

U — 0o,

hence

I dw

Consequently, we obtain the relation ¢* ~¢}. Hence ¢* is regularly in-
creasing, 1o} = 7,4 = 1. Since k(1) = i‘;‘,,(z) = oo for 0 < 1 < 1, the equa-
tion 7, = oo is obvious.

To prove (b) let us note that, by 2.3 (a), 18 slowly varying for #, = 0.
Hence o, (u)/up(u)—1, and (+) implies vp~1(v)/pf (1) = 00 as v — oo.
According 0 2.81 (b), ¢f (An) fpf(u) - co as u — oo, if 4 > 1. Inequality
() yields

¢* () 1 (i-1 ‘
> * K /(pf(u), u>0,p>0.

o*(u) © a—1™

But given x > 1 we may choose 2 >1 s0 that (A—1)u/A > 1, whence
o* (M) Jg* (u) = oo a8 w —>oco for 1 >1, and, by 2.31, (p*)-! is slowly
varying.

33. If « > 1, we denote by B the conjugate exponent, 1/a-+1/8 = 1.
A regularly increasing function ¢ of index o may be written in the form

a

@u) = % v (),

where y is slowly varying. Hence, by 3.2,

uﬂ
p*(u) = 57 (),

where "y* is also a slowly varying function. Under suitable assumptions
regarding y, additional information on the agymptotic behaviour of ¢*
for large u can be obtained.
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3.4. Let

glu)=—r), a>1,
where y(u) = w(lg(l +u)) and w is a regularly increasing or slowly varying
function of indew v, = s. Then
1
o* (u) =~ G'E Wlyw)=*,  where ¢ = [(Bla)P"F.

Let p(u), p,{u) have the same meaning as in 3.2. Aceording to 2.3 (h),
y is slowly varying. Hence 7, = a, p (%)= (v*'[a)p(u), p=a—1 >0,
rp-1 =1[(a—1) = Bla = f—1, i e. p~* is regularly increasing of the
form p~!(uw) = «#~'2(u), where i(w) is a slowly varying function. Thus
we have

@D -1 ) .
u =~ a(w) = ———— (L) (w2 (),

and since (a—1)(f—1) = 1, we have
(+) a(A(w) ™" = y(uf'A(w)).

Let r,=s; then o(lu)fw(u)—> 2 a8 u —> oo, this convergence
being uniform in each finite interval {2, 4>, 4, >0, by 2.11. Hence

yu—1)ly(u) = o(lgu)jo(gl+u) >1 as w—>oo, (U MA(w))
w((ﬁ—l)lgu—!—lgl(u)). But
__“_____ﬁ(ﬂ—l)lgu—l—lgﬂ.(’u) - f—1 as w->o00,

lgu

for 2.2 (b) implies lgA(u)/lgw — 0 as % — co. Thus

A—1 _ |
PP A(w)  o(B—1)gutlgi(u) N
() w(lgu)

Tt follows from () that (A ()~ (u) — (B—1)°Ja, A(u) = (y(w))~""¢
as u — oo, where © = (f—1)"%af* ;£ 0. However, (ap,)* = ¢*, (ap)*
= ap?(u/a), as follows from the proof of 3.2, and sinee p~* is regtﬂgﬂy
increasing, we have u%i(u)/gl(u)—> 1+r,., =4 as wu—>oo, le.
1/B-w'h(w) = g (w). Moreover, f (u/a)pi(w) > (1/ay = a? as u - oo,
@t (u)a) =~ a~Po*(u). Finally, we obtain ¢"(u) ~= 1/8-uP{(y(u))~P"%, where
o =ta~ = [(f[a) 1" o

Theorem 3.4 is a strengthened form of a theorem of Krasnosielskij
and Rutickij [5], who obtain A in place of ~, the congta,nt being un-
specified, and who make a little more restrictive assumption regm@g Y-
T o =1, then y =1, 7, =0 and (%) = v*/a, ¢*(u) = uf [, while 3.4
gives only ¢*(u) == u*/p.

(B—1y.

~
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On the analytic functions in p-normed algebras
hy
W. ZELAZEKO (Warszawa)

A p-normed algebra is & complete metric algebra in which topology
is given by the meaning of & p-homogeneous submultiplicative norm o=
(1) lloal] = |af” =},

) eyl < Nty
where « is a scalar, p — fixed real number satisfying 0 <p < 1.

It is known that every complete locally bounded algebra is a p-normed
algebra. These algebras were considered in papers [4], [5], and [6]. The
greater part of Gelfand’s theory on commutative complex Banach algebras
is also true for p-normed algebras. In this paper we give an extension’
of Gelfand’s theory of analytic functions in Banach algebras onto p-nor-
med algebras [1]. We note that the clagsical method based upon the
concept of abstract Riemann. integral cannot be applied here, because
the algebras in question are nob locally convex (ef. [31).

Let 4 be a commutative complex p-normed algebra with a unit
designed by e. Let I be the compact space of its multiplicative linear
funetionals (= maximal ideals). The spectrum of an element zeAd is de-
fined as
(3) o(z) = {f(@): feM}.

It is a compact subset of the complex plane. Here we give the positive
angwer to the following question stated in [6]:

“Let @(z) be a holomorphic function defined in the neighbourhood U
of spectrum. o () of an element zed. Does there exist a yed such that
for every feM ’

(4) fly) = O(f(@)?” _

We shall give a step by step construction of such an element y. It
is natural to write y = @ (z). So we give a natural definition of @(z) in
locally bounded algebras.

As a corollary we obtain the generalization of the theorem of Lévy
[2] on trigonometrical series.
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