

Regularly increasing functions in connection with the theory of $L^{*\sigma}$ -spaces

bу

W. MATUSZEWSKA (Poznań)

In order to investigate the structure of various spaces of φ -integrable functions [1], [6], information on some properties of continuous positive functions as regards the orders of growth of such functions is necessary. The so-called conditions (Δ_a) , (Λ_a) (see [5] and [6]) or indices s_{ω} , σ_{ω} (see [10] and [9]) occurring in the theory of spaces $L^{*\varphi}(a,b)$ make it possible to compare the function φ with functions t^n . It may be expected that regularly increasing and slowly varying functions, well-known in various problems of asymptotic behaviour of functions, are of importance in the theory of spaces $L^{*\varphi}(a,b)$. The purpose of this paper is to investigate a number of problems connected with the above-mentioned notions. The main stress is laid on a systematic and elementary presentation of the subject, treated as an introduction to the theory of spaces $L^{*\varphi}(a,b)$. Sections 1 and 2 are closely connected with the fundamental papers [2] and [3] of Karamata concerning regularly increasing functions. We avoid integral representations of these functions, starting from the fundamental lemma 1.3 as in [4]. In section 3 the notion of a regularly increasing function appears in connection with functions complementary in the sense of Young. Here, some additions to a theorem of Krasnoselskii and Rutickii [5] are made. Taking in consideration the purposes of this paper we include some results already published, however, somewhat alternatively. Some results of [10], [9] and [7] are also included.

1. In this section we denote by f, g, h, \ldots real functions defined for $-\infty < u < \infty$. We shall also write

$$\overline{\varrho}_f(\mu) = \overline{\lim}_{u \to \infty} \big(f(u+\mu) - f(u) \big), \quad \ \varrho_f(\mu) = \overline{\lim}_{u \to \infty} \big(f(u+\mu) - f(u) \big);$$

if $\bar{\varrho}_{f}(\mu) = \underline{\varrho}_{f}(\mu)$ for a certain μ , we denote this common value by $\varrho_{f}(\mu)$.

1.1. The following relations are immediately obtained from these definitions:

(a)
$$\bar{\varrho}_{f}(-\mu) = -\underline{\varrho}_{f}(\mu),$$

(b)
$$\underline{\varrho}_f(\mu_1) + \underline{\varrho}_f(\mu_2) \leq \underline{\varrho}_f(\mu_1 + \mu_2) \leq \overline{\varrho}_f(\mu_1 + \mu_2) \leq \overline{\varrho}_f(\mu_1) + \overline{\varrho}_f(\mu_2);$$

the above inequalities are valid for arbitrary μ_1 , μ_2 with the exception of the case when one of the terms of the sum on the right-hand side (or on the left-hand side) is ∞ and the other $-\infty$.

Let $C_f^0 = \{\mu : \varrho_f(\mu) = 0\}$, $C_f = \{\mu : |\varrho_f(\mu)| < \infty\}$, $B_f = \{\mu : \overline{\lim}_{u \to \infty} |f(u + \mu) - f(u)| < \infty\}$. The above relations imply the following:

- **1.2.** The sets C_1^0 , C_1 and B_1 are rationally linear, i.e. an arbitrary linear combination with integer coefficients of elements of one of these sets belongs to the same set.
 - **1.3.** Let f be measurable. If
 - (a) $\varrho_f(\mu) = 0$ for an arbitrary μ , then

$$f(u+\mu)-f(u)$$

tends to zero uniformly in every finite interval of values of μ as $u\to\infty$ (cf. [2], [4]);

(b) $|\bar{\varrho}_f(\mu)| < \infty$, $|\underline{\varrho}_f(\mu)| < \infty$ for an arbitrary μ , then the functions (*) are bounded uniformly in every finite interval of values of μ for sufficiently large u.

In order to prove (a) let us write $E_{n\varepsilon}=\{\mu\colon |f(u+\mu)-f(u)|\leqslant \varepsilon,\ \mu_1\leqslant \mu\leqslant \mu_2,\, u\geqslant n\}$. The sets $E_{n\varepsilon}$ are measurable, $\langle \mu_1,\mu_2\rangle=\bigcup_{\nu}E_{\nu\varepsilon}$. Hence at least one of the sets $E_{n\varepsilon}$ must be of positive measure, say $E_{m\varepsilon}$. If $\mu',\mu''\in E_{m\varepsilon}$, we have

$$\begin{split} |f(u+\mu^{\prime\prime}-\mu^{\prime})-f(u-\mu^{\prime})| &< \varepsilon, \quad |f(u-\mu^{\prime})-f(u)| < \varepsilon \quad \text{for} \quad u \geqslant m+\mu_2, \\ \text{whence } |f(u+\mu^{\prime\prime}-\mu^{\prime})-f(u)| &< 2\varepsilon. \text{ As is well known, there is a } \mu_0 > 0 \\ \text{such that all } \mu \, \epsilon \langle -\mu_0, \, \mu_0 \rangle \text{ may be expressed in the form } \mu = \mu^{\prime\prime}-\mu^{\prime}, \\ \text{where } \mu^{\prime}, \, \mu^{\prime\prime} \, \epsilon E_{m_{\delta}}. \text{ Since} \end{split}$$

$$\begin{split} |f(u+\lambda+\mu)-f(u)| &\leqslant |f(u+\lambda+\mu)-f(u+\lambda)| + |f(u+\lambda)-f(u)| \\ \text{and } |f(u+\lambda+\mu)-f(u+\lambda)| &\leqslant 2\varepsilon \text{ when } \mu \text{ belongs to } \langle -\mu_0, \mu_0 \rangle, u \geqslant m+\\ &+\mu_2-\lambda, \; |f(u+\lambda)-f(u)| < \varepsilon \text{ for } u \geqslant u_\lambda, \text{ we have} \end{split}$$

$$|f(u+\mu')-f(u)|<3\varepsilon$$

for $u \geqslant \sup(m+\mu_2-\lambda, u_\lambda)$ and for μ' belonging to an interval obtained by a translation of $\langle -\mu_0, \mu_0 \rangle$ by λ . Since $\langle \mu_1, \mu_2 \rangle$ may be covered by a finite number of intervals which are translations of $\langle -\mu_0, \mu_0 \rangle$, we obtain

$$|f(u+\mu)-f(u)|<3\varepsilon$$

for sufficiently large u and $\mu \in \langle \mu_1, \mu_2 \rangle$.

The proof of part (b) of the theorem follows by analogous arguments.

Remark. The above theorem remains true if we replace the assumption of measurability of f by the assumption that f satisfies the Baire condition.

1.4. If f is continuous (measurable), then any of the sets C_1^0 , C_1 , C_2 , is either of the first category (measure 0) or identical with $(-\infty, \infty)$.

To prove this theorem, let us first note that if f is continuous, then the sets C_f^0 , C_f are $F_{\sigma\delta}$ and B_f is F_{σ} , and if f is measurable, then the above sets are measurable. The theorem follows from the well-known fact that a Borel set of the second category or a set of positive measure contains a rational basis, i. e. a set R such that an arbitrary u may be written in the form $u=n_1u_1+n_2u_2+\ldots+n_ru_r$, n_i being integers and $u_i\in R$. Evidently, a rationally linear set containing a rational basis is identical with $(-\infty,\infty)$, and it is sufficient to apply 1.2.

1.5. A function f will be said to satisfy the condition (k_0) , resp. (k), if $C_f^0 = (-\infty, \infty)$, resp. $C_f = (-\infty, \infty)$. Every function of the form $f(u) = g(u) + \int_0^k h(t) dt$, where g, h are continuous functions (resp. where g is measurable and h is locally integrable), $g(u) \to c$ as $u \to \infty$, $h(u) \to 0$ as $u \to \infty$, satisfies condition (k_0) . Applying 1.3 (a) we may prove (cf. [4]) that, conversely, an arbitrary continuous (resp. locally integrable) function satisfying (k_0) may be written in the above form; h(u) may be assumed to be equal to f(u+1)-f(u). It may be deduced from the integral representation that the set of continuous functions satisfying condition (k_0) and vanishing for $u \le 0$ is a Banach space with the usual definitions of linear operations and with the norm, say

$$\|f\|=\sup_{(0,\infty)}|h(u)|+\sup_{(0,\infty)}|f(u)-\int\limits_0^uh(t)\,dt|,\quad \text{ where }\quad h(u)=f(u+1)-f(u).$$

1.51. If f satisfies condition (k), then $\varrho_f(\mu)$ is an additive function (as follows from 1.1 (b)); if, moreover, f is measurable, then $\varrho_f(\mu)$ is also measurable, whence $\varrho_f(\mu) = a\mu$. As follows from 1.9, measurability may be replaced by local boundedness of the function f.

(It is easily seen that some assumptions regarding function f are necessary in this theorem, since Hamel's function f, for example, obviously satisfies condition (k) but $\varrho_{\epsilon}(\mu) = f(\mu)$ is not a linear function.)

An immediate consequence of the above theorem is that an arbitrary measurable (or locally bounded) function satisfying condition (k) may be expressed in the form f(u) = au + g(u), where g(u) satisfies condition (k_0) .

1.52. It may happen for a continuous function f that C_f consists only of numbers of the form $n\mu_0$, where $n=\pm 1, \pm 2, \ldots$ In order to get such a function we take, for example, $\mu_0=1$ and a continuous periodic function h with period 1. Then

$$\bar{\varrho}_h(\mu) = \sup_{0 \le u \le 1} \left(h(u+\mu) - h(u) \right), \quad \underline{\varrho}_h(\mu) = \inf_{0 \le u \le 1} \left(h(u+\mu) - h(u) \right).$$

If $\mu=1$, we have $\bar{\varrho}_h(1)=\underline{\varrho}_h(1)=0$. Now, if we take, for example, $h(u)=\sin 2\pi u$, then $\bar{\varrho}_h(\mu)\neq \varrho_h(\mu)$ for $0<\mu<1$.

1.53. If f is a non-decreasing function for $u \ge 0$ and if a number $\mu_0 > 0$ belongs to C_f^0 , then f satisfies condition (k_0) .

Indeed, we then have $0 \leq \underline{\varrho}_f(\mu) \leq \overline{\varrho}_f(\mu) \leq \overline{\varrho}_f(\mu')$ for $0 \leq \mu \leq \mu'$, $\varrho_f(n\mu_0) = 0$ for n = 1, 2, ...

1.54. A function f is called *locally bounded for large* u if there exists u_0 such that f is bounded in every interval $\langle u_0, u_1 \rangle$.

If f is measurable and satisfies condition (k_0) or (k), then f is locally bounded for large u.

Let f satisfy condition (k_0) . By 1.3, $|f(u+\mu)-f(u)|<1$ for $u\geqslant u_0$, $0\leqslant\mu\leqslant 1$, whence $|f(u)|\leqslant 1+|f(u_0)|$ for $u\leqslant\langle u_0,u_0+1\rangle$, and, more generally, $|f(u)|\leqslant 1+|f(u_0+n-1)|$ for $u\leqslant\langle u_0+n-1,u_0+n\rangle$, $n=1,2,\ldots$ If f satisfies condition (k), then $\varrho_f(\mu)=a\mu$ and the function f(u)-au satisfies condition (k_0) , whence it is locally bounded for large u, and so is f.

Remark. The assumption that (k) is satisfied may be replaced in this theorem by the assumption $B_f = (-\infty, \infty)$.

1.6. Let us assume that f is locally bounded for large u. Then the following inequalities hold:

$$(+) \qquad \frac{\varrho_{I}(\mu)}{\mu} \leqslant \lim_{u \to \infty} \frac{f(u)}{u} \leqslant \overline{\lim_{u \to \infty}} \frac{f(u)}{u} \leqslant \overline{\frac{\varrho_{I}(\mu)}{\mu}} \quad \textit{for} \quad \mu > 0\,,$$

$$(++) \qquad \frac{\overline{\varrho}_f(\mu)}{\mu} \leqslant \lim_{\substack{u \to \infty}} \frac{f(u)}{u} \leqslant \overline{\lim}_{\substack{u \to \infty}} \frac{f(u)}{u} \leqslant \frac{\underline{\varrho}_f(\mu)}{\mu} \quad \text{for} \quad \mu < 0.$$

We give the proof of this classical theorem for completeness, and also because it is sometimes quoted without the exact formulation of the assumptions. Let $\mu>0$, $\varepsilon>0$, $\bar{\varrho}_{*}(\mu)<\infty$. Since

$$\begin{split} f(u+l\mu)-f(u) &= [f(u+l\mu)-f\big(u+(l-1)\mu\big)]+\ldots+[f(u+\mu)-f(u)]\\ &< l\,\bar\varrho_f(\mu)+l\varepsilon\quad\text{for}\quad u\geqslant u_0(\varepsilon)\text{ and }l=1\,,2\,,\ldots, \end{split}$$

we have

$$f(v) - f(v - l\mu) < l_{\bar{\varrho}_f}(\mu) + l\varepsilon$$

for $u=v-l\mu \geqslant \sup \left(u_0(\varepsilon),\,u_0\right)=\overline{u},\,\, \text{where}\,\,\,u_0\,\,\, \text{denotes}\,\,\,u_0\,\,\, \text{mentioned}$ in 1.54. Taking l(v) so that $\overline{u}\leqslant v-l\mu\leqslant \overline{u}+\mu\,\,\, \text{and}\,\,\,v\to\infty\,\,\, \text{we obtain}$ $v/l\to\mu,\,\,\sup_{\overline{u}\leqslant u\leqslant \overline{u}+\mu}|f(u)|/v\to 0,\,\, \text{whence}$

$$\overline{\lim}_{v o \infty} rac{f(v)}{v} \leqslant rac{ar{arrho}_f(\mu)}{\mu} + rac{arepsilon}{\mu}.$$

The second of the inequalities (+) is proved analogously. 1.1 (a) and (+) immediately imply (++).

