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for sufficiently large ». Since lim # (%) = 0 and the expression in brackets
U0

is less than —{ for sufficiently large n, we have
]/E 2k
(9 lim (h— P, l(t—az)yEy(t—a); 2] = 0.

Applying (8) and (9) we obtain the theorem from (6).
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Entire functions in B,-algebras
by

B. MITIAGIN (Moscow), S. ROLEWICZ and W. ZELAZEKOQ (Warszawa)

A Bgjalgebra is a completely metrizable locally convex topological
algebra over the real or complex scalars. We shall also assume that the
algebras in question possess unit elements.

The topology in a Bj-algebra R may be introduced by means of
a denumerable sequenee of pseudonorms satisfying

(1) Hmllz < ”m”i-s-n i = 13 29 eney
and
(2) leylle < Bl i g

(see [13], theorem 24). A sequence &, tends to x, if and only if lim |jz, — a,);

N-->00
=0,%=1,2,... The basis of neighbourhoods of zero in R is of the form
K, (1/n)} (i,% =1,2,...), where K;(r)= {#eR: lzl; <7r}. Any sub-
sequence of the sequence {||zl} also satisfies (1) and (2) and gives in R
the same topology.
A Bj-algebra R is called m-convex if there exists an equivalent system
of pseudonorms satisfying

(3) leylls < Teells iyl

The concept of an m-convex B,-algebra, first introduced by Arens
[2], was then considered in detail by Michael in [7]. A B,-algebra is m-
-convex if and only if there exists a fundamental system {U} of meigh-
bourhoods of 0 which are idempodent (i.e. such that UU C U, where
XY = {2cR: 2 =y, ©eX, ye¥}, X, Y — arbitrary subsets of E), or
it there exists an equivalent system of pseudonorms such that multipli-
cation is continuous with respect to each one [7]. In [7] ib is also shown
that if U is an idempotent subset of R, then so are its convex hull conv U
and its closure U.

t=1,2,...

If R is an m-convex Bgalgebra and ¢{z) = 2 a,2" is an entire fune-
n=0

@

S ana®

@

tion of complex variable #, then for every s <R the series g(z) =
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is convergent in R. In this paper we shall prove that, conversely, if for
a commutative By -algebra R and for every entire function ¢(2) the series

o(z) = ) a,a4" is convergent for every » < B, then R is an m-convex algebra.
]

A gimilar question for non-commutative algebras is open. We thus give
an angwer to_the question stated in [14]. We shall also construct, for
a given entire function @(2), & non-m-convex Bg-algebra R, in which the

series ¢(z) = Z'a,, o™ is convergent for every seR. We ghall also give

a negative answer to problem 6 stated in [13], and formulate some un-
golved problems.

1. Theorem on entire functions

In this section we shall assume that the pseudonorms in the algebras
in question satisfy (1) and (2).
Definition 1.1. Let B be a By -algebra, and X any subset of E.

The m-convex hull of X is defined as H(X) = conv | X", where X*
=1

= X*'X. H(X) is a convex idempotent set. If X is open, then so is
H(X). X is convex and idempotent if and only if X = H(X).

Levwma 1.2. If for a By-algebra R there emists o matrin (OF) of positive
numbers such that

(4) |21 @s. . 0l < sz“‘”l”iad Hm2”1‘,+1- . “mn“ﬂ-l;
tyn =1,2,..., for every finite sequence @, @y, ..., %, of elements of R,
and if
(8) SUPYCL =p; < oo, i=1,2,...,
n

then B is an m-conves algebm

Proof. Put K;(r) = {weR: |jn]; < 7}; by (4) and (5) we have
lla .- @l < 25 01l g ol - Ul -
Consequently
Ein@p) CE(1), n=1,2,..

