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Generalized stationary processes of Markovian character
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Introduction

The theory of linear prediction developed by Kolmogorov [7] and
Wiener [15] treats the problem of extrapolating from the known past
of some stochastic process to its future. The purpose of this note is a study
of generalized stationary processes for which the prediction of the future
in terms of the past up to time ¢ depends only upon the behaviour of the
process in an arbitrarily small neighbourhood of . For ordinary Gaussian
processes & similar problem was investigated by Lévy [9], who established
the canonical form of processes for which random funetions ,(f), 25(1),
..., 8, (t) may be found such that if they are known, then the behaviour
of the process in (f, co) is independent of all other informations on the
values of this process in (—oo, ).

Let @ denote the space of all infinitely differentiable complex-
—valued functions defined on the real line whose supports are compact.
The support of a function ¢ from £, i.e. the closure of the set {t: ¢(l)
= 0}, will be denoted by s(p). In the sequel for every real number % we
shall use the notation (z,¢)() = p(t-+-h). A sequence ¢, @a; .. from &

is said to be D-convergent to ¢ if the seb U s(g,) is bounded and for every

n=1
k (k > 0) the sequence of derivatives o™, ¢, ... uniformly converges
to ¢®. The space @' of Schwartz distributions is the space of all conti-
nuous linear functionals on 2 ([13], p. 24).

Tet us congider the totality of complex-valued random variables
with mean 0 and finite variance which constitute a Hilbert space o
with inner product (&, 7) = E(& -7), where () denotes the expecta-
tion of the random variable {. A continuous linear mapping X from £
into © is called a generalized stochastic process. This notion is due to It6
(5], p- 210). Ordinary stochastic processes #(?) continuous in quadratic
mean may be treated as generalized ones. Namely, we make the genera-

o0

lized process X(p) = [ x(f)p(t)dt to eorrespond to the process x(t).

—c0
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A generalized stochastic process X is said to be stationary if for
every real number i we have the equality (X (wp), X(ny) = (.X(q::) X(y))
(p, pe 2). Stationary processes which are ordinary in the Wid(), sense
(see [2], p.512) are stationary as generalized processes. Conversely.
every ordinary process which is stationary as a .generalized one is aIS(;
stationary in the -wide sense as an ordinary process.

It6 [5] has developed the spectral theory of generalized stationary
processes. In particular, he has proved that for every generalized statio-
nary process X there exists a measure uy defined on the class of all Borel
subsets of the real line such that for an integer s

B~ <)

[ @41t~ e (dt) <oo
and -

o0

(X @), X)) = [¢Od0uxlan,

—oa

where ¢ denotes the Fourier transform of @, 1. e.
o0
) = fe"“tp(u)dfu..

‘The measure py is uniquely determined and is called the spectral
measure of the proeess X. The positive definite Schwartz distribution

“Relp) = [ @(0)px(ds)

— 0

is called the covariance distribution of the process X. The relationship

between the inner product and the covariance distribution is given by
the formula H

(X(9), X(9) = Rx(px9),

where « ‘denotes the convolution and p(f) = (—t). We remark that
a generalized stationary process is an ordinary one if and only if its speec-
=

tral measure is finite on the whole line. Moreover, if X(p) = [ a@®p)dt,

where ©(t) is an ordinary process, then -
Rxlp) = [ r-(eit,
—o0
‘where 7,(f) is the covariance function of o (t): rp(t) = F e e (du). .

Let 4 be a subset of . By [4] we shall denote t];em least subspace

icm

Stationary processes 263

of § containing the set A. For every generalized process X we can define
a corresponding subspace of H as follows:

x = [{X(p): ¢e 2.

The Hilbert space Dy is isomorphic to the space L*(uy) of all complex-
-valued functions which are square-integrable with respect to the spectral
measure ux. A natural isomorphism ¢: 9y — L (ux) is the extension of
the mapping ¢(X(p)) = ¢. If X is an ordinary process, then we have
the equality ¢(x(t))(u) = ™.

For any set I we put

9k = [{X(9): 9 2,3(¢) C I}].

The linear least squares prediction of X (@), based on the full past of the
process up to time %,, is the orthogonal projection of X(¢) into the sub-
space HE™0. In the sequel this prediction will be denoted by m, X(p)-
A generalized process X will be called deterministic if, for every {,
S)g;oo,t) — S)X
and completely non-deterministic if
N 9™ = {0} +9x.
—oo<l<oo
Every process is the sum of two orthogonal processes, one deterministic
and the other completely non-deterministic. Rozanov [12] extended
the famous Kolmogorov-Krein criterion ([7], [8]) onto the class of gen-
eralized processes. Namely, he proved that a generalized stationary
process X is deterministic if and only if
“lo i
J _g.,_gx_(_)dt = —o0,
14+
where gy is the density function of the absolutely continuous eompo-
nent of the spectral measure pux. Further, the process X is completely
non-deterministic if and only if its spectral measure is absolutely con-

tinuous and
Floggx(t)
Joo14-t2

—u

at > —co.