Let us remark that the local boundedness of f for large u is a necessary condition of (+) in the case when $-\infty < \varrho_f(\mu) \leqslant \bar{\varrho}_f(\mu) < \infty$. Indeed, if f is not locally bounded for large u, we have $\sup_{u_n \leqslant u_n \nmid u_n } |f(u)| = \infty \text{ for a sequence } u_n \nearrow \infty.$ However, for v_n suitably chosen, $u_n \leqslant v_n \leqslant u_n + 1$, we then have $\lim_{n \to \infty} |f(v_n)|/v_n = \infty$.

1.7. Given a positive μ , denote by a_{μ} , resp. b_{μ} , numbers satisfying the inequalities

$$f(u+\mu)-f(u) \geqslant a_{\mu}$$
 for $u \geqslant u_1(\mu)$,

resp.

$$f(u+\mu)-f(u) \leqslant b_{\mu}$$
 for $u \geqslant u_2(\mu)$.

Let us assume that f satisfies one of the conditions

- (a) $-\infty < \varrho_f(\mu) \leqslant \bar{\varrho}_f(\mu) < \infty$ for every μ , f is measurable,
- (b) f is monotone for $u \geqslant 0$.

The following formulae hold:

(*)
$$\lim_{\mu \to \infty} \frac{\varrho_f(\mu)}{\mu} = \sup_{\mu > 0} \frac{\varrho_f(\mu)}{\mu} = \sup_{\mu > 0} \frac{a_\mu}{\mu};$$

$$\lim_{\mu \to \infty} \frac{\bar{\varrho}_f(\mu)}{\mu} = \inf_{\mu > 0} \frac{\bar{\varrho}_f(\mu)}{\mu} = \inf_{\mu > 0} \frac{b_{\mu}}{\mu}.$$

As regards the meaning of the symbols $\sup_{\mu>0} a_{\mu}/\mu$, $\inf_{\mu>0} b_{\mu}/\mu$, the following convention is here adopted: if there exists a finite value of a_{μ} (resp. b_{μ}), we take the supremum (resp. infimum) with respect to all possible choices of a_{μ} and μ (resp. b_{μ} and μ), where $\mu>0$. In other case we put $\sup_{\mu>0} a_{\mu}/\mu = -\infty$ ($\inf_{\mu>0} b_{\mu}/\mu = \infty$).

We shall prove the first formula for instance. Assumption (a) means that $B_f = (-\infty, \infty)$ and, by 1.3 (b), for every $\mu_0 > 0$ there exist k, u_0 such that

$$(+) |f(u+\mu)-f(u)| \leqslant k \text{for} 0 \leqslant \mu \leqslant \mu_0, \ u \geqslant u_0.$$

If
$$f(u+\mu_0)-f(u) \geqslant a_{\mu_0}$$
 for $u \geqslant u_1(\mu_0)$, then

$$f(u+n\mu_0)-f(u)\geqslant na_{\mu_0}$$
 for $u\geqslant u_1(\mu_0)$ and $n=1\,,2\,,\ldots$

Hence, choosing $(n-1)\mu_0 \leq \mu < n\mu_0$, we obtain

$$f(u+\mu)-f(u) \geqslant na_{\mu_0}+f(u+\mu)-f(u+n\mu_0).$$

Since

$$na_{\mu_0} > rac{\mu}{\mu_0} \, a_{\mu_0} ext{ for } a_{\mu_0} > 0 ext{ and } ext{ } na_{\mu_0} \geqslant \left(rac{\mu}{\mu_0} + 1
ight) a_{\mu_0} ext{ for } a_{\mu_0} \leqslant 0 \, ,$$

we have

$$\frac{f(u+\mu) - f(u)}{\mu} \geqslant \frac{a\mu_0}{\mu_0} + \frac{f(u+\mu) - f(u+n\mu_0)}{\mu} \quad \text{for} \quad u \geqslant u_1(\mu_0)$$

and for $a_{\mu_0} > 0$. By (+), we obtain

$$\frac{\varrho_f(\mu)}{\mu} \geqslant \frac{a\mu_0}{\mu_0} - \frac{k}{\mu},$$

whence

$$\underline{\lim_{\mu \to \infty}} \frac{\underline{\varrho}_f(\mu)}{\mu} \geqslant \frac{a\mu_0}{\mu_0}.$$

The proof of this inequality for $a_{\mu_0} \leqslant 0$ is similar. Since μ_0 is an arbitrary positive number, we have

$$\lim_{\stackrel{\longrightarrow}{\mu\to\infty}} \underline{\varrho}_f(\mu)/\mu \geqslant \sup_{\mu>0} a_\mu/\mu.$$

Take any $s < \sup_{\mu>0} \underline{\varrho}_f(\mu)/\mu$. Then $\underline{\varrho}_f(\mu_0)/\mu_0 > s$ for a certain $\mu_0 > 0$, whence

$$f(u+\mu_0)-f(u) \geqslant s\mu_0 = a_{\mu_0}$$
 for $u \geqslant u_1(\mu_0)$,

i. e.

$$\sup_{\mu>0}\frac{a_{\mu}}{\mu}\geqslant\frac{a\mu_0}{\mu_0}=s.$$

Thus we have proved

$$\sup_{\mu>0}\frac{a_{\mu}}{\mu}\geqslant \sup_{\mu>0}\frac{\varrho_{f}(\mu)}{\mu}\geqslant \overline{\lim_{\mu\to\infty}}\frac{\varrho_{f}(\mu)}{\mu}.$$

The proof of formula (**) is similar.

Now, let us assume (b) to be satisfied. Then we obtain

$$f(u+\mu)-f(u) \ge (n-1)a_{\mu_0}+f(u+\mu)-f(u+(n-1)\mu_0) \ge (n-1)a_{\mu_0}$$

for $u \geqslant u_1(\mu_0)$ and any μ satisfying the inequalities $(n-1)\mu_0 \leqslant \mu < n\mu_0$ if f is non-decreasing for $u \geqslant 0$. If f is non-increasing for $u \geqslant 0$, we have $f(u+\mu)-f(u)\geqslant na_{\mu_0}$ for $u\geqslant u_1(\mu_0)$. Arguments analogous to the preceding ones lead to the inequalities $\lim_{\mu\to\infty} \underline{\varrho}_f(\mu)/\mu\geqslant \sup_{\mu>0} a_\mu/\mu$ and the further

arguments do not differ from these in the proof under assumption (a).

If f is non-increasing for $u \ge 0$, then for $\mu > 0$ a finite constant a_{μ} may not exist. This is possible if and only if $\underline{\varrho}_{f}(\mu) = -\infty$ for $\mu > 0$. In this case we have $\lim_{\mu \to \infty} \underline{\varrho}_{f}(\mu)/\mu = \sup_{\mu > 0} \underline{\varrho}_{f}(\mu)/\mu = -\infty$.

The following statements are consequences of 1.54 (Remark), 1.6 and 1.7:

1.71. By the assumption that either f is measurable and $-\infty < \underline{\varrho}_f(\mu) \le \overline{\varrho}_f(\mu) < \infty$ for every μ or f is monotone, the following inequalities are satisfied:

$$\lim_{\mu \to \infty} \frac{\varrho_f(\mu)}{\mu} \leqslant \lim_{\overline{u} \to \overline{\infty}} \frac{f(u)}{u} \leqslant \overline{\lim_{u \to \infty}} \frac{f(u)}{u} \leqslant \lim_{u \to \infty} \frac{\overline{\varrho}_f(\mu)}{\mu}.$$

Remark. This remains true also in the case when f is locally bounded for large u and the limits $\lim \overline{\varrho}_f(\mu)/\mu$ and $\lim \underline{\varrho}_f(\mu)/\mu$ exist.

1.72. If f is locally bounded for large u and if

(**)
$$\lim_{\mu \to \infty} \frac{\varrho_I(\mu)}{\mu} = \lim_{\mu \to \infty} \frac{\bar{\varrho}_I(\mu)}{\mu} = g$$

(g may also be equal to ∞), then the relation

$$\lim_{u \to \infty} \frac{f(u)}{u} = g$$

(the generalized l'Hospital rule in Cauchy's form) holds.

1.8. Let f possess a positive derivative f' for $u \geqslant 0$ and let f' satisfy the condition

(o)
$$\lim_{u\to\infty} \frac{f'(u+\mu)}{f'(u)} = 1 \quad \text{for every} \quad \mu.$$

Then

$$\overline{\lim}_{u\to\infty}\frac{f(u)}{u}=\overline{\lim}_{u\to\infty}f'(u)=\frac{\overline{\varrho}_f(\mu_0)}{\mu_0}\quad \text{for every}\quad \mu_0>0\,,$$

$$\lim_{u \to \infty} \frac{f(u)}{u} = \lim_{u \to \infty} f'(u) = \frac{\varrho_f(\mu_0)}{\mu_0} \quad \text{for every} \quad \mu_0 > 0.$$

Given $u \ge 0$ and $\mu_0 > 0$, denote by v(u) a number satisfying the conditions $v(u) \in (0, \mu_0)$ and such that

$$f(u + \mu_0) - f(u) = f'(u + v(u)) \mu_0$$

holds. Then we have

$$\overline{\lim}_{u\to\infty}f'(u+v(u))=\frac{\overline{\varrho}_f(\mu_0)}{\mu_0}.$$

Define the function

$$h(u) = \begin{cases} \lg f'(u) & \text{for } u \geqslant 0, \\ \lg f'(0) & \text{for } u < 0. \end{cases}$$

By (0), h satisfies condition (k_0) , whence, by 1.3 (a), $h(u+\mu)-h(u)\to 0$ uniformly in $\langle 0,\mu_0\rangle$ as $u\to\infty$, i. e. (o) holds uniformly with respect to $\mu\in\langle 0,\mu_0\rangle$. Thus

$$\overline{\lim}_{u\to\infty}f'\big(u+v(u)\big)=\overline{\lim}_{u\to\infty}f'(u)\,,\quad \lim_{u\to\infty}f'\big(u+v(u)\big)=\lim_{u\to\infty}f'(u)\,.$$

1.81. By the same assumptions regarding f as in 1.8, if 1.72 (**) holds, then the limit of the derivative as $u \to \infty$ exists, namely,

$$\lim_{u \to \infty} f'(u) = g$$

1.9. By the same assumptions regarding f as in 1.6, we have

$$\varrho_f(\mu) = a\mu \quad for \quad \mu \in C_f;$$

in particular, if f satisfies (k), then $\varrho_f(\mu) = a\mu$ for $-\infty < \mu < \infty$.

This follows from the fact that, by 1.6, $\varrho_f(\mu) = a\mu$ for $\mu \in C_f$, $\mu \neq 0$, where $a = \lim_{u \to \infty} f(u)/u$.