It follows that
Kia(1p) C U C K (1),

whete U; = H(K;,,(1/ps)}, and (1/n)T;

€ (4,m=1,2,...) is a basis
of idempotent neighbourhoods of 0, q.e. d.
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LEMMA 1.3. If for a commutative Bg-algebra R there exisis a malriz
of positive numbers (C,) such that

(6) “mn“i < O:Lllwll?-)-l, 6,m=1,2,..., zeR,
and (B) holds, then R is an m-convex algebra.
Proof. Let @y, %5, ..., zyeR. Put
(7) wﬁ(mh“wmn)ZZ(mil‘\Lmi2+--'+mik)ﬂ, k S

where the summation is extended to all sequences #; << 4y << ...<<f# of
entire numbers satisfying 1 <4 <n,1=1,2,...,k
We have

n

= {(—1) /n‘ 5’

(8) By WDy

In fact, the coefficient preceding the term 2! ...a% in w} is equal to
n! . )
Pilpat. . py! (’M ’

the first member is the coefficient in the k-nom of Newton, the second
is the number of k-noms containing fixed elements @, ..., @n,-

Oalculating the right side of (8) we see that the coefficient preceding
afl...4fr s equal o

n! 1 i n—r
P1!Pal- . pr! Z(—-l) (ﬂﬁj_r)-

It is equal to 0 if 7 % n, and to n! if » = », and so (8) holds.

It follows that

) 3. Bl

Bl = IBalliya- - Wallip |‘;501/11931|!i+1 .-

1\ _
< ol nlis =7 D, ek s oo Zall
k=1

where E, = &y /|0pllis1-

By (6) and (7) we have the following estimation (note that |[Zl;

= |l sy sl <)
)l < (n) O < ( )n

H%Huu

ok (@, v
and by (9) we have

g o ally < Ol
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where
L3

Gl = ntync; 3 (3] = (@t @nyc.
0

nThe desired conclusion follows from lemma 1.2 and from the equality
Lm Y/ (1/nl)(2n)" = 26, q. e.d.
n

Lemma 1.4. If R is a By-algebra and for every welR
(10) sup}/lla"l; = pi (@) < oo,
n

then (6) holds for an equivalent system of pseudonorms, and, consequently
by 1.3, R is m-convex if it is commutative. '

Proof. We have
. ke
i(@) = limmax /2] ,
n  k<n

Wheqce pi(#) is a function of the first class of Baire defined on a complete
metrie space, and there exists an element x, in which pi(2) is continuous.

Consequently, there exist a neighbourhood U of z, and a constant C
such that

(11) pi(@) < C

for every e U. Let ¢ = 2 —a,, 2¢ U. We have
n
P (5(7—500)" — Z‘ (’;‘I;)mnﬁkm‘lfy
0
and by (11) and (2)

Wi < 3 (2)he~Stutedi < 3} (3) en-*0* = oy
0
” Let:, V=U-2={zeR: 2 =a&—a,,2e¢U}. We can choose such
(6) =i and »; >0 that ¥ D Ky (7). Consequently,

ond 8"l < (20)"(1 /) lfe]

la"l; < Orleliy,  for every aeR,

where () = 0 (1t lefl; = lellyy =1
. i i ) =1, t;., = k(L . .
A clusion then follows Of To . lt.bsi, 1. N 1 P4l (£;-+1). The con

Levwa 1.5. If R is a By-algebra and, for every entire Function ¢(2)

—_— " 7
Zo:a.nz , the series g(z) = ;’anw" is convergent for every weR, then for
every «cR formula (10) holds.

icm
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©
ot

Proof. If (10) does not hold, then in R there exist such an z, and an
index %, that |]m'5'"||1-0 > n*n for a certain sequence (k,) of integers. In this
ease there exists an entire funetion ¢(z) = X " /n"n for which the series

n
@(w,) diverges, g.e. d.
From the preceding lemmas and from the faet that in an m-convex
B,-algebra every entire function is defined, we have the following
THEOREM 1. A commutative By-algebra R is m-convex if and only if,

o0
for every entire function ¢(2) = Dla, " and every element ixeR, the series
0

L

00
@(m) = D ay2" is convergent.
0

Remark. The assumption that the algebra R is complete is essential.
In fact, in the Arens’ algebra L® (1) (see [1]) the algebra ('(0, 1) is a dense
subalgebra for which all entire functions are defined. On the other hand,
in I® no entire functions are defined but only polynomials. Indeed, if
zeL® then for every m we have [2"[, = {lz[},. Now, by the lemma of
ilov ([3], . 40), for every sequence of positive numbers 1, there exists
in I° such an element x, that |l > M,. Hence for every entire funetion

o
@(2) = ) a,2" which is not a polynomial we can choose such an <L
0

that |ayxhl, > 1 for every a, # 0. Thus the following question arises:
is a By-algebra R m-convex if there is defined at least one entire function
whieh is not a polynomial? The negative answer is contained in the fol-
lowing

b2

THREOREM 2. For every entire function ¢(2) = Dla,2" there ewists

a non-m-convex algebra R, such that the series o(x) = 2 @ o in convergent

.:Mgo

for every xeR,.
The following section is devoted to the construction of such algebras.

