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0. Summary. This paper considers the distribution function (d.I.)
for the content of a dam fed by non-homogeneous Poisson inputs of
random size, and subject to a releagse at constant unit rate unless the
dam is empty. The d. f. may be expressed quite generally in an integral
form; if inputs are of unit size, an explieit solution is obtained to the
difference-differential equation for the d.f. of the conmtent.

1. Introduction. In two recent papers, Prabhu [4, 5] has extended
gome methods of storage theory to a quene for which the waiting-time
0 <Z(t) < oo at time 1 >0 satisfies the equation

(1.1) Z (1 8) = Z(8)+ 06X (§)— (L—n) ét.

In storage terminology Z (i) represents the dam content; the input
0 < X{f) < co entering the dam in time # js such that the arrival times
of single inputs form a Poisson process Wwith parameter 2, the inputs
(independent of arrival times) being identically and independently distri-
buted with d. f. H(u); 5t (0 <7 < 1) indicates that part of the interval
6t for which the dam is empty.

The content Z(f) is a time-homogeneous Markov process whose
transition d. f.

Fl2y,2,1) = PriZ(t) <212(0) =2} (0 <2,0 <2< 0)

satisties Takdes’ [8] well-known integro-differential equation. For such
a process, the probability of first emptiness d@ (2,, ) of the dam ab time
t > 2, was given by Kendall [3]. Prabhu obtains an integral of this as
the probability of emptiness F(2, 0,17) of the dam, and finds the d.f.
F(z,,2,1) in an integral form involving the known input distribution
and F(z,,0,1).

In the argument some use is made of the additive nature of the
input X (#); in fact, the results apply equally to the non-additive inpub
obtained when the Poisson process of arrival times is non-homogeneous
with parameter A(¢). Reich [6, 7] has studied this case, and reduced the
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finding of the d.f. of Z(#) to the solution of a Volterra equation of the
second kind. However, the methods outlined in this paper appear simpler:
we show that the probability of first emptiness satisfies Kendall’s integral
equation, but that it ean be obtained explicitly only when inputs are of
constant (unit) size. The probability of emptiness is again & simple fune-
tion of this, and the d.f. of Z (1) satisfies an integral relation of the same
type as that for the additive input. Explicit results for the d. f. extend-
ing those of Gani and Prabhu [2] for homogeneous Poisson inputs are
obtained in the case where the inputs are of constant unit size,

Let us denote by K (w;v,t) the d.f. of the non-additive input
X(t)—X(r) in the time interval (v,8) (t =7 > 0); if H(x) is the d.f.
of a single input (& > 0), then

(1.2) K(zj7,1) = ge‘(“(”'“‘r)}{@(t)V@(f)}"ﬂ';(m)/j!,

where H;(2) indicates the j* convolution of H(z), Hy(s) = 1 for >0y

and o(u) = Of A(v)dv. The Laplace-Stieltjes transform of K (2; 0,0)

(13) [ e Ak (@;0,0) = 36O [ e%am, (o)1
0 : j=0 0

— g=e®—v(O}

(B(8) >0),

where p(6) = of ¢~"@H (), shows the non-additive nature of this distri-
bution.

Consider the transition d.f. of the dam content for the interval
(0, t), which we write

Pz, 25 0,1) = Pr{Z (1) = 2|2(0) = ¢o}
this satisfies Takées’ [8] integro-differential equation

oF or 4
(1.4) T e = TMOE (2, 5 O,t)—D[F(zo,z—u; 0, t)dH (u)]

(0 <#,0 <2< oo);

(¢ > max (0, 2—1)).

From its transform, which ig readily obtained from (1.4) as
(LB)  ®(6;0,t|2) = [ e~™aR(a,, 2; 0,1)
0
4
= ¢ eI0—v+0—20) | g f ¢~ eO— N1 sO}+0¢-w (20, 05 0, w)du
. ? Y
0

(E(6) >0),
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we see that the solution for F(z,,s;0,1) hinges on the probability of
emptiness F(z,, 0;0,2).

2. Probabilities of first emptiness. For full generality, suppose
we start with a dam content # > 0 at time 7 > 0; the distribution of
first emptiness at time 47 >0 may then be written as dG(u; <z, v-+1)
where it is understood that d@(u; v, v+1) = 0 for ¢ < u, and aG(0; z, 1)
= 1. We note that if single inputs taking values 1, 2, ... follow a discrete
distribution, then d@(w;t,r+1t) will assume the digcrete form:
gus T, v+u+n) for t=utn (n=20,1,2,..),

6 (w3 7, T41) =
(s 7, = +1) [0 otherwise,

where g{u; v, 4 u) = ¢~F+I-e Tt however, individual inputs follow
a continuous distribution H(z) (x# > 0), then

e—felr+¥)—e)} for 1=,

aG(u; v, t+1) = '

glu; T, t+Hdat  for 1 >u

with a continuous probability for ¢ >u, but a diserete concentration
at t = u.
An immediate property of the first emptiness distribution for
v >0 s
i-v

21)  aGutv;T, o) = [ d6(u;T,1+8)dG (05 7+, T+1).