2. In this section (with the exception of 2.12 and 2.8) $\varphi, \psi, \chi, \varrho, \ldots$ always denote measurable positive functions defined for u>0. According to [6], such a function is called a φ -function if it is continuous and non-decreasing, defined for u=0 by $\varphi(0)=0$, and tends to infinity as $u\to\infty$. We shall apply the symbols

$$\underline{h}_{\varphi}(\lambda) = \lim_{u \to \infty} \frac{\varphi(u)}{\varphi(\lambda u)}, \quad \overline{h}_{\varphi}(\lambda) = \overline{\lim}_{u \to \infty} \frac{\varphi(u)}{\varphi(\lambda u)} \quad \text{ for } \quad \lambda > 0.$$

If $h_{\varphi}(\lambda) = \bar{h}_{\varphi}(\lambda) = h_{\varphi}(\lambda)$, where $h_{\varphi}(\lambda)$ is finite for $\lambda > 0$, and $k \not\equiv 1$, we call φ regularly increasing, according to the terminology of [2] and [3]. If $h_{\varphi}(\lambda) = 1$ for $\lambda > 0$, φ is a slowly varying function. (In the terminology of [2], also slowly varying functions are regularly increasing.) Substituting

$$f(u) = \lg \varphi(e^u), \quad -\infty < u < \infty,$$

we reduce the investigation of functions φ to the functions we have considered in section 1 and a number of theorems may be obtained immediately by applying the results of section 1. It is clear that φ is regularly increasing, resp. slowly varying, if and only if the corresponding function f(u) satisfies condition (k), resp. (k₀). If $e^{\mu} = \lambda$, then $\lg \overline{h}_{\varphi}(\lambda) = -\varrho_f(\mu) = \overline{\varrho}_f(-\mu)$, and similarly $\lg \underline{h}_{\varphi}(\lambda) = \varrho_f(-\mu)$. If $\lambda \to 0+$, then $-\mu = -\lg \lambda \to \infty$, and applying 1.7 we obtain for an arbitrary φ -function the existence of the following limits:

$$\epsilon_{\varphi} = \lim_{\lambda \to 0+} \frac{\lg h_{\varphi}(\lambda)}{-\lg \lambda}, \quad \sigma_{\varphi} = \lim_{\lambda \to 0+} \frac{\lg \overline{h}_{\varphi}(\lambda)}{-\lg \lambda}.$$

The indices s_{φ} , σ_{φ} play a part in the theory of the spaces $L^{*\varphi}(a,b)$ ([10], [9]). Obviously, we have $\sigma_{\varphi} \geqslant s_{\varphi} \geqslant 0$ for an arbitrary φ -function. Indices (*) may exist also for φ which are not φ -functions (in the terminology of [9]; such φ are called quasi φ -functions or briefly $q\varphi$ -functions). By 1.7, every non-increasing or non-decreasing φ is a $q\varphi$ -function. If φ is regularly increasing then $r_{\varphi} = s_{\varphi} = \sigma_{\varphi} \neq 0$ (r_{φ} is called the index of regularity); if φ is slowly varying then $r_{\varphi} = s_{\varphi} = \sigma_{\varphi} = 0$. (In the following we term φ to be of index r_{φ} if either φ is regularly increasing, i. e. $r_{\varphi} \neq 0$, or φ is slowly varying, i. e. $r_{\varphi} = 0$.) This is obvious for slowly varying functions, since then $\bar{h}_{\varphi}(\lambda) = h_{\varphi}(\lambda) = 1$, and follows from 2.1 for regularly increasing functions.

2.1. φ is regularly increasing with the index of regularity r if and only if

$$\varphi(u) = u^r \psi(u),$$

where $r \neq 0$ and ψ is slowly varying (see [2]).

The easy proof of sufficiency will be omitted. To prove the necessity we apply 1.51 and we decompose the function $(*\varphi)$ into a sum of a linear function and a function f_0 satisfying condition (k_0) . If f_0 satisfies condition (k_0) then $e^{f_0(\lg u)} = \psi(u)$ is slowly varying.

Let us remark in connection with the assumption of measurability of φ in the above theorem that $\varphi_0(u)=e^{h(\lg u)}$, where h(u) is a non-measurable Hamel function, is not regularly increasing and the indices $s_{\varphi_0}, \sigma_{\varphi_0}$ do not exist, although $h_{\varphi_0}(\lambda)=\bar{h}_{\varphi_0}(\lambda)=e^{-h(\lg \lambda)}, \ \lg h_{\varphi_0}(\lambda)/-\lg \lambda$ for every $\lambda>0$. If a finite limit s_{φ_0} existed, h would be bounded in a certain interval, whence continuous. If s_{φ_0} were equal to $\pm\infty$, h would be bounded from below (from above) in a certain interval, but this is impossible. Thus the index s_{φ_0} does not exist; it is similarly proved that σ_{φ_0} also does not exist.

If $s_{\varphi}=\sigma_{\varphi}=r_{\varphi}$, where $r_{\varphi}\neq 0$, $|r_{\varphi}|<\infty$ for a $q\varphi$ -function φ , we call φ quasi-regularly increasing; if $s_{\varphi}=\sigma_{\varphi}=r_{\varphi}=0$, we call the $q\varphi$ -function φ quasi-slowly varying. Also in this case r_{φ} is called the index (of quasi-regularity). If $s_{\varphi}=\sigma_{\varphi}=\pm\infty$, we say that φ is of infinite index of quasi-regularity and write $r_{\varphi}=\pm\infty$.

2.11. If φ is regularly increasing or slowly varying, then

$$(+) \qquad \qquad \frac{\varphi(\lambda u)}{\varphi(u)} \to \lambda^{r\varphi}, \quad as \quad u \to \infty,$$

uniformly in every interval $0 < \lambda' \leq \lambda \leq \lambda''$.

We apply the substitution $(*\varphi)$ and 1.51, 1.3. We obtain $\varphi(\lambda u)/\varphi(u) \to \lambda^r \varphi$ if $\lambda > 0$, $u \to \infty$. Applying the definition of the indices s_{φ} , σ_{φ} we obtain $s_{\varphi} = \sigma_{\varphi} = r_{\varphi}$.

2.12. If we replace the assumption of measurability of φ in the definition of a regularly increasing or slowly varying function by the local boundedness of $\lg \varphi$, relation (+) remains true for every $\lambda > 0$, although the uniform convergence may not hold. Identity 2.1 (**), where ψ is of index $r_{\psi} = 0$, remains also true.

This follows by applying the substitution $(*\varphi)$ and 1.9.

2.13. If φ is regularly increasing (quasi-regularly increasing) or slowly varying (quasi-slowly varying), then $\lg \varphi$ is locally bounded for large u.

This follows by applying the substitution $(*\varphi)$ and 1.54.

A function φ is called *locally bounded* if it is bounded in an arbitrary interval (0, v). It follows from 2.13 that replacing a regularly increasing (slowly varying) function φ by a function φ_1 such that $\varphi_1(u) = \varphi(\overline{u})$ for $0 < u < \overline{u}$, $\varphi_1(u) = \varphi(u)$ for $u \ge \overline{u}$, where \overline{u} is sufficiently large, we obtain a regularly increasing (slowly varying) function which is locally bounded.

- **2.2.** Let $\lg \varphi$ be locally bounded for large u.
- (a) If the limits s_{φ} , σ_{φ} exist, then

$$s_{\varphi} \leqslant \lim_{\overline{u \to \infty}} \frac{\lg \varphi\left(u\right)}{\lg u} \leqslant \overline{\lim_{u \to \infty}} \frac{\lg \varphi\left(u\right)}{\lg u} \leqslant \sigma_{\varphi}.$$

(b) If the limits s_{φ} , σ_{φ} exist and $s_{\varphi} = \sigma_{\varphi} = r_{\varphi}$ (in particular, if φ is regularly increasing or slowly varying), then

$$\lim_{u\to\infty}\frac{\lg\varphi\left(u\right)}{\lg u}=r_{\varphi}.$$

The above theorems are obtained immediately by applying the substitution $(*\varphi)$ and 1.54, 1.72.

- **2.3.** Denote by \mathscr{R} , resp. \mathscr{R}_0 , the class of regularly increasing, resp. slowly varying, functions φ .
- (a) If φ , $\psi \in \mathcal{R}$, then $r_{\varphi\psi} = r_{\varphi} + r_{\psi}$ and $\varphi \psi \in \mathcal{R}$ for $r_{\varphi\psi} \neq 0$ and $\varphi \psi \in \mathcal{R}_{0}$ for $r_{\varphi\psi} = 0$.
 - (b) If $\varphi, \psi \in \mathcal{R}_0$, then $\varphi \psi \in \mathcal{R}_0$.
 - (c) If $\varphi \in \mathcal{R}$, then $r_{1/\varphi} = -r_{\varphi}$ and $1/\varphi \in \mathcal{R}$.
 - (d) If $\varphi \in \mathcal{R}_0$, then $1/\varphi \in \mathcal{R}_0$.
 - (e) If $\varphi \in \mathcal{R}$, then $r_{\varphi^k} = kr_{\varphi}$, $\varphi^k \in \mathcal{R}$, when $k \neq 0$.
 - (f) If $\varphi \in \mathcal{R}_0$, then $\varphi^k \in \mathcal{R}_0$ for an arbitrary real k.
 - (g) If $\varphi, \psi \in \mathcal{R}, \ \psi(u) \to \infty$ as $u \to \infty$, then $\varphi(\psi) \in \mathcal{R}, \ r_{\varphi(\psi)} = r_{\varphi} r_{\psi}$.
- (h) By the same assumptions on φ , ψ as in (g), if at least one of the functions φ , ψ belongs to \mathcal{R}_0 and the second one belongs to \mathcal{R} , then $\varphi(\psi) \in \mathcal{R}_0$.
- (i) If φ is a strictly increasing φ -function and $\varphi \in \mathcal{R}$, then $\varphi^{-1} \in \mathcal{R}$ and $r_{\varphi^{-1}} = 1/r_{\varphi}$ (cf. [2]).

Remark. The above theorems remain true if we omit the assumption of measurability in the definition of a regularly increasing, resp. slowly varying, function, replacing it in (a), (c), (e) by the assumption of local boundedness of the functions $\lg \varphi$, $\lg \psi$ in (g) by the assumption of measurability of φ and local boundedness of $\lg \varphi$.

Theorems (a) - (f) follow from the definition of a regularly increasing, resp. slowly varying, function and from 2.12 immediately.

Ad (g). Let $\psi(\lambda u) = \varepsilon(u)\psi(u)$, $\lambda > 0$, whence $\varepsilon(u) \to \lambda^r v$ as $u \to \infty$. By 2.11, $\varphi(\mu u)/\varphi(u) \to \mu^{r_{\theta}}$, as $u \to \infty$, uniformly in each interval $0 < \mu' \le \mu \le \mu''$. Hence

$$\frac{\varphi\left(\psi\left(\lambda u\right)\right)}{\varphi\left(\psi\left(u\right)\right)} = \frac{\varphi\left(\varepsilon(u)\,\psi(u)\right)}{\varphi\left(\psi(u)\right)} \to (\lambda^{r_y})^{r_y} \quad \text{ as } \quad u \to \infty.$$

Thus $\varphi(\psi)$ is regularly increasing and $r_{\varphi(\psi)} = r_{\varphi}r_{\psi}$.

(h) is proved similarly.

Ad (i). Let $\varphi(u)=v, \ \varphi^{-1}(v)=u, \ 1<\mu<\infty, \ \varphi(\lambda_vu)=\mu v, \ \text{where}$ $\lambda_v>1$ is defined uniquely. There exists a constant λ_0 such that $\lambda_v\leqslant\lambda_0$ for $v\geqslant v_0$; indeed, otherwise we should have $\lambda_{v_n}\geqslant (2\mu)^{1/r_\varphi}$ for a sequence $v_n\to\infty$. If $\varphi^{-1}(v_n)=u_n$, then

$$\mu = \frac{\varphi\left(\lambda_{v_n} u_n\right)}{\varphi(u_n)} \geqslant \frac{\varphi\left(\left(2\mu\right)^{1/r_{\boldsymbol{\varphi}}} u_n\right)}{\varphi(u_n)} \rightarrow \left(\left(2\mu\right)^{1/r_{\boldsymbol{\varphi}}}\right)^{r_{\boldsymbol{\varphi}}},$$

which is a contradiction. Let $\lambda_{v_n} \to g$; since, by 2.11, $\varphi(\lambda u)/\varphi(u) \to \lambda^{r_{\varphi}}$ uniformly in $1 \leqslant \lambda \leqslant \lambda_0$, we obtain

$$\mu = \frac{\varphi(\lambda_{v_n} u_n)}{\varphi(u_n)} \to g^{r_{\varphi}},$$

i. e. $g=\mu^{1/r_{\varphi}}$. We have thus proved that $\lambda_v \to \mu^{1/r_{\varphi}}$ as $v \to \infty$; thus $\varphi^{-1}(\mu v)/\varphi^{-1}(v)=\lambda_v u/u \to \mu^{1/r_{\varphi}}$ for $\mu>1$ and hence for an arbitrary $\mu>0$.

2.31. If φ is a strictly increasing φ -function and $\varphi \in \mathcal{R}_0$, then the following relation holds for the inverse function:

$$\frac{\varphi^{-1}(\mu u)}{\varphi^{-1}(u)} \to \infty \quad \text{as} \quad u \to \infty,$$

for every $\mu > 1$. Conversely, if (+) holds, then $\varphi \in \mathcal{R}_0$.