2, Algebras R,
Leyra 2.1. For every continuous function I'(u) >0, 0 < u <oo,
such that v (1) = I'(u)u — oo 68 % —> oo there exists a function Q(u) such that
1° Q(u) is @ convex function,
2° o(u) = Q(u)fu is increasing to infinily,
3° sup(Q(Nt)—8NQ(t)) < I'(X) for sufficiently great N.
4

(1) L® consists of all functions f(t) defined for 0 <t <1 and such that

3
= (fIf®Fd)k < 0, k= 1,2,..., with the pointwise multiplication.
(]


GUEST


206 B. Mitiagin, 8. Rolewicz and W. Zelazko

Proof. It may easily be verified that there exists a continuoug
funetion #(x), 1 < < oo, strictly mcreasmg to infinity and such that
(1) = 0 and i(z) < min{27 Py (31, (x—1)12},

Let T'(f) be its inverse function. We have

(12) T(t) > 1412 > 2t
Consequently, if we put ho =0, by = T(hy_y) = IT"(0) = T" (1), we
have I, >2", n=1,2,... We put (k) = 2" Q(k,) = 2",

and between k; and k., we define £ as a continuous linear functmn
We shall prove that 2 satisfies 1°, 2°, and 3°.
Ad 1° T$ is sufficient to prove that for the nodes (h,., Q(hn)) we have

(18) B(hn) < A0 2(hp1)+ i Q(Bnyy),
where
- By —h
/1. — n-+1 n —
n hn.;.] — hn,.l }*n + Hn 1.
We write (13) in the form
) —h
(14) iy, < Sma T _p-2m? n=l o
» hn-i 1—hy g " * hn+1 7Ln-1 Py
or, setting %k, = h,/h,_;, in the form
k, 1 1—%;!
(15) 2 < g
kn+1—kw + kn—;-l_knl kn+1-

But if n >1, then T'(h,) = 2h,, and &, = T(hy_1)[Py_y = 2. This implies
that for the second term of (13) (the first term being posﬂnve) we have

11—kt 1—1
4- "k >4- 2, — 9
kn-{»l- k— cn+1 - 4 N 41 kn+1 o

and (13) holds for #» >1. For n = 1 formula (13) is obvious, because
the nodesoa.re (0,0), (1,1), (ha, 2h,). We have thus proved 1°.

Ad 2°. We have (P y1) = 2w(h,) > w(hy,) for n >1, and for h,
<t < hu-p.l

w (t) = (2nhn+1_ 2n lhn) /( 77'n+1 - hn) -

We also l;a.ve o) =1 for 0 <t < 1, and 80 o is non-deereasing.
N Ad 3° Tet hy_; <u <h,, n =2. We have o(u) < ohy,) = 2%,
where

1/t' (2%_ lhn-;Al)/(hn»H - hn.) .

7 =min{m:T"(0) > u} = min {rm: 7™ ( tHu)} <

< 2+10g2t(u).

< min{m:2""* > i(u)}

icm
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We thus have

(16) o{u) <27 22 HoRd—1 — 24(y),
From (12) follows T'(¢) > Nt for t > N, and Nt < N2 for t < N
we thus have
o (Nt) < o(N?)+ (T ().

But if by <1t < Ay, then by, <T({t) <hyy,, and so

an”) o{T (@) < 0(gs1) = 40 (b)) < 20(1),
and
o (Nt) < o(N2)+do(t).
To obtain 3° we write
(18) Q(N)—8NQ(t) = Ntw(Nt)— 8Ntw(t)
Nt((N2)+da(t)— 8w () = Ni{w(N?)—4w(l).