S=U—
‘When inputs are continuous, for example, this gives for ¢ > u-+v
gutv; T, v-+1) = gy (ps 71y, T )+
t—v
+ f g(u; T, T+ 8)g(v; T8, T By ds - g(u; 7, T+t —p) gl el
E=U
Using arguments similar to Kendall’s [3] we also obtain that, for

t-u

(22)  d@(ust,T+t) = [ dG(v;14u, TH)AE (057, T ).

V=0

If we define the Laplace-Stieltjes transform of this distribution by

}og*"("”’m(u; 7, 7+1) = a(f;z|u) (R(6) >0),


GUEST


310 J. Gani

we find from (2.2) that
t—u

a(f; 7 |u) =fe ’”)f G r+u, t+1)AK (v, 7, v+ u)

0—

(2.3)

- de V3T, T+ ) fe"’(’”’dG'('v T+ %, T-1)

v

= de(qJ; v, t+u)a(0; v+ u|v)
0—

Z o~ lolr+u)— a(t)}{g 1:—|—'1,6)—

]. (o]
& (0} [ a0 v+ vy )

0

With % = 2z, and v = 0, the results (2.2) and (2.3) refer to the dam
initially considered.
When all inputs are of unit size, so that

0 for
1 for

<1,

Hio) = =1
> 1,

equation (2.2) provides a recurrence relation for the distribution of firgt
emptiness, while (2.3) is somewhat simplified. Thus (2.2) becomes

(2.4)  glusz,vtutn)

n_ru'r v4u) — o(v)f .
=29 {e(r+1) M»wg(];T-[*’M,T’*F’M‘—}—ﬂ'),

where g(0; 7, 7) =1 for any r; and (2.3) reduces to

a(f; z|u) = Zm ¢~ elE+1—e(@)} fo(z-+ '”.)'— o(=)Y

(2.5)
7=0 7!

a(l; v+ |j).

It is possible to obtain explicit values for the probabilities of firgt
emptiness recursively from (2.4); for example if u = z,, v = 0, we readily
obtain

9(203 0, ) = 670,
(205 05 29+ 1) = 6700 (20)g(1; 29, 29+ 1) = e7%0 D g(2),

(2-6) (205 0, 29-2) = ™o (2,)g (15 %0y ( d

9(25 2,2+ 2)}

— eEt?) {20(20) 0 (2 +1)—¢" (2«'0)}
2! !
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and so on. The method of truncated polynomials (ef. Gani [1]) will also
give these probabilities in a simple systematic fashion.

3. Probabilities of emptiness and general representation for
F(z, ¢; 0,1). Correcting a minor error in Prabhu’s equivalent resul,
we now ghow that, for non-additive inputs, the probability of emptiness
F(u, 0; 7, v+1) is given by

{t=v]
(3.1) Flu,057,1+1) = 2 glt—js v, 7+1)
=0
when inputs are discrete, and
i
(3.2) Flu,0;7,7+1) = e‘{"(’”"g(m—{—fg(v; 7, T+ t)dv
u
when they are continuous. We shall prove the result for continuous in-
puts only; the proof in the discrete case is analogous except that in-
tegrals are replaced by summations.
We note first that the probability of emptiness satisfies the relation

(33)  F(u,0;7,7+1) = f a6 (u; T, T+ 8) F(0, 0; 75, T+1)

S=U—
which in the continuous case takes the form

(3.4) F(u,0;7, T+t) = e-{e(r»;u)—e(ﬂ)F(()} 0; 7+, T+1t)+
- i

+fg(u;r,r+s)F(0,0;r+s,r+t)ds
(21
Suppose now, from (3.2), that we take
-8
F0,0;7+s,t+1) = c“g(“‘”'g(”‘“’”—}»f glo;t+s, v+1)dv;
0

substituting in (3.4) we obtain

Fu, 057, 1) = e-eeri=etip
-
+6—{Q(r+u)—£'(t)}f g(v; v+u, r+i)dv+
0
i

+ [glw; T, v+5) g letrh et ligs +
u

t-s

¢
-{—fdsg('w; T,H—S)f glv;t+s, THH)d
113 [}


GUEST


312 J. Gani

and after changing variables in the second and third terms, and reversing
the order of integration in the last term, we obtain

Flu, 0; 7, 1+1) = g~le+0—e@

t
+ f eIy (p— s 2w, T ) do -

V=u

11
+ [ gluym, v t— o) etr e i gy |

V=
t [ ER T
+ f v f glus vy T+ 8)g(v—u; 8, T+H1)ds.