Let μ , λ_v have the same meaning as in the proof of 2.3 (i). Suppose $\lambda_{v_n} \to g$ for a sequence $v_n \to \infty$, where g is a finite limit. Since $\varphi(\lambda u)/\varphi(u) \to 1$ uniformly in $1 \leqslant \lambda \leqslant g + \varepsilon$, we have $\mu = \varphi(\lambda_{v_n} u_n)/\varphi(u_n) \to 1$, i. e. $\mu = 1$, which is a contradiction. Thus we have proved that $\lambda_v \to \infty$ as $v \to \infty$ and, consequently, (+).

In order to prove the second part of the theorem let us write $\omega(\lambda u)$ $=\mu_u v, \ \lambda \geqslant 1.$ Since $\lambda = \varphi^{-1}(\mu_u v)/\varphi^{-1}(v)$, we have $\mu_u \to 1$ as $u \to \infty$. by (+). Thus $\varphi(\lambda u)/\varphi(u) \to 1$ for $\lambda \geqslant 1$ and hence also for $0 < \lambda \leqslant 1$.

2.4. We now introduce some notions which are of importance. particularly in the theory of the spaces $L^{*\varphi}(a,b)$, but which are also of interest in studying the order of growth of functions. We shall say that ϕ is l-equivalent to ψ (equivalent to ψ for large u), in symbols $\varphi \stackrel{!}{\smile} \psi$, if the inequalities

$$(+) a\varphi(k_1u) \leqslant \psi(u) \leqslant b\varphi(k_2u)$$

hold for $u \geqslant u_0$, where a, b, k_1, k_2 are some positive constants (see [6]). $\varphi \sim \psi$, resp. $\varphi \simeq \psi$, will mean that φ and ψ are asymptotically similar, resp. asymptotically equal, i.e. that $\varphi(u)/\psi(u) \to c$ as $u \to \infty$, where $c \neq 0$, resp. c = 1.

Evidently, $\varphi \sim \psi$ implies $\varphi \stackrel{i}{\sim} \psi$ but not conversely. Similarly to ~. L is also an equivalence relation and elementary rules of calculus for \sim are valid also for $\stackrel{l}{\sim}$. For instance if φ , ψ are non-decreasing (non--increasing), $\varphi \stackrel{\iota}{\rightharpoonup} \varphi_1$, $\psi \stackrel{\iota}{\rightharpoonup} \psi_1$, then $c'\varphi + c''\psi \stackrel{\iota}{\rightharpoonup} c'\varphi_1 + c''\psi_1$ (c', c'' > 0), $\varphi\psi \stackrel{l}{\sim} \varphi_1\psi_1$, etc. If φ is a $q\varphi$ -function, then every function l-equivalent to φ is also a $q\varphi$ -function. It is also easily seen that for a $q\varphi$ -function the indices s_{α} , σ_{α} are invariants of the relation $\stackrel{!}{\sim}$. However, the property that φ is regularly increasing (resp. slowly varying) remains valid for an asymptotically similar (resp. equal) function, but in general does not remain valid for a function l-equivalent to the given one. The following remark makes clear the advantage of applying the notion of l-equivalence in place of the less general notion of asymptotic equality, when investigating orders of growth of functions.

2.41. If φ , ψ are strictly increasing φ -functions, $\varphi \stackrel{\iota}{\rightharpoonup} \psi$, then $\varphi^{-1} \stackrel{\iota}{\rightharpoonup} \psi^{-1}$ (see [9]).

If $\varphi \simeq \psi$, then $\varphi^{-1} \sim \psi^{-1}$ does not need to hold. For instance the functions $\varphi(u) = \lg(1+u)$, $\varphi_1(u) = \varrho(u)\lg(1+u)$, where $\varrho(u)$ is a continuous function strictly increasing from 0 to 1, are asymptotically equal. However, if we choose ϱ suitably, their inverse functions are not asymptotically similar. It is sufficient to choose an arbitrary sequence $a_n \nearrow 1$ and v_n , u'_n , u_n so that $u'_n < u_n < u'_n + 1 < u_{n+1}$, $u_n = e^{v_n/a_n} - 1$, $(e^{v_n/a_n} - 1)$ $-1)(e^{v_n}-1)^{-1}>n$, and to define $\varrho(u)=a_n$ for $u_n'\leqslant u\leqslant u_n$, $\varrho(u)=a_n$ linear function in (u_n, u'_{n+1}) .

2.42. If φ is a $q\varphi$ -function, then $\bar{\varphi}_r(u) = \varphi(u^r)$ and $\bar{\varphi}_r(u) = (\varphi(u))^r$, r>0, are $q\varphi$ -functions, and $s_{\overline{\varphi}_r}=s_{\overline{\varphi}_r}=rs_{\varphi}, \ \sigma_{\overline{\varphi}_r}=\sigma_{\overline{\varphi}_r}=r\sigma_{\varphi}.$

 $\frac{\overline{\varphi}_r(u)}{\overline{\varphi}_r(\lambda u)} = \frac{\varphi(u^r)}{\varphi(\lambda^r u^r)}, \quad \frac{\overline{\overline{\varphi}}_r(u)}{\overline{\varphi}_r(\lambda u)} = \left(\frac{\varphi(u)}{\varphi(\lambda u)}\right)^r,$

$$rac{1}{r}s_{ar{arphi}_{r}}=rac{1}{r}\lim_{\lambda o0+}rac{\lg ar{h}_{ar{arphi}_{r}}(\lambda)}{-\lg\lambda}=\lim_{\lambda o0+}rac{\lg ar{h}_{arphi}(\lambda^{r})}{-\lg\lambda^{r}}=s_{arphi},$$

and similarly in the remaining cases.

Let us note that, in spite of the fact that the indices of \overline{q}_r and \overline{q}_r are equal, these functions need not be l-equivalent if $r \neq 1$. For instance let $\varphi(u) = \psi(\lg(1+u))$, where ψ is a regularly increasing or slowly varying φ -function. Then $\varphi(u^r)/\varphi(u) \to r^{s_{\overline{\varphi}}}$ as $u \to \infty$ for r > 0. If $\overline{\varphi}_r \stackrel{\iota}{\longrightarrow} \overline{\varphi}_r$, then $\varphi \stackrel{1}{\rightharpoonup} \varphi^r, \text{ i. e. } a\varphi(k_1u)/\varphi(u) \leqslant \big(\varphi(u)\big)^r/\varphi(u) \leqslant b\varphi(k_2u)/\varphi(u) \text{ for large } u. \text{ But }$ this is impossible for $r \neq 1$, because, according to 2.3 (g), φ is a slowly varying φ -function.

2.5. A function φ is said to satisfy condition (Δ_n) for large u if $\alpha > 1$ and if the inequality

$$\varphi(\alpha u) \leqslant d_{\alpha}\varphi(u)$$
 for $u \geqslant u_0(\alpha)$

holds for a constant $d_a > 1$. φ is said to satisfy condition (Λ_a) for large uif a > 1 and if the inequality

$$\varphi(\alpha u) c_a \leqslant \varphi(u)$$
 for $u \geqslant u_0(a)$

is satisfied for a constant $c_a>1.$ For non-decreasing φ the property that condition (Δ_a) (condition (Λ_a)) holds with an a>1 is an invariant of l-equivalence (cf. [6]).

2.51. If φ is a $q\varphi$ -function, then the conditions

(a) $s_m > 0$,

(a') (Λ_a) is satisfied for sufficiently large α , are equivalent, and the conditions

(b) $\sigma_a < \infty$,

(b') (Δ_a) is satisfied for sufficiently large α , are also equivalent.

In order to prove (a) \rightleftarrows (a') let us note that $\underline{h}_{\varphi}(\lambda) = \underline{h}_{\varphi}^{*}(a)$ $=\underline{\lim} \varphi(au)/\varphi(u), \text{ if } a=1/\lambda, \ 0<\lambda<1. \text{ If } s_{\varphi}>0 \text{ and } s_{\varphi}>s>0, \text{ then }$ $\lg \underline{h}_{\varphi}^*(a) > s \lg a \ \text{ for } \ a \geqslant a_0, \ \text{ whence } \ \varphi(au) \geqslant a^s \varphi(u) \ \text{ for } \ u \geqslant u_0(a), \ \text{i. e.}$ we may take $a^s=c_a>1.$ If φ satisfies condition $(\Lambda_{a_0}),$ then $\varphi(a_0u)$ $\geqslant c_{a_0}\varphi(u) \text{ for } u\geqslant u(a_0), \ a_0>1, \ c_{a_0}>1; \text{ hence } \varphi(a_0^ku) \geqslant (c_{a_0})^k\varphi(u) \text{ for }$ $u\geqslant u_0(a),\quad k=1\,,\,2\,,\,\ldots,\quad \lg \underline{h}_\varphi^*(a)\geqslant k\lg c_{a_0}\quad \text{for}\quad a=a_0^k,\quad \lg \overline{h}_\varphi^*(a)/\lg a\geqslant 1$ $\geqslant \lg c_{a_0}/\lg a_0, \ s_{\varphi} \geqslant \lg c_{a_0}/\lg a_0 > 0.$

(b) \rightleftharpoons (b') is proved similarly.

Remark. Let us note that for a non-decreasing φ (in particular for a q-function), (Λ_{α_0}) for an α_0 implies (a') and (Δ_{α_0}) for an α_0 implies (Δ_a) for every a > 1.

2.52. Let φ be a φ -function.

(a) If
$$s_m > 0$$
, then

$$(+) s_{\varphi} = \sup(\lg c_a / \lg a),$$

where the supremum is taken over all pairs of numbers α , c_a which occur in the definition of condition (Λ_a) ;

(b) if
$$\sigma_{\varphi} < \infty$$
, then

$$(++) \sigma_{\varphi} = \inf(\lg d_{\alpha}/\lg \alpha),$$

where the infimum is taken over all pairs of numbers a, d_a which occur in the definition of condition (Δ_a).

This follows from 1.7 (b) by applying the substitution $(*\varphi)$.

2.55. If conditions (Λ_a), (Δ_a) are satisfied for sufficiently large a, then φ is a q φ -function, $s_{\varphi}>0$, $\sigma_{\varphi}<\infty$, and formulae 2.52 (+), (++) are satisfied.

Applying the substitution $(*\varphi)$ in this case we can easily see that the corresponding function f satisfies the inequalities $-\infty < \varrho_f(\mu) \leqslant \overline{\varrho}_f(\mu) < \infty$ for large μ , whence these inequalities are satisfied for every μ , by 1.4. Formulae 1.7 (*), (**) yield the proof of existence of the indices and formulae 2.52 (+), (++), simultaneously.

2.6. Given a function ρ , write

$$egin{aligned} s_v^\varrho(u) &= \sup_{v \leqslant l \leqslant u} arrho(t) & ext{ for } \quad u \geqslant v \,, \ s_v^\varrho(u) &= s_v^\varrho(v) u / v & ext{ for } \quad 0 < u < v , ext{ if } v > 0 \,, \ & s^\varrho(u) &= s_0^\varrho(u) \,, \ & t_v^\varrho(u) &= \sup_{u \leqslant l < \infty} arrho(t) & ext{ for } \quad u \geqslant v \,, \ & t_v^\varrho(u) &= t_v^\varrho(v) & ext{ for } \quad 0 < u < v \,, ext{ if } v > 0 \,. \end{aligned}$$

Obviously, if $s^e(u) < \infty$ for u > 0 and $s^e(u) \to \infty$ as $u \to \infty$, then $s^e \sim s^e$

A function ϱ is called *pseudo-increasing* for large u if

$$(+) \varrho(u_2) \geqslant m\varrho(nu_1) \text{for} u_2 \geqslant u_1 \geqslant u_0$$

for some constants m, n > 0; it is called pseudo-decreasing for large u if

$$(++) \varrho(u_2) \geqslant m\varrho(nu_1) \text{for} u_2 \geqslant u_1 \geqslant u_0.$$

2.61. A function ϱ is pseudo-increasing (pseudo-decreasing) for large u if and only if it is l-equivalent with a non-decreasing (non-increasing) function.

The sufficiency follows from the definition of l-equivalence immediately. In order to prove the necessity let us note that (+) implies

$$\varrho\bigg(\frac{u}{n}\bigg)\geqslant ms_v^\varrho(u)\geqslant m\varrho(u)\quad \text{ for }\quad u\geqslant v=\sup(u_0,nu_0),$$

and (++) implies

$$\varrho(u) \leqslant t_{u_0}^{\varrho}(u) \leqslant m\varrho(nu) \quad \text{for} \quad u \geqslant u_0,$$

whence $\varrho \stackrel{\iota}{\rightharpoonup} s_v^{\varrho}$ in the first case and $\varrho \stackrel{\iota}{\rightharpoonup} t_{u_0}^{\varrho}$ in the second case.

From the above it follows that

2.611. If a function pseudo-increasing for large u is not l-equivalent to a constant, then $s_v^o(u) \to \infty$ as $u \to \infty$.