By (16), o (N2)—4w(l) < 0 for ¢ > 1(N?), and so by (17) and (15) we have

sup(Q(Nt)—8NQ(1)) < sup Nt{o(F2)—4d(t)
i t<t(V?)
< sup Nto(N?) = Nt(N?)o(N?) < 2N$3(N?) < Np(¥) =I'(¥), d¢e.d
t<i(N?)
LEMMA 2.2. For the function Q(1)

N

) —8 2 0lq) < TN,

) defined above we have

(19) sup ( (kzzz

where & = {&} is any N-sequence of positive reals £iy..., En.
N

Proof. In fact, if we put 3 & = Nu, then, by the eonvexity of @,
k=1
which, by lemma 2.1, implies

~
we have > Q(&) > NQ(w),
ot

of a5 5 ot

Example 2.3 (see [4]). Let (ayp)np-0 be 2 matrix of reals satisfy-
ing the following conditions:

1° 0 < 8y p < Gppiy
9° There exist such constants Cp, >0 that

< Q(Nu)—8NQ(w) < T(N), gq.ed

M?

]
I
-

Cnymp < Oplnp1@mpin for every n and m.
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We define K = K(a,,) as & Bj-algebra of all formal power series
of the form

€T = an/ln
n=0
such that
(20) ol = 31l any < o0, p=1,2,...

n=0

Multiplication in K is defined as “pointwise multiplication” of
elements, or convolution multiplication of coefficients. The continuity
of multiplication follows from 2° and so K is a B-algebra with pseudo-
norms (20). Such algebras were considered in papers [4] and [5].

In the sequel we shall consider algebras K for matrices of the form

— Py
y,p = €770,

where ©, is a suitable sequence of positive reals.

Algebras K (e"™), treated as topological linear spaces, were con-
sidered in papers [8], [9], [11] and [12].

ProposITION 24. If Q,., < O(2,+2,), then G = €% satisfies
1% and 2° of example 2.3. Moreover, if Q,/n — oo, then wot all entire Sfume-
tions are defined in K ("), and so, by theorem 1, K(e*™) is a non-m-
-conves By-algebra.

Proot. The first assertion is obvious. Now if we put

o
Ry
h(z) = Zhnzny hn =€ ]nnny n = 07
n=0

then % is an entire function. If we take element # of K defined ag 2 — XA

n=0

= 1, then the series h(x) is divergent because the n-th term, of the series
o0 R

2 by, equal to exp(—1 2, +p2,), tends to infinity, q. e. d.

< ;

The proof of theorem 2 is based upon the following
Prorosrrion 2.5. Let M,, n =0,1,2, ..oy be @ sequence of positive
reals such that

(21) M, /n - oo (n — o),

then there exists such a non-m-conves B-algebra R that for each complex
sequence (by)n_y satisfying )

(22) [Baf 6" < o0

e

s
[
<

icm
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and for each x<R the series

o5
b2t
L
pra]
n=0

is convergent in R.
Proof. Put I'(n) = Vnl,; we have

I(n)| M, -0

Thus if we define I"(u) linearly in the segments [#, n+1], then it sgt.isi:ies
the assumptions of lemma 2.1 and we obtain a function Q(u) s%tltsfym.g
10-3° of that lemma. We now put R = K (™). a,, = " evi-
dently satisfy the assumptions of example 2.3 and so R is a Bg-algebra.
By 2° of lemma 2.1 and proposition 2.4 it is non-m-convex.

(n—o0) and I'(n)n—-o0 (n-—o0).

0

X - . . i -
Now let # = D &,2"eR; we give an estimation of jiz"||,. We have
n=0
5 | goeaik)
i i £ £ | pek
W= 3 Y &g, @00
k=0"ij4+ 1=k

n
We have Y4, =k, and so, by (19),
i=1
n

Q(k) <8 X' Qi)+ I'(n)

i1
and R
-] 8p I D(ijy+plin)
. Ve g1, I=t
ey < ERRNERL
=0 Si=k

oo
_ pl”(n)( ,?@837!"(‘-])" = Tzl .
= € Z: ‘51 i
=

— — M,
Now if (b,) sabisfies (22), then there exists such a € that b, < Ce™'»
and for an arbitrary zeR and p =1,2,... we have
‘bnl ”mn”p < C‘exp("‘j[n +])F('71-)+ 'n’loglf‘””ap) .
But for arbitrary reals 4 and B we have
(AT'(n)+Bn){M, 0,
and so for n > ny(p, logllels,) we have
—AI,L—{—]JF(?IY)‘:L’)ZvIOgH-I’Hgl, < _%Jlna
and by (22)

-3

e < oo, goed.