II. Markovian character

A generalized stationary proeess X is said to be of Markovian cha-
racter if for every 7,

m X (@) () HEY

w<ty
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whenever s(p) C (4, oo). For such a process the prediction of the future
based on the full past up to time ¢, depends only upon the behaviour
of the process in an arbitrarily small neighbourhood of t,. From stationari-
ness we infer that X is of Markovian character if and only if
’ X (p)e () SJE%’O)
u<0
whenever the support of ¢ is contained in the right half-line. Moreover,
an ordinary stationary process #(f) is of Markovian character if and only
if for every positive ¢ we have the relation
moz(t)e () DL,
w0
Now we shall quote simple examples of deterministic as well as
completely non-deterministic processes of Markovian character. In the

sequel by 2™ (t) we shall denote the n-th derivative in quadratic mean
of the process x(f).

1. Random oscillations. Let us consider a system &, &,,..., ¢,

of orthogonal random variables with mean 0 and finite variance and
a system A, 4,, ..., 4, of real numbers different from one another. Setting

(1) () = D) & exp(idgt)

k=1

we get & stationary process with the covariance function

n
(2) ra(t) = Dby exp(ii),
k=1
where ’Fhe coefficients by, by, ..., b,, being the variances of &, Eoy iy &y
respectively, are mnon-negative. Every stationary process having such
a covariance function is equivalent to the sum (1) and will be called
a random oscillation. Tt is very easy to prove the equality

- AI; .
ma () = ) —Eexp (i),
k=1

where
E 1 1 .. 1 z(0) 1 e 1 &
i iy idy Dy S0) A, it |
4y = i (i) (ids)? (841 27(0)  (34) (i2,)" “
t

PEAD™Y (3" (L. (i) ?
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and 4 is the Vandermonde determinant of i, %4,,...,%4,. Thus the
plediction my(t) is a linear combination of denvatl\”eb %(0), 2'(0),
., @ 0(0) and consequently belongs to () H?, whence the Mar-

u<0
kovian character of #(¢) follows. On the other hand, by simple computa-

tions we get the equality m,2(t) = «(t). Hence we infer that the process
@(t) is deterministic.

2. Analytic processes. An ordinary stationary proeess x(f) is eall-
ed analytic if it is infinitely differentiable and can Dbe expanded in the
power series

o 2 (0)
2 7! !
=0
convergent in quadratic mean. For instance, all random oscillations
are analytic processes. By Loéve’s theorem ([11], p. 471), a stochastic
process is analytic if and only if its covariance function can be extended
to an entire function on the complex plane. Moreover, if the process
and all its derivatives are separable, then almost all its sample functions
can be extended to entire functions on the complex plane ([1], p. 438).
The prediction of analytic processes can be expressed in terms of deri-
vatives 2(0), 2'(0), ... as follows:

\1 J.(n) 0)

=L
n=0

o (1)

. belong to () HY", analytic
B w<o
processes are of Markovian character. Moreover, = 2(t) = »(¢) and, con-

sequently, they are deterministic.

Since all the derivatives a(0), z'(0),.

3. Generalized processes with orthogonal values. We say,
following Gelfand [3], that a generalized stationary process X has ortho-
gonal values if for every pair ¢, p from & satisfying the condition s{g) ~ s(y)
= 0 the equality (X (¢), X(9)) = 0 holds. The covariantce distribution
of processes with orthogonal values is a linear combination of the Dirae
S-distribution and its derivatives (see [3]). If the process is not identi-
cally equal to 0, then its spectral measure is absolutely continuous and
the spectral density, i.e. the first derivative of the spectral measure
is a polynomial. Of course, every such process is completely non-deter-
ministic. For every function ¢ with s(¢) C (0, oo} we have the equalify
7, X (¢) = 0, which implies the Markovian character of processes with
orthogonal vaﬂueb

4. Processes whose spectral deansity is the reciprocal of a poly-
nomial. Let us consider an ordinary stationary process x(t) with
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absolutely continuous spectral measure having the speetral density of
the form

1
. () = ——
(3) =
where W (t) is a polynomial. Of course, the integral
~ logg.(t
( 0g g (%) it
Joo 142

is finite and, consequently, the process () is completely non-determi-
nistic. Moreover, an explicit formula for the predietion is well known
(see [6], p.127):

Tt chu 0)  (t >0),

where ¢,(t), ¢,(1), ..., ¢,(¢) are non-random coefficients. Since the linear
combination of derivatives z(0), #(0), ..., 2™ (0) belongs to () HE?,
w0

all processes with -thie spectral density of form (3) are of Markovian cha-
racter.

Stationary processes #(t) called Markov in the wide sense (see for
the definition [2], p. 233) belong to the class under consideration provided
they are not- constant. Their spectral density is given by the formula

[/

(4) 4:(8) = [FEERATY

where « is a positive number and b is.-a complex number with positive
real part. Moreover, the covariance function 7,(t) is equal to 7,(0)e™%
(t:>0). They are the only mon-eonstant: stationary processes for which
the prediction is of the form myx(f) = C(1)x(0) (¢ > 0) (see [2], p. 233).

5. A completely non-deterministic process for which the predic-
tion depends upon infinitely many derivatives. Let 2(t) be a statio-
nary process with a