2.62. Let us assume that the function $\varrho(u)u^{\varepsilon}$ is asymptotically equal to a non-decreasing function for an $\varepsilon > 0$.

(a) If ϱ is pseudo-increasing for large u, then the inequality

$$(+) \qquad \qquad \varrho(u_2) \geqslant k\varrho(u_1) \quad \text{for} \quad u_2 \geqslant u_1 \geqslant u^*$$

holds for a constant k > 0;

(b) If o is pseudo-decreasing for large u, then the inequality

$$(++) \varrho(u_2) \leqslant k\varrho(u_1) for u_2 \geqslant u_1 \geqslant u^*$$

holds for a constant k > 0.

We shall prove (a) for example. We may restrict ourselves to the case $\varepsilon=1$. Let $0< n\leqslant 1$, $u_2=au$, $u_1=u/n$, $a\geqslant 1/n$. Since $u_2\geqslant u_1$, we have $\varrho(au)\geqslant m\varrho(u)$ for $u\geqslant nu_0$, by 2.6 (+). Since for every $0<\eta<1$, $u_2\varrho(u_2)\geqslant (1-\eta)u_1\varrho(u_1)$ for $u_2\geqslant u_1\geqslant u(\eta)$, we have $\varrho(au)\geqslant (1-\eta)n\varrho(u)$ for $u\geqslant u(\eta)$ and $1\leqslant a\leqslant 1/n$. If n>1 and $a\geqslant 1$, then applying the inequality $u_2\varrho(u_2)\geqslant (1-\eta)u_1\varrho(u_1)$ for $u_2=nu$, $u_1=u$, we obtain $\varrho(nu)\geqslant (1-\eta)\frac{1}{n}\varrho(u)$ for $u\geqslant u(\eta)$, i. e., by 2.6 (+), $\varrho(au)\geqslant m\varrho(nu)\geqslant \frac{m}{n}(1-\eta)\varrho(u)$ for $u\geqslant \sup\{u_0,u(\eta)\}$. Thus we have proved (+) with a constant $k=\inf\{m,n(1-\eta),(1-\eta)m/n\}$, where $0<\eta<1$ may be chosen arbitrarily.

The arguments in the case (b) are similar.

2.63. If φ is regularly increasing and $r_{\varphi} > 0$, then $\varphi \simeq s_v^{\varphi}$ for a certain v. If, moreover, φ is locally bounded, then $\varphi \simeq s^{\varphi}$.

Choose an arbitrary $a_0 > 1$, $1 - \varepsilon \geqslant a_0^{-r}e$. By 2.11, $\varphi(\lambda u) \geqslant (1 - \varepsilon)\lambda^{r}\varphi(u) \geqslant (1 - \varepsilon)\varphi(u)$ for $u \geqslant \overline{u}$, $1 \leqslant \lambda \leqslant a_0$, i. e. $\varphi(a_0^k u) \geqslant \varphi(u)$ for $u \geqslant \overline{u}$ and $k = 1, 2, \ldots, \varphi(a_0^k \lambda u) \geqslant (1 - \varepsilon)\varphi(u)$ for $k = 0, 1, 2, \ldots$ and $u \geqslant \overline{u}$. Consequently, $\varphi(au) \geqslant (1 - \varepsilon)\varphi(u)$ for $u \geqslant \overline{u}$, $\alpha \geqslant 1$, whence $\varphi(u) \geqslant (1 - \varepsilon)s_u^e(u)$. But $\varphi(u) \to \infty$ as $u \to \infty$, by 2.2 (b); thus $s_{\overline{u}}^e(u) \to \infty$

and if φ is bounded in a neighbourhood of 0 then, according to $2.6, s^{\varphi}(u) < \infty$ for every u > 0 and $s^{\varphi}_u \simeq s^{\varphi}$. Hence in this case $\varphi(u) \ge (1-2\varepsilon)s^{\varphi}(u) \ge (1-2\varepsilon)\varphi(u)$ for sufficiently large u, $1-2\varepsilon \le \lim_{u \to \infty} \varphi(u)/s^{\varphi}(u) \le \overline{\lim} \varphi(u)/s^{\varphi}(u) \le 1/(1-2\varepsilon)$, i. e. $\varphi \simeq s^{\varphi}$.

The first part of the theorem is obtained by modifying φ in a neighbourhood of 0 in order to get a locally bounded function.

2.64. A function φ is slowly varying if and only if $\varphi(u)u^*$ is asymptotically equal to a non-decreasing function and $\varphi(u)u^{-\varepsilon}$ is asymptotically equal to a non-increasing function for every $\varepsilon > 0$ (see [2] and [13]).

Sufficiency. Let $a>1,\ \eta>0$ be given. We choose $\varepsilon>0$ so that $1+\eta\geqslant (1+\varepsilon)\,a^\varepsilon,\ (1-\varepsilon)/a^\varepsilon\geqslant 1-\eta.$ Then the inequalities $a^\varepsilon u^\varepsilon \varphi(au)\geqslant (1-\varepsilon)u^\varepsilon \varphi(u)$ and $a^{-\varepsilon}u^{-\varepsilon}\varphi(au)\leqslant (1+\varepsilon)u^{-\varepsilon}\varphi(u)$ hold for sufficiently large u, whence

$$1+\eta \geqslant \overline{\lim}_{u\to\infty} \frac{\varphi(\alpha u)}{\varphi(u)} \geqslant \overline{\lim}_{u\to\infty} \frac{\varphi(\alpha u)}{\varphi(u)} \geqslant 1-\eta.$$

Necessity. Given any $\varepsilon > 0$, the functions $\varphi_1(u) = u^{\varepsilon}\varphi(u)$ and $\varphi_2(u) = u^{\varepsilon}/\varphi(\mu)$ are regularly increasing with index ε . By 2.63, $\varphi_1 \simeq s_{v_1}^{\varphi_1}$, $1/\varphi_2 \simeq 1/s_{v_2}^{\varphi_2}$.

2.65. A function φ is quasi-slowly varying if and only if for every $\varepsilon > 0$ the function $\varphi(u)u^{\varepsilon}$ is pseudo-increasing for large u and the function $\varphi(u)u^{-\varepsilon}$ is pseudo-decreasing for large u.

Sufficiency. Take an $\varepsilon>0$. Then $\varphi_1(u)=\varphi(u)u^{\varepsilon}$ and $\varphi_2(u)=\varphi(u)u^{-\varepsilon}$ are $q\varphi$ -functions, by 2 and 2.61. Hence φ is also a $q\varphi$ -function. Since $s_{\varphi_1}=s_{\varphi}+\varepsilon\geqslant 0, \quad -\varepsilon+\sigma_{\varphi}=\sigma_{\varphi_2}\leqslant 0$, we have $-\varepsilon\leqslant s_{\varphi}\leqslant\sigma_{\varphi}\leqslant\varepsilon$ and, consequently, $s_{\varphi}=\sigma_{\varphi}=0$.

Necessity. If $s_{\varphi}=\sigma_{\varphi}=0$, then $r_{\varphi_1}=s_{\varphi_1}=\sigma_{\varphi_1}=\varepsilon$. It follows from the definition of the indices that if $\alpha\geqslant\alpha_0\geqslant1$, the inequalities

$$a^{\varepsilon'} \leqslant \frac{\varphi_1(au)}{\varphi_1(u)} \leqslant a^{\varepsilon''} \quad \text{ for } \quad u \geqslant u_0(a)$$

are satisfied for given $\varepsilon'' > \varepsilon > \varepsilon' > 0$. Applying the substitution (* φ_1), 1.4, 1.3 (b) we easily show the inequalities

$$c_1 \leqslant \frac{\varphi_1(\alpha u)}{\varphi_1(u)} \leqslant c_2$$

to hold uniformly with respect to α in $1 \leqslant \alpha \leqslant \alpha_0$ for $u \geqslant \overline{u}$. Let $1 \leqslant \alpha$, $\alpha_0^k \leqslant \alpha < \alpha_0^{k+1}$ for a $k = 0, 1, 2, \ldots$ Since $\alpha = \alpha_0^k \lambda$, where $1 \leqslant \lambda < \alpha_0$, it follows that

 $\varphi_1(\alpha u) = \varphi_1(\alpha_0^k \lambda u) \geqslant (\alpha_0^k)^{\epsilon} \varphi_1(\lambda u) \geqslant c_1 \varphi(u) \quad \text{ for } \quad u \geqslant \sup \left(u_0(\alpha_0), \overline{u}\right).$ Similarly we prove that $\varphi_2(u)$ is pseudo-decreasing for large u.

2.7. (a) Let φ be such that $\varphi(u)u^{t-1}$ is asymptotically equal to a non-decreasing function for an $\varepsilon > 0$. The function φ is l-equivalent to a convex φ -function if and only if the inequality

$$(+) \qquad \frac{\varphi(u_2)}{u_2} \geqslant k \frac{\varphi(u_1)}{u_1} \quad \text{for} \quad u_2 \geqslant u_1 \geqslant u_0$$

is satisfied for a certain constant k > 0.

(b) If φ is a φ -function and we change in (+) the sign \geqslant in \leqslant , we obtain a necessary and sufficient condition of l-equivalence of φ to a concave φ -function (cf. [6] and [7]).

First, we consider the case of l-equivalence to a convex function. Let $\varphi \stackrel{l}{=} \psi$, where ψ is a convex φ -function. Inequality 2.4 (+) holds for $u \geqslant u_0$, whence, for $u_2 \geqslant u_1 = \overline{u} = \sup(u_0, k_2 u_0 | k_1)$,

$$\frac{\varphi(u_2)}{u_2} \geqslant a \frac{\psi(k_1 u_2)}{u_2} \geqslant a \frac{\psi(k_1 u_1)}{u_1} \geqslant \frac{a}{b} \frac{\varphi\left(\frac{k_1}{k_2} u_1\right)}{u_1},$$

because $\psi(\alpha u) \leqslant \alpha \psi(u)$ for $0 < \alpha \leqslant 1$. Since $\varrho(u) = \varphi(u)/u$ satisfies 2.6 (+) and $\varrho(u)u^{\varepsilon}$ is asymptotically equal to a non-decreasing function for a certain $\varepsilon > 0$, inequality (+) follows from 2.62. In order to prove the sufficiency let us define the function $s(u) = s_{\varepsilon}^{\varrho}(u)$, where $\varrho(u) = \varphi(u)/u$ and v is equal to u_0 from (+). Arguments as in the proof of 2.61 imply $\varphi(u)/k \geqslant us(u) \geqslant \varphi(u)$ for $u \geqslant u_0$. The function

$$\psi(u) = \int_0^u s(t) \, dt$$

is a convex φ -function and since $\frac{1}{2}us(\frac{1}{2}u) \leq \varphi(u) \leq us(u)$ for u > 0, we have $\varphi \stackrel{!}{=} \psi$.

Now, we consider the case (b). Adding to φ a continous function χ strictly increasing from 0 to 1 as $u \to \infty$, we obtain a φ -function $\overline{\varphi}$ strictly increasing, asymptotically equal to φ and such that the inequality

$$(++) \qquad \frac{\overline{\varphi}(u_2)}{u_2} \leqslant \overline{k} \frac{\overline{\varphi}(u_1)}{u_1} \quad \text{ for } \quad u_2 \geqslant u_1 \geqslant \overline{u}_0, \ \overline{k} > 0,$$

holds for certain \bar{k} , \bar{u} if and only if the inequality

$$\frac{\varphi(u_2)}{u_2} \leqslant k \frac{\varphi(u_1)}{u_1} \quad \text{for} \quad u_2 \geqslant u_1 \geqslant u_0, \ k > 0,$$

is satisfied for some k, u_0 . Obviously, inequality (++) is equivalent to the inequality

$$\left| rac{\overline{arphi}^{-1}(v_2)}{v_2}
ight| \geqslant rac{1}{\overline{k}} rac{\overline{arphi}^{-1}(v_1)}{v_1} \quad ext{ for } \quad v_2 \geqslant v_1 \geqslant \overline{arphi}(\overline{u}_0).$$

Since, by (a), $\overline{\varphi}^{-1} \stackrel{l}{\stackrel{}{\smile}} \overline{\psi}$, where $\overline{\psi}$ is a convex φ -function, by 2.41 we have $\overline{\varphi} \stackrel{l}{\stackrel{}{\smile}} \psi$, where $\psi = \overline{\psi}^{-1}$ is a concave φ -function, and since $\varphi \simeq \overline{\varphi}$ we have $\varphi \stackrel{l}{\stackrel{}{\smile}} \psi$.