D4e

oo
D) ballia"y <
n=0

3
I
=
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As a corollary we obtain the proof of Theorem 2. In fact, if ¢(z)
(=]

= 'b,2", then it is easy to construct such sequences of positive reals
n=0

(M) that (21) and (22) hold. We can thus define algebra R, as algebra
R constructed in proposition 2.5.

3. An example

In [13] it was posed the following question (Problem 6):

“Is a B,-algebra m-convex if for every element z <R non-invertible
in R there exists a non-zero multiplicative linear funetional f such that
flz) =027

Here we give an example of a non-m-convex Bg-algebra R, which
possesses a total family M of multiplicative linear functionals, and has
the “Wiener property” (i.e. #7'<R if and only if f(@) % 0 for every
feM). We thus give a negative answer to the question mentioned above.

We note that algebra R, has also another property, namely its only
invertible elements are sealar mmltiplicities of the unit.

Example 3.1. Let M,(r), p =0, 1,2,..., be a sequence of conti-
nuous positive functions monotonely increasing to infinity and suppose
that, for each p, there exist such a ¢ and a positive constant 0, , that

@3) My (7) > Oy g M),

We define algebra R, as the algebra of all entire functions x(A)
such that

(24) lelly = sup o ()M, (|2)) < o0, p=1,2,...

Multiplication in By, is defined as pointwise maultiplication and its
continuity in pseudonorms (24) follows from (23). In the same way as
in Proposition 2.4 we prove that R, is a non-m-convex Bg-algebra.

It may be shown that R, is isomorphie with K (6"°r), where
My (1) = M7 ('), and M (r) = supre=% (of. [3], p- 203-206)

n>0

ProPOSITION 3.2. Bvery linear multiplicative functional f defined in
algebra By is of the form

(25)

Fl@) = (4),
where Ly is a fized comples number.

Proof. Let f be a non-zero multiplicative linear functional defined
on RM? and let # = 5(1) = A. Put 1, = f(2). If weRyy, then it may easily
be verified that y(1) = (m(l)*m(lo))/(l—lo)e ar. Thus by the relation

o =o(l)e+(e— ooy,
Wwhere ¢ = ¢(2) =1, (25) holds, q.e. d.

icm®
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Definition 3.3. We define algebra R, as R, Where
My(r) = exp(r’[p)

gnd § >0 is a fixed veal. This is an algebra of entire funetions of order
nd minimal type. .

pe We shall prove that algebras R, have the “Wiener property”. The

proof is based upon the following known ([6])

LevmA 3.4. If o(A) is an entire function and
(26) [@(2)] = Aexp(—CIA]"),
then there ewist such constants A, and Cy that
27 lo(A)] < 4,exp(C,12]%).

From this lemma we deduce

PROPOSITION 3.5. If zeRy, and x(}) 0, then 1[z(A)eRy.
Proof: We have x(1) = ¥, and by the definition of R, we have

@] < Aexp(CIAP).

a>0,

(28)
Hence
- | > A-exp(—ClA[)
and, by lemma 3.4,
(29) eV < A exp (04 1A°).
By (28) and (29) we have
[Rey(A)| < 0a|AP+Cs

and (1) is a polynomial. By (28) its degree ¢ < [f1. Hence it follows

=6¢"cR,, q.e.d. »
He B; progos';tjio(llls 3.2 and 3.5 we bave a negative answer to the question
under consideration. . ' .

Remark 3.6. Tf 0 < <1, then ouly the invertible elements in
R, are constants.