V= 8=

From (2.1) we recognize this as
i
Flu, 057, 741) = ¢ €=y [g(n; 7, v y)dv,
w

thus proving our assertion (3.2).
We now show that the transform of F(z,, 0; 7, v-41) is an integral
of the transform o(6,v|%). Again we prove the result for the case of

continuous inputs; for the discrete case, the proof follows exactly the
same steps. Let us define

B0 tlu) = [ F(u, 057, v 1) 6" +0as;
then this is

oo 14
(35) ﬁ(ﬂ; 't[fu,) = f {3—{9(1+t)-9(1)}+ fg(,v; , T41) d,u}e—D(H-t)dt

I

oo o0 00
[ o tetett—ab-otrg | [ [ gw; 7, v 1)eC+0a;
u u v
— f {e—(e(r+v)-e(r))-e<r+v) + f g(v; 7, T+ 1) 0-9(r+t)dt} o
u v

=fa(0;-r[1;)d7).

Pr‘ec?sely a8 in Prabhu [B], transform (1.5) for the d.f. F (20,23 0,%)
may be inverted to yield the integral representation

icm
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(3.6)  F(z,2;0,1)
!
= K (43— 1) — | F(20,0; 0, 1—)dK (v-3;1—1, ).
[}

The formal steps in the proof are identical with Prabhu’s, and it is thus
unnecessary to repeat them here. In general, this relation does not yield
explicit solutions, although for the case of discrete inputs of unit size
we obtain directly that

(8.7)  F(#,2;0,7)

= Do) il — > Plag, 050, 1+—k)e k!,

=0 k=[o31]

where n = [t-+2—2,], v = e(t)—o(t+2—%k), and the probability of
emptiness is of the form (3.1). An equivalent result for the d.f. can also
be found if we resort to the direct solution of the integro-differential
equation (1.4).
4. A direct solution for discrete inputs of unit size. In the
case of discrete inputs of unib size, equation (1.4) reduces to
or aF

T Ta. = A(t){F(ﬂo, EH O,t)—F(Zo,ﬁ——lg 05 t)}

4.1
(+.1) 0t 0z

(z = max (0, 2,—1)).
For t <z, the solution is trivial and we therefore only consider

t > z,. Extending the methods used in the case where 1 was a constant
(Gani and Prabhu [2]), we may perform the transformations

i
w=2+t, ()= [A@d,
[}
so that
F(2y,2;0,1) = G(“o: u; 0, E’(t))-
We then find that (4.1) reduces to
3
de
The d. £ G(u,, u; 0, o) is zero for all u <t (0 <t < oo) and satisfies
the condition that 0 < G(u,, 430, ¢) <1 for all u > 1. Lim G(u%,, u; 0, o)
U->00

(4.2) = —G(ug; u; 0, 0)+G(ug, u—150,0) (¥ =>1).

=1, and G(ug, u3 0, o) is everywhere continuous in t < % < oo bub has
a discontinuity at « = 1.
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Solving (4.2) systematically in consecutive ranges starting with
t <u<t+1, we obtain for the range t+n <u <it+n-+1

(4.3) G(”m“; 0, Q(t))

2 {o(t)— o(u—7))

—fo(f) — (2
7 e LO=e=N P (20, 050, u—r),

r=0

i

where, by (3.1),
[2=20]

F(2,0;0,1) = Z g(t—3;0,1),
=0
and the g(tfj; 0,1) are of the form (2.6) with 2, replaced by t—j.
We verify .by induction that (4.3) is the required solution. For,
assuming (4.3) in ¢{4+n <% <t4n-1, then, in the consecutive range
t+n+1 < v <t+n+2, we have from (4.2)

G
a_g +G (1, w50, 0) = G (1, u—1;0, o)

or

n
{ol)—o(u—r) e "
2 p— 14
lf G = f S R F(2y,0;0, u—r—21)do(t) + A4, 2 (u)
r=0
so that

G(ug, 25 0, g)

w

_ Ve —o(u—nyt ,

= E T e eO-et=mp (50 050, u—r—1)4e" DA, ().
=0 e

Ffsing the continuity of G(u,, u;0, ) at the point w =i4a+1,
we find the value of 4, ,,(u), and so finally obtain that for t-+n-+1
<u<t+nt+2

w41
fo(t)— ] r
@ (g, u; 0, o) = E ﬂl_,g_('qﬁiﬁ}_ e‘(@(t)—k’(““")}lﬁ(zu, 0; 0, u—r)
¥y
=0

thus verifying our equation (4.3). We may finall X 3 20y 8
in the form ) y finally express F(zy, #;0,1)

(4.4)  F(z,,2;0,1)

[7]
{e(®)—e(z+t—n))
- W= eRTI=T)  _tet)-eleti-
g vl ¢ O P (20, 050,24 1—1),

there F(29,0;0,241—r) has the form previously given. This, in fact,
is also found to hold for 0 <t < z,.

. I' am grateful t:,o Mr. B. Weesakul of the University of W. Australia
or his help and discussion in the course of completing section 4.
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