Remark. The following question arises: is it possible to define a function ψ in a way analogous to that in the case (a)? Let $t(u) = t_v^\varrho(u)$, where $\varrho(u) = \varphi(u)/u$ and v is equal to u_0 . As before, we have $\varphi(u) \leqslant t(u)u \leqslant k\varphi(u)$, but the concave function $\psi(u) = \int\limits_0^u t(\tau)d\tau$ is not necessarily l-equivalent to φ . However, this holds if we assume that $s_\varphi>0$ or that condition (Λ_a) is satisfied for an a>1 (both these assumptions are equivalent), for then we have $s_t>-1$ and 2.92 may be applied. The same remark concerns the application of $s(u)=\inf\limits_{u_0\leqslant t\leqslant u}m\varphi(nt)/t$ in place of the function t(u) given in [7] on p. 127. I might notice here that the method of proof in the above-mentioned fragment of [7] may be applied, for example, if we assume (Λ_a) .

2.71. (a) A convex φ -function is superadditive, i. e.

(+)
$$\varphi(u_1+u_2) \geqslant \varphi(u_1)+\varphi(u_2)$$
 for $u_1 \geqslant u_2 \geqslant 0$;

a superadditive φ -function is l-equivalent to a convex φ -function.

(b) A concave φ -function is subadditive, i. e. (+) holds, where the sign \geqslant has to be changed into \leqslant ; a subadditive φ -function is l-equivalent to a concave φ -function.

Ad (a). Since
$$\varphi(u_1)u_1^{-1} \leq \varphi(u_2)u_2^{-1}$$
 for $u_2 \geq u_1 > 0$, we have

$$\varphi(u_1+u_2) = u_1 \frac{\varphi(u_1+u_2)}{u_1+u_2} + u_2 \frac{\varphi(u_1+u_2)}{u_1+u_2} \geqslant u_1 \frac{\varphi(u_1)}{u_1} + u_2 \frac{\varphi(u_2)}{u_2}.$$

Let us suppose that φ is superadditive. Let $u_2 \geqslant u_1 > 0$ and let n denote a non-negative integer such that $2^n u_1 \leqslant u_2 < 2^{n+1} u_1$. It follows from the superadditivity that

$$\frac{\varphi(u_2)}{u_2} \geqslant \frac{\varphi(2^n u_1)}{u_2} \geqslant \frac{2^n}{2^{n+1}} \frac{\varphi(u_1)}{u_1} = \frac{1}{2} \frac{\varphi(u_1)}{u_1},$$

and it is sufficient to apply 2.7 (a).

2.72. In the following properties φ , χ , ψ denote φ -functions, r > 0:

A.
$$\varphi \stackrel{l}{\sim} \bar{\chi}$$
, $\bar{\chi}(u) = (\bar{\psi}u^r)$, $\bar{\psi}$ convex.

B.
$$\varphi = \overline{\chi}, \ \overline{\chi}(u) = (\overline{\psi}(u))^r, \ \overline{\psi} \ convex.$$

C. $\varphi \stackrel{l}{-} \chi$, χ is superadditive in a generalized sense:

$$(+) \chi(u_1 + u_2) \geqslant [(\chi(u_1))^{1/r} + (\chi(u_2))^{1/r}]^r for u_2 \geqslant u_1 \geqslant 0.$$

D. $\varphi(u) = u^r \varrho(u)$, where ϱ is pseudo-increasing for large u.

Properties A_0 , B_0 will be obtained from A, B by replacing the word "convex" by "concave", property C_0 will be obtained from C by replacing the sign \geqslant in inequality (+) by \leqslant , i. e. by replacing generalized superadditivity by generalized subadditivity. Finally, property D_0 will be obtained from D by replacing the phrase " ϱ is pseudo-increasing for large u" by " ϱ is pseudo-decreasing for large u".

2.75. Any two of the properties A-D are equivalent; moreover, any two of the properties A_0 - D_0 are also equivalent.

This theorem is a consequence of 2.7, 2.71 by the fact that property D, resp. D₀, means that $\varphi(u^{1/r})$, $(\varphi(u))^{1/r}$ satisfy 2.7 (+), resp. 2.7 (++), with the sign \geqslant replaced by \leqslant .

2.74. Let φ be a φ -function.

(a) If $s_{\varphi}>0$, then φ possesses property D for every $0< r< s_{\varphi};$ if φ possesses property D for a certain r, then $s_{\varphi}>0$ and $r\leqslant s_{\varphi}.$

(b) If $\sigma_{\varphi} < \infty$, then φ possesses property D_0 for every $r > \sigma_{\varphi}$; if φ possesses property D_0 for a certain r, then $\sigma_{\varphi} < \infty$, $\sigma_{\varphi} \leq r$ [10].

Let $\varphi(u) = u^r \varrho(u)$, where r > 0. By 2.62, ϱ is pseudo-increasing for large u if and only if, for every $a \ge 1$,

(+)
$$\rho(\alpha u) \geqslant k\rho(u)$$
, where $k > 0$, $u \geqslant u^*$.

Since $\varphi(\alpha u)/\varphi(u)=a^r\varrho(\alpha u)/\varrho(u)$, (+) implies that φ satisfies condition (Λ_a) for sufficiently large a with the constant $e_a=a^rk$. By 2.51, $s_{\varphi}>0$, and, by 2.52 (a), $\lg e_a/\lg a=r+\lg k/\lg a\leqslant s_{\varphi}$, i. e. $r\leqslant s_{\varphi}$. Let us now assume $s_{\varphi}>0$, $0< s< s_{\varphi}$; according to 2.52 (a) there exists an $a_0>1$ such that $r=\lg e_{a_0}/\lg a_0>s$, $\varphi(a_0u)\geqslant e_{a_0}\varphi(u)$ for $u\geqslant u_0(a_0)$. Let $a\geqslant 1$, i. e. $a=a_0^k\lambda$, where k is a non-negative integer, $1\leqslant \lambda< a_0$. If $u\geqslant u_0(a_0)$, the following inequalities are satisfied:

$$arphi\left(lpha u
ight)\geqslant\left(c_{a_0}
ight)^{\!k}\!arphi\left(\lambda u
ight)=\left(a_0^k
ight)^{\!r}\!arphi\left(\lambda u
ight)\geqslantrac{a_0^{\!r}}{a_0^{\!r}}arphi\left(u
ight),$$

$$\varrho(\alpha u) = \frac{\varphi(\alpha u)}{\alpha^r u^r} \geqslant \frac{1}{\alpha_0^r} \frac{\varphi(u)}{u^r} = \frac{1}{\alpha_0^r} \varrho(u).$$

Property D is satisfied for an arbitrary $r < s_{\varphi}$, for it is satisfied for some $r < s_{\varphi}$ arbitrarily near to s_{φ} .

The proof of (b) is analogous.

2.8. In this section φ may assume also negative values and is always integrable in an arbitrary interval (0,u); however, speaking about regularly increasing or slowly varying functions etc., we shall have in mind functions $\varphi>0$, just as we did previously. We shall write $\psi(u)=\int\limits_0^u \varphi(t)\,dt$

and we shall assume $\psi(u) > 0$ for u > 0. Moreover, we shall write

$$h(u) = \frac{u\varphi(u)}{\psi(u)}$$
 for $u > 0$.

The following inequalities hold:

$$(+) \qquad \lim_{u \to \infty} h(u) \leqslant \frac{\lg \underline{h}_{\boldsymbol{y}}(\lambda)}{-\lg \lambda} \leqslant \frac{\lg \overline{h}_{\boldsymbol{y}}(\lambda)}{-\lg \lambda} \leqslant \overline{\lim}_{u \to \infty} h(u), \quad 0 < \lambda < 1.$$

We apply the substitution

$$(*\psi), \quad e^{\mu} = a, \quad e^{u} = v$$

to the function ψ and we write $\lg \psi(e^u) = f(u)$. Since ψ is absolutely continuous, we get $f'(u) = \psi'(e^u)e^u/\psi(e^u) = h(e^u)$ for almost every u, whence

$$\lg \frac{\psi(\alpha v)}{\psi(v)} = f(u+\mu) - f(u) = \int_{u}^{u+\mu} f'(t) dt$$

for $\alpha > 1$. However, $\overline{\lim}_{v \to \infty} \psi(\alpha v)/\psi(v) = \overline{h}_{\psi}(\lambda)$, where $\lambda = 1/a$. Thus

$$\lg \overline{h}_v(\lambda) \leqslant \overline{\lim} \int_{u \to \infty}^{u+\mu} f'(t) dt \leqslant -\lg \lambda \cdot \overline{\lim} f'(u).$$

The inequality $-\lg \lambda \cdot \lim_{u \to \infty} f'(u) \leqslant \lg \underline{h}_{\psi}(\lambda)$, when $0 < \lambda < 1$, is proved similarly.

As an immediate consequence of (+) we obtain

2.81. (a) If $h(u) \rightarrow a$, where $a \neq 0$ is finite, then ψ is regularly increasing and of index $r_{\psi} = a$; if a = 0, ψ is slowly varying.

(b) If
$$h(u) \to \infty$$
 as $u \to \infty$, then

$$rac{\psi\left(\lambda u
ight)}{\psi\left(u
ight)}
ightarrow \left\{egin{array}{ll} 0 & for & 0<\lambda<1,\ 1 & for & \lambda=1,\ \infty & for & \lambda>1. \end{array}
ight.$$

2.811. Let $\varphi > 0$ for u > 0 and $h(u) \to a$ as $u \to \infty$, a finite. If a = 1, then φ is slowly varying, and if $a \neq 1$, a > 0, then φ is regularly increasing and $r_{\varphi} = a - 1$.

By the above assumption, $a\psi(u) \simeq u\varphi(u)$ and since, according to 2.81 (a), ψ is of index $r_{\psi} = a$, we have $r_{\psi} = 1 + r_{\psi}$, i.e. φ is of index a-1.

Remark. From the proof of inequality 2.8 (+) it follows that the inequality remains valid if we restrict ourselves to $u \to \infty$, $u \in (0, \infty) - A$ in $\overline{\lim} h(u)$ and $\underline{\lim} h(u)$, A being a set of measure 0. The same remark applies to 2.81. Taking into consideration the above remark we obtain the following test of φ being slowly varying, resp. regularly increasing:

2.812. If $\varphi(u) > 0$ for u > 0, φ is absolutely continuous, A denotes the set of u for which $\varphi'(u)$ exists and if

*)
$$\frac{u\varphi'(u)}{\varphi(u)} \to a \quad as \quad u \in A, \ u \to \infty,$$

then φ is slowly varying when a=0 and regularly increasing when $a\neq 0$. For instance, the above test may be applied to

$$\varphi(u) = \int_0^u \frac{|\sin t|}{t} dt, \quad a = 0.$$

Hence φ is slowly varying; however, φ' does not possess this property. Condition (*) in 2.812 with a=0 is not necessary in order that an absolutely continuous function φ be slowly varying. Every absolutely continuous non-decreasing function tending to 1 as $u\to\infty$ is slowly varying, but if in an arbitrary neighbourhood of ∞ there are intervals in which φ is constant and intervals in which $\varphi'(u) \geqslant 1$, then the limit (*) does not exist even if we omit any set of measure 0. However, by applying the integral representation of Karamata [2] it may be shown that every slowly varying function is asymptotically equal to a function satisfying 2.812 (*) with a=0.

2.815. If $\psi(u) \to \infty$ as $u \to \infty$ for a continuous qq-function q, then the following inequalities hold:

$$1+s_{arphi}\leqslant s_{arphi}\leqslant \sigma_{arphi}\leqslant 1+\sigma_{arphi};$$

if φ is regularly increasing or slowly varying, then ψ has the same property and the index of ψ is $r_v = 1 + r_{\varphi}$ [9].

 ${\it L'Hospital's}$ rule (in the form with limit superior and limit inferior) yields

$$(+) \qquad \lim_{u \to \infty} \frac{\varphi(u)}{\lambda \varphi(\lambda u)} \leqslant \lim_{u \to \infty} \frac{\psi(u)}{\psi(\lambda u)} \leqslant \overline{\lim}_{u \to \infty} \frac{\psi(u)}{\psi(\lambda u)} \leqslant \lim_{u \to \infty} \frac{\varphi(u)}{\lambda \varphi(\lambda u)},$$

i. e. $\underline{h}_{\varphi}(\lambda)/\lambda \leqslant \underline{h}_{\psi}(\lambda) \leqslant \overline{h}_{\psi}(\lambda) \leqslant \overline{h}_{\varphi}(\lambda)/\lambda$. Indices s_{ψ} , σ_{ψ} exist, for ψ is a φ -function. Hence from the last inequalities we get $1+s_{\varphi} \leqslant s_{\psi} \leqslant \sigma_{\psi} \leqslant 1+\sigma_{\varphi}$. If $\underline{h}_{\varphi}(\lambda) = \overline{h}_{\varphi}(\lambda)$ for $\lambda > 0$, then (+) implies $\underline{h}_{\psi}(\lambda) = \overline{h}_{\psi}(\lambda)$, and since $r_{\varphi} = \overline{s}_{\varphi} = \sigma_{\varphi}$, we have $r_{\psi} = 1+r_{\varphi}$.

Remark. The assumption of continuity of φ may be removed by a suitable modification of the proof.

2.814. If $s_{\varphi} > -1$ for a q φ -function, $\lg \varphi$ locally bounded for large u, then $\psi(u) \to \infty$ as $u \to \infty$.

It follows from 2.2 (a) that if $-s_{\varphi} < s < 1$, then $\varphi(u) \geqslant u^{-s}$ for sufficiently large u, whence $\psi(u) \to \infty$ as $u \to \infty$.

Studia Mathematica, XXI.

2.82. If a function h(u) is slowly varying and φ is a continuous $q\varphi$ -function such that $\psi(u) \to \infty$ as $u \to \infty$, then the inequalities

$$(+) 1 + s_{\varphi} \leqslant s_{\psi} = \lim_{u \to \infty} h(u) \leqslant \overline{\lim}_{u \to \infty} h(u) = \sigma_{\psi} \leqslant 1 + \sigma_{\varphi}$$

are satisfied.

To prove this theorem we apply the substitutions $\lg \psi(e^u) = f(u),$ $e^u = \lambda, \ e^u = v,$ again. We have

$$\frac{h(\lambda v)}{h(v)} = \frac{f'(u+\mu)}{f'(u)} \to 1$$

as $u\to\infty$ for an arbitrary μ , for $u\to\infty$ implies $v\to\infty$ and h is slowly varying. By 1.8, we have

$$(++) \qquad \begin{array}{ll} \overline{\lim} \; h(u) = \overline{\lim} \; f'(u) = \bar{\varrho}_f(\mu)/\mu \quad \text{ for } \quad \mu > 0 \,, \\ \\ \lim_{u \to \infty} h(u) = \lim_{u \to \infty} f'(u) = \underline{\varrho}_f(\mu)/\mu \quad \text{ for } \quad \mu > 0 \,, \end{array}$$

and by the definition of the indices

$$s_{\psi} = \lim_{\mu \to \infty} \underline{\varrho}_{f}(\mu)/\mu, \quad \sigma_{\psi} = \lim_{\mu \to \infty} \overline{\varrho}_{f}(\mu)/\mu.$$

Inequality (+) follows from (++) if we take $\mu \to \infty$ and apply theorem 2.813.

2.83. If φ is regularly increasing or slowly varying, then there exists a continuous function for $u \ge 0$ asymptotically equal to φ .

Let us define a continuous function $\overline{\varphi}(u)$ as $\overline{\varphi}(n) = \varphi(n)$ for $n=1,2,\ldots,\overline{\varphi}(u)$ a linear function between the points $(n,\varphi(n))$ and $(n+1,\varphi(n+1))$ and in the interval (0,1). We have, for $n\leqslant u\leqslant n+1$, $u=n\lambda,\ 1\leqslant \lambda\leqslant (n+1)/n$, and, by 2.11,

$$\frac{\varphi(u)}{\overline{\varphi}(u)} = \frac{\varphi(n\lambda)}{\varphi(n)} \cdot \frac{\varphi(n)}{\overline{\varphi}(n\lambda)} \to 1 \quad \text{as} \quad u \to \infty.$$

2.84. If $-\infty < s_{\underline{\varphi}} \le \sigma_{\varphi} < \infty$ for a $q\varphi$ -function φ , then there exists a continuous function $\overline{\varphi}$ l-equivalent to φ .

The indices s_{φ} , σ_{φ} being finite, for an arbitrary interval (λ', λ'') , where $\lambda' > 0$, there are constants $c_2 \ge c_1 > 0$ such that $c_2 \ge \varphi(\lambda u)/\varphi(u) \ge c_1$ for $\lambda \in (\lambda', \lambda'')$ and $u \ge u_0$ (we make the substitution $(*\varphi)$ and we apply 1.4, 1.3 (b)). We define $\overline{\varphi}$ as in 2.83, $\lambda' = 1$, $\lambda'' = 2$. Then we have

$$\frac{c_1}{c_2} \leqslant \frac{\varphi(u)}{\overline{\varphi}(u)} = \frac{\varphi(n\lambda)}{\varphi(n)} \cdot \frac{\varphi(n)}{\overline{\varphi}(\lambda n)} \leqslant \frac{c_2}{c_1}$$

for sufficiently large u.

2.85. If φ is a quasi-regularly increasing (quasi-slowly varying) continuous function with $r_{\varphi} > -1$ and if h is slowly varying, then φ is requiarly increasing (slowly varying).

By 2.814, 2.813 and 2.82,

$$h(u) \to a = 1 + r_{\varphi} > 0,$$

whence, according to 2.811, φ is regularly increasing (slowly varying, if $r_{\varphi} = 0$).

2.86. (a) In order that φ be regularly increasing of index $r_{\varphi} > -1$ it is necessary and sufficient that

$$(+)$$
 $h(u) \rightarrow a \quad as \quad u \rightarrow \infty,$

where $a \neq 1$, a > 0.

(b) In order that φ be slowly varying it is necessary and sufficient that (+) holds with a=1.

In both cases the index r_{φ} and the limit a satisfy the equality $r_{\varphi} = a - 1$ (see [2] and [3]).

Sufficiency follows from 2.811; necessity is obtained from 2.82 by assuming φ to be continuous. If φ is not continuous, then, according to 2.83, $\varphi \simeq \overline{\varphi}$, where $\overline{\varphi}$ is a continuous function. Since $r_{\varphi} = r_{\overline{\varphi}} > -1$, writing

$$\bar{\psi}(u) = \int_{0}^{u} \overline{\varphi}(t) dt$$

we have $\overline{\psi}(u) \to \infty$ as $u \to \infty$, $\psi \simeq \overline{\psi}$. If $\overline{h}(u) = u\overline{\phi}(u)/\overline{\psi}(u)$, then $\overline{h} \simeq h$, and since $\overline{h}(u) \to a = 1 + r_{\overline{\psi}}$ as $u \to \infty$. we have $h(u) \to a$ as $u \to \infty$.

2.9. In connection with theorem 2.86 and condition (+) which means that $\psi(u) \sim u\varphi(u)$, we shall add some remarks concerning the case when \sim in the last relation is replaced by $\stackrel{L}{\longrightarrow}$. As in the previous section, we assume the existence of the integral $\psi(u)$ for $u \geq 0$.

2.91. If φ is non-decreasing for $u \geqslant u_0$, then

$$(+) \psi(u) \stackrel{l}{-} u\varphi(u).$$

The relation (+) follows from the inequalities

$$\frac{1}{2}u\varphi(\frac{1}{2}u) \leqslant \psi(u) - \psi(u_0) \leqslant (u - u_0)\varphi(u)$$
 for $u \geqslant 2u_0$

and from $\psi(u) \to \infty$ as $u \to \infty$.

If φ is non-increasing, then (+) need not be satisfied. E. g., if $\varphi(u) = (1+u)^{-1}\lg(1+u)$, then $\psi(u) = \frac{1}{2}(\lg(1+u))^2$ and ψ is not l-equivalent to $u\varphi(u)$. In this example φ is regularly increasing and $r_{\varphi} = -1$. However, the following sufficient condition may be deduced:

2.92. If φ is non-increasing for $u\geqslant u_0, s_{\varphi}>-1,$ then 2.91 (+) holds.

According to 2.814, $\psi(u) \to \infty$ as $u \to \infty$. We have $s_{\varphi_1} = 1 + s_{\varphi} > 0$ for $\varphi_1(u) = u\varphi(u)$, whence, by 2.51, φ_1 satisfies condition (Λ_a) for a certain a > 1, $c_a > 1$. Thus $\varphi(au) \geqslant c_a \varphi(u)/a$ for $u \geqslant \overline{u} \geqslant u_0$; hence

$$\psi(au) - \psi(a\overline{u}) = a \int_{u}^{u} \varphi(at) dt \geqslant c_{a} \int_{u}^{u} \varphi(t) dt = c_{a} (\psi(u) - \psi(\overline{u})),$$

i. e. $\psi(\alpha u) \geqslant c_{\alpha} \psi(u) + k$. On the other hand,

$$\psi(au) = \psi(u) + \int\limits_{u}^{au} \varphi(t) dt \leqslant \psi(u) + (a-1)u\varphi(u)$$

for $u \geqslant \overline{u}$, whence

$$\psi(u)(c_{\alpha}-1)+k \leq (\alpha-1)u\varphi(u) \quad \text{for} \quad u \geq \overline{u}$$

and since

$$\psi(u) - \psi(u_0) \geqslant (u - u_0)\varphi(u)$$

we obtain $\psi(u) \stackrel{l}{\sim} u\varphi(u)$.

3. In this section we always assume φ to be a convex φ -function; then $\sigma_{\varphi} \geqslant s_{\varphi} \geqslant 1$. The following conditions will be of importance in the sequel:

$$\varphi(u)u^{-1} \to 0 \quad \text{as} \quad u \to 0;$$

$$(\infty_1)$$
 $\varphi(u)u^{-1} \to \infty$ as $u \to \infty$.

By the assumptions (o_1) , (∞_1) it is known (see [1] and [5]) that the function

$$\varphi^*(v) = \sup_{u>0} (uv - \varphi(u)),$$

complementary to the function φ , may be defined. It is easily proved that φ^* is a convex φ -function for $v \ge 0$ satisfying conditions (o_1) , (∞_1) and $(\varphi^*)^* = \varphi$.

3.1. If φ^* is regularly increasing and $\varphi \simeq \varphi_1$, then $\varphi^* \simeq \varphi_1^*$.

We have $(1-\varepsilon)\varphi(u) \leq \varphi_1(u) \leq (1+\varepsilon)\varphi(u)$ for $u \geq u_0$; hence the complementary functions satisfy the following inequalities ([5], p.23):

$$(1-\varepsilon)\varphi^*\left(\frac{u}{1-\varepsilon}\right)\geqslant \varphi_1^*(u)\geqslant (1+\varepsilon)\varphi^*\left(\frac{u}{1+\varepsilon}\right)\quad \text{for}\quad u\geqslant u^*,$$

i. e.

$$(1-\varepsilon)\frac{\varphi^*\left(\frac{u}{1-\varepsilon}\right)}{\varphi^*(u)}\geqslant \frac{\varphi_1^*(u)}{\varphi^*(u)}\geqslant (1+\varepsilon)\,\frac{\varphi^*\left(\frac{u}{1+\varepsilon}\right)}{\varphi^*(u)},$$

and since $\varphi^*(u(1+\varepsilon)^{-1})/\varphi^*(u) \rightarrow (1+\varepsilon)^{-r}\varphi^*, \quad \varphi^*(u(1-\varepsilon)^{-1})/\varphi^*(u) \rightarrow$

 $\rightarrow (1-\varepsilon)^{-r_{\varphi}}$, we have

$$(1-arepsilon)^{-r_{m{q}^*}}(1-arepsilon)\geqslant arprojlim rac{arphi_1^*(u)}{arphi^*(u)}\geqslant arprojlim rac{arphi_1^*(u)}{arphi^*(u)}\geqslant (1+arepsilon)^{-r_{m{q}^*}}(1+arepsilon),$$

whence $\varphi_1^* \simeq \varphi^*$.

3.2. (a) If φ is regularly increasing, $r_{\varphi} > 1$, then φ^* is regularly increasing and the indices satisfy the relation $1/r_{\varphi} + 1/r_{e*} = 1$.

(b) If φ is regularly increasing, $r_{\varphi}=1$, then $(\varphi^*)^{-1}$ is slowly varying, and $r_{\pi *}=\infty.$

(c) If φ^{-1} is slowly varying, then $r_{\varphi}=\infty,$ φ^* is regularly increasing and $r_{\varphi*}=1.$

Let $p(u)=\varphi(u)/u$ for u>0, p(0)=0. By (o_1) and (∞_1) , p(u) is strictly increasing ([5], p. 18) and if $\varphi_1(u)=\int\limits_0^u p(t)dt$, then $\varphi_1^*(u)=\int\limits_0^u p^{-1}(t)dt$. According to 2.3, p(u) is regularly increasing of index $r_p=r_\varphi-1>0$, and, by 2.86,

$$\frac{\varphi(u)}{\int\limits_0^u p(t) dt} = \frac{u \frac{\varphi(u)}{u}}{\int\limits_0^u p(t) dt} \to 1 + r_p = r_{\varphi} \quad \text{as} \quad u \to \infty.$$

As is well known, every pair of numbers u, v > 0 such that $p^{-1}(v) = u$ satisfies the identity $\varphi_1(u) + \varphi_1^*(v) = uv$, i. e.

(+)
$$\frac{\varphi_1(u)}{up(u)} + \frac{\varphi_1^*(v)}{vp^{-1}(v)} = 1,$$

and since $u \to \infty$ as $v \to \infty$ and $up(u) = \varphi(u)$, we have

$$(++) \qquad \qquad \frac{\varphi_1^*(v)}{vp^{-1}(v)} \rightarrow 1 - \frac{1}{r_\varphi} = \frac{r_\varphi - 1}{r_\varphi}.$$

By 2.86 (a), $p^{-1}(v)$ is regularly increasing and $r_{p^{-1}} = r_p/r_{p^{-1}} - 1$. Hence, by 2.912, φ_1^* is regularly increasing and of index $r_{\varphi_1^*} = r_{p^{-1}} + 1$ = $r_{\varphi}/(r_{\varphi}-1)$. Taking into account the identity $up(u) = \varphi(u)$, we obtain $\varphi_1(u)/\varphi(u) \to 1/r_{\varphi}$ as $u \to \infty$, i. e. $r_{\varphi}\varphi_1 \simeq \varphi$. According to 3.1 we have $(r_{\varphi}\varphi_1)^* \simeq \varphi^*$ and since $(r_{\varphi}\varphi_1(u))^* = r_{\varphi}\varphi_1^*(u/r_{\varphi}) \stackrel{!}{\sim} \varphi_1^*(u)$, the function $(r_{\varphi}\varphi_1)^*$ is regularly increasing and of index $r_{\varphi_1^*}$. Hence it follows that φ^* is also regularly increasing and of the same index.

In order to prove (c) let us note that according to 2.31 we have $\varphi(\lambda u)/\varphi(u) \to \infty$ as $u \to \infty$, $\lambda > 1$, whence also $p(\lambda u)/p(u) \to \infty$ as $u \to \infty$, $\lambda > 1$. Thus p^{-1} is slowly varying, and consequently φ_1^* is regularly increasing, $r_{\varphi_1^*} = 1$, by 2.813. The inequalities

$$\varphi(u) \leqslant \frac{1}{\lambda - 1} \varphi_1(\lambda u), \quad \varphi_1(u) \leqslant \varphi(u) \quad \text{for} \quad u \geqslant 0$$

hold for an arbitrary $\lambda > 1$. Hence the complementary functions satisfy the inequalities

$$\binom{++}{+} \qquad \qquad \varphi^*(u) \geqslant \frac{1}{\lambda-1} \varphi_1^* \left(\frac{\lambda-1}{\lambda} u\right), \qquad \varphi_1^*(u) \geqslant \varphi^*(u) \quad \text{ for } \quad u \geqslant 0.$$

Hence, taking into account the equality $r_{p_1^*}=1$ we obtain

$$\frac{1}{\lambda-1} \varphi_1^* \left(\frac{\lambda-1}{\lambda} u\right) / \varphi_1^*(u) \to \frac{1}{\lambda} \quad \text{as} \quad u \to \infty,$$

hence

$$1 \geqslant \frac{\varphi^*(u)}{\varphi_1^*(u)} \geqslant \frac{1}{\lambda - 1} \frac{\varphi_1^* \left(\frac{\lambda - 1}{\lambda} u\right)}{\varphi_1^*(u)}.$$

Consequently, we obtain the relation $\varphi^* \simeq \varphi_1^*$. Hence φ^* is regularly increasing, $r_{\varphi_1^*} = r_{\varphi *} = 1$. Since $\underline{h}_{\varphi}(\lambda) = \overline{h}_{\varphi}(\lambda) = \infty$ for $0 < \lambda < 1$, the equation $r_{\varphi} = \infty$ is obvious.

To prove (b) let us note that, by 2.3 (a), p is slowly varying for $r_p = 0$. Hence $\varphi_1(u)/up(u) \to 1$, and (+) implies $vp^{-1}(v)/\varphi_1^*(v) \to \infty$ as $v \to \infty$. According to 2.81 (b), $\varphi_1^*(\lambda u)/\varphi_1^*(u) \to \infty$ as $u \to \infty$, if $\lambda > 1$. Inequality $\binom{+}{+}$ yields

$$\frac{\varphi^*(\mu u)}{\varphi^*(u)} \geqslant \frac{1}{\lambda - 1} \varphi_1^* \left(\frac{\lambda - 1}{\lambda} \mu u \right) / \varphi_1^*(u), \quad u > 0, \, |\mu > 0.$$

But given $\mu > 1$ we may choose $\lambda > 1$ so that $(\lambda - 1)\mu/\lambda > 1$, whence $\varphi^*(\lambda u)/\varphi^*(u) \to \infty$ as $u \to \infty$ for $\lambda > 1$, and, by 2.31, $(\varphi^*)^{-1}$ is slowly varying.

3.3. If $\alpha > 1$, we denote by β the conjugate exponent, $1/\alpha + 1/\beta = 1$. A regularly increasing function φ of index α may be written in the form

$$\varphi(u) = \frac{u^{\alpha}}{\alpha} \gamma(u),$$

where γ is slowly varying. Hence, by 3.2,

$$\varphi^*(u) = \frac{u^{\beta}}{\beta} \gamma^*(u),$$

where γ^* is also a slowly varying function. Under suitable assumptions regarding γ , additional information on the asymptotic behaviour of φ^* for large u can be obtained.

$$\varphi(u) = \frac{u^a}{a} \gamma(u), \quad a > 1,$$

where $\gamma(u) = \omega(\lg(1+u))$ and ω is a regularly increasing or slowly varying function of index $r_{\omega} = s$. Then

$$\varphi^*(u) \simeq c \cdot \frac{1}{\beta} u^{\beta} (\gamma(u))^{-\beta/a}, \quad \text{where} \quad c = [(\beta/\alpha)^{-\beta/a}]^s.$$

Let p(u), $\varphi_1(u)$ have the same meaning as in 3.2. According to 2.3 (h), γ is slowly varying. Hence $r_{\tau}=a$, $p(u)=(u^{a-1}/a)\gamma(u)$, $r_p=a-1>0$, $r_{p^{-1}}=1/(a-1)=\beta/a=\beta-1$, i. e. p^{-1} is regularly increasing of the form $p^{-1}(u)=u^{\beta-1}\lambda(u)$, where $\lambda(u)$ is a slowly varying function. Thus we have

$$u = p\left(u^{\beta-1}\lambda(u)\right) = \frac{u^{(\alpha-1)(\beta-1)}}{a}\left(\lambda(u)\right)^{\alpha-1}\gamma\left(u^{\beta-1}\lambda(u)\right),\,$$

and since $(a-1)(\beta-1)=1$, we have

$$(+) a(\lambda(u))^{-a/\beta} = \gamma(u^{\beta-1}\lambda(u)).$$

Let $r_{\omega}=s$; then $\omega(\lambda u)/\omega(u)\to \lambda^s$ as $u\to\infty$, this convergence being uniform in each finite interval $\langle \lambda_1,\lambda_2\rangle,\ \lambda_1>0$, by 2.11. Hence $\gamma(u-1)/\gamma(u)=\omega(\lg u)/\omega(\lg(1+u))\to 1$ as $u\to\infty,\ \gamma(u^{\beta-1}\lambda(u))\simeq\omega((\beta-1)\lg u+\lg\lambda(u))$. But

$$\frac{(\beta-1)\lg u + \lg\lambda(u)}{\lg u} \to \beta-1 \quad \text{as} \quad u \to \infty,$$

for 2.2 (b) implies $\lg \lambda(u)/\lg u \to 0$ as $u \to \infty$. Thus

$$\frac{\gamma \left(u^{\beta-1}\lambda(u)\right)}{\gamma(u)} \simeq \frac{\omega \left((\beta-1)\lg u + \lg \lambda(u)\right)}{\omega (\lg u)} \to (\beta-1)^s.$$

It follows from (+) that $(\lambda(u))^{-a/\beta}/\gamma(u) \to (\beta-1)^s/a$, $\lambda(u) \simeq (\gamma(u))^{-\beta/a}\bar{c}$ as $u \to \infty$, where $\bar{c} = (\beta-1)^{-s\beta/a}a^{\beta/a} \neq 0$. However, $(a\varphi_1)^* \simeq \varphi^*$, $(a\varphi_1)^* = a\varphi_1^*(u/a)$, as follows from the proof of 3.2, and since p^{-1} is regularly increasing, we have $u^\beta\lambda(u)/\varphi_1^*(u) \to 1+r_{p^{-1}}=\beta$ as $u \to \infty$, i. e. $1/\beta \cdot u^\beta\lambda(u) \simeq \varphi_1^*(u)$. Moreover, $\varphi_1^*(u/a)/\varphi_1^*(u) \to (1/a)^r \circ i = a^{-\beta}$ as $u \to \infty$, $\varphi_1^*(u/a) \simeq a^{-\beta}\varphi_1^*(u)$. Finally, we obtain $\varphi^*(u) \simeq 1/\beta \cdot u^\beta ((\gamma(u))^{-\beta/a}c$, where $c = \bar{c}a^{-\beta+1} = \lceil (\beta/a)^{-\beta/a} \rceil^s$.

Theorem 3.4 is a strengthened form of a theorem of Krasnosielskij and Rutickij [5], who obtain $\stackrel{\perp}{\smile}$ in place of \simeq , the constant being unspecified, and who make a little more restrictive assumption regarding γ . If $\omega=1$, then $\gamma=1$, $r_{\omega}=0$ and $\varphi(u)=u^a/\alpha$, $\varphi^*(u)=u^\beta/\beta$, while 3.4 gives only $\varphi^*(u)\simeq u^\beta/\beta$.

References

- [1] Z. Birnbaum und W. Orlicz, Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math. 3 (1931), p.1-67.
- [2] J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), p. 38-53.
- [3] Sur un mode de croissance régulière, Bull. Soc. Math. France 61 (1933), p. 55-62.
- [4] J. Korevaar, T. V. Ardenne-Ehrenfest and N. G. de Bruijn, A note on slowly convergent oscillating functions, Nieuw Archief voor Wiskunde 23 (1949-52), p. 77-86.
- [5] M. A. Krasnoselskii, J. B. Rutickii, Convex functions and Orlicz spaces, Moscow 1958.
- [6] W. Matuszewska, On generalized Orlicz spaces, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 8 (1960), p. 349-353.
- [7] Przestrzenie funkcji φ-całkowalnych I (Własności ogólne φ-funkcji i klas funkcji φ-całkowalnych), Prace Matem. 6 (1961), p. 121-139.
- [8] Przestrzenie funkcji φ -calkowalnych II (Uogólnione przestrzenie Orlicza), ibidem 6 (1961), p. 159-164.
- [9] Some further properties of φ -functions, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 9 (1961), p. 445-450.
- [10] W. Matuszewska and W. Orlicz, On certain properties of φ -functions, ibidem 8 (1960), p. 439-443.
- [11] A note on the theory of s-normed spaces of q-integrable functions, Studia Math. 21 (1961), p. 107-115.
- [12] W. Orlicz, On integral representability of linear functionals over the space of φ -integrable functions, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys. 8 (1960), p. 567-569.
 - [13] A. Zygmund, Trigonometric series, I, Cambridge 1959.

Reçu par la Rédaction le 29.7.1961

On the analytic functions in p-normed algebras

Ъy

W. ŻELAZKO (Warszawa)

A *p-normed algebra* is a complete metric algebra in which topology is given by the meaning of a *p*-homogeneous submultiplicative norm ||x||:

$$||ax|| = |a|^p ||x||,$$

$$||xy|| \le ||x|| \, ||y||,$$

where a is a scalar, p - fixed real number satisfying 0 .

It is known that every complete locally bounded algebra is a p-normed algebra. These algebras were considered in papers [4], [5], and [6]. The greater part of Gelfand's theory on commutative complex Banach algebras is also true for p-normed algebras. In this paper we give an extension of Gelfand's theory of analytic functions in Banach algebras onto p-normed algebras [1]. We note that the classical method based upon the concept of abstract Riemann integral cannot be applied here, because the algebras in question are not locally convex (cf. [3]).

Let A be a commutative complex p-normed algebra with a unit designed by e. Let $\mathfrak M$ be the compact space of its multiplicative linear functionals (= maximal ideals). The spectrum of an element $x \in A$ is defined as

(3)
$$\sigma(x) = \{ f(x) : f \in \mathfrak{M} \}.$$

It is a compact subset of the complex plane. Here we give the positive answer to the following question stated in [6]:

"Let $\Phi(z)$ be a holomorphic function defined in the neighbourhood U of spectrum $\sigma(x)$ of an element $x \in A$. Does there exist a $y \in A$ such that for every $f \in \mathfrak{M}$

(4)
$$f(y) = \Phi(f(x))^{\frac{\alpha}{2}}$$

We shall give a step by step construction of such an element y. It is natural to write $y = \Phi(x)$. So we give a natural definition of $\Phi(x)$ in locally bounded algebras.

As a corollary we obtain the generalization of the theorem of Lévy [2] on trigonometrical series.