Remark 3.7. In algebras R, there are
polynomials. In fact, for any seR,, we have

not entire functioﬁs but

o _afmy —2fmpyn Pl
lle™l, = S‘l}‘lp " (2) e WP = Sl}P lw(2)e { Il s

v T2 9. 295).
and next we continue the proof in the same way as for L” (see P. 299)

4. Another example

Tn Areny’ example L® ([1]; see also the fo_otnote on p. 295 (;1; tnh;i
paper) there are no multiplicative ]jnear. fu_netlona.ls andftlliez:m a e
entire functions but polynomials. We are interested in the following
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tion: are there any connections between these properties of B -algebras?
The. answer is negative. By remark 3.7 we see that there exists a,oB -algeb“a.\,
having a total family of multiplicative linear funectionals a.nd? havixll
not entire functions but polynomials. In this section we shall eonstruc%
a Bj-algebra R in which there are some transcendental entire funetions
but in which there are no multiplicative linear functionals. Thig construc’
tion is a modification of Arens’ example L°. -

Lemma 4.1, Let {y,} be any sequence of positive real numbers such

oo
Ze""n < 1.
=1

Then there extsts o matric A [ 7 5 o0, W SU
44 itrice A, . of positive P S <
’ nk P e Balk’ 0 = k < y N > 1’ sueh

that

(a) 0<4,; <1,

(b) lmd,, =0, k=0,1,2,...,
n

(G) Awle;:' < gym-Anm,k{-l .

Proof. The rows of A, will be constructed by induction. We seb
An,o =™

and suppose that 4, , is constructed in
Ay s such a way that -
We shall construct the row 4,;,,. We put d (@)-(c) Lolds.

B}c_m(ﬂ'm') = L 711{'7::17 Bk,m(l) =1,
and define By ,,(t) linearly on the segments [mn, m(n+ 1)]. It is clear that

0<Byu(t) <1 and 1UmB,,, (1) = 0.
We define o
oa
Ay = Zg—mek,m(n): n=1,2,..
M=1
We have
-Amn,k.‘,.l < Gﬂ;’m—Bk,m(W’n’) = e""’m_A;a/’;:"
which satisfies (e), and clearly satisfies (a) and (b), q.e. d.

Example 4.2. We define B as th
) ¢ . 7 e algebra of all -
tions on the interval [0, 1] such that * mesmble fine

1
BO) Mo = swpdyp( [la@a)" <o (k=1,2,...).
o

©
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1t is a By-algebra with pseudonorms (30). In faet, we have

1 1

BD) el = sup o [ o™ = sup [ ( [lema) ]
n ) " 0

0

1
) ([ ¥ Lmw
< [sup ALy W U e (t) !'27Ldf)) "m]m
n 0
1
N . A1 -
< [supe'm‘i,,,k“( f e (2)Pat) ip]m = "z (-
P 0 '

Tt follows that the operation of taking the m-th power is defined and
continuous in R. Thus multiplication is defined and continuous in R

because

zy = e +y)r—a2—y2).

Remark 4.3. In R some transcendental entire functions are
defined, e.g., by (31), the funetion

f(:) — Eg—-m(;:m—‘m)zm
m=1
is defined.
ProPOSITION 4.4. In algebra R defined in 4.2 there are no multipli-
cative linear functionals.
Proof. The algebra C(0,1) of all continuous functions defined for
0 <t <1 is a subalgebra of R. So, if there existed in R a non-zero multi-
plicative linear functional F(x}, it would be of the form
F(e) =t (0 <t <1)
for every #<C(0,1). To obtain our eonclusion it is enough to prove that
for every t,e[0,1] there exists a continuous function z,(t), 2,{t;) = 0,
which is invertible in R. Or, what is equivalent, we should prove that
for every i, there exists in R a function 2(t),  being continuous and non-
-zero for i # 1,, and

lima(t) = oo.
t=ty

We may assume that t, > 0; otherwise we should apply an auto-
morphism of R:x(t) - x(1—1).
Let
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We have lim4, =0, and 0 < 4, <1. It iy clear that if
1

(32) sup 4, ( [ lo(0)dt)"” < oo,
» 0
then zek.

‘We write
0, = infA, PnP,
D

By the fact of 4, tending to zero we have 4, > 0. We now put
A, = min(1/2"*, §,/2™)

. .
and choose A in such a way that > 14, =1i,. Now we set
n=1

k=1
. . A n -1
is linear in the segments [ 3 Ady, 3 14y].
k=1 k=1

Moreover, if #, <1, we put @(l,--4) = 2(t,—1t) for || < &, where
(to—e,1+¢) C [0, 1], and 2(3) = 2(f,-+e) for ¢ > t,+e.

We have
1 to fy+e 1
(fim(t)[”dt)lm = (fm“+ f P f m”)lm
0 0 fy fo+e
(})mp)w &
<2 +a(lgte)(1—t,—e)’? =2 )" 40
0 )(1—to—e) (ZK{ J* +

<2 (S:Zn”d,‘)”p +o <22 E‘A;I’/z")""’ +C =224 4C,
1 n=1

M
where C = o(ty+¢)(1—t,—e)'?, and K, = 3 14;. This estimation is
N i=1
also true in the case where ¢, = 1. Thus (i) is the desired function be-
cause by (32) it is a member of R, q.e. d.

5. Final remarks

By the considerations of section 4 we have seen that there exists
a Bj-algebra in which there are no multiplicative linear functionals and
there are some transcendental entire functions. We can give such a con-
struction only for entire functions which are “glightly inereasing”, and
we cannot give it for, say, f(z) = ¢*. We thus pose the following

Entire functions in B,-algebras 305

Problem 1. Let R be a commutative B,-algebra with a unit, and

oo
let ), &"/n! converge for each »¢R. Does there exist at least one non-zero
n=>0

multiplicative linear functional?

If R is a Bjalgebra in which ¢” is defined for each zeR, then we
can prove that ¢° is a continuous function of z. We can prove this also
for every entire funetion ¢(z) = 3a,%" such that a, %0, n = 0,1,2,...,
and C,b, <a;' < Cyb,, where b, = mlfx.x (az', (@y_r@)~7), but the fol-

Ighk<n
lowing question is open:

Problem 2. Let R be a Byalgebra with a unit. Let g(z) = Ya,s"
converge for each x¢R. Is ¢(») a continuous function of x?

Here difficulties arise in the case of lacunary series.
We pose also

Problem 3. Is the statement of theorem 1 also true for non-com-
mutative Byalgebras?
We cannot answer also on the following questions:

Problem 4. Suppose f,g be two entire functions defined on the
By-algebra R. Is the superposition fo g an entire function defined on R?

Problem 4a. Suppose that f is an entire function defined on E.
Is f(z-+2,) defined on R?
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stochastic dam process with non-homogeneous Poisson inputs
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. X

0. Summary. This paper considers the distribution function (d.I.)
for the content of a dam fed by non-homogeneous Poisson inputs of
random size, and subject to a releagse at constant unit rate unless the
dam is empty. The d. f. may be expressed quite generally in an integral
form; if inputs are of unit size, an explieit solution is obtained to the
difference-differential equation for the d.f. of the conmtent.

1. Introduction. In two recent papers, Prabhu [4, 5] has extended
gome methods of storage theory to a quene for which the waiting-time
0 <Z(t) < oo at time 1 >0 satisfies the equation

(1.1) Z (1 8) = Z(8)+ 06X (§)— (L—n) ét.

In storage terminology Z (i) represents the dam content; the input
0 < X{f) < co entering the dam in time # js such that the arrival times
of single inputs form a Poisson process Wwith parameter 2, the inputs
(independent of arrival times) being identically and independently distri-
buted with d. f. H(u); 5t (0 <7 < 1) indicates that part of the interval
6t for which the dam is empty.

The content Z(f) is a time-homogeneous Markov process whose
transition d. f.

Fl2y,2,1) = PriZ(t) <212(0) =2} (0 <2,0 <2< 0)

satisties Takdes’ [8] well-known integro-differential equation. For such
a process, the probability of first emptiness d@ (2,, ) of the dam ab time
t > 2, was given by Kendall [3]. Prabhu obtains an integral of this as
the probability of emptiness F(2, 0,17) of the dam, and finds the d.f.
F(z,,2,1) in an integral form involving the known input distribution
and F(z,,0,1).

In the argument some use is made of the additive nature of the
input X (#); in fact, the results apply equally to the non-additive inpub
obtained when the Poisson process of arrival times is non-homogeneous
with parameter A(¢). Reich [6, 7] has studied this case, and reduced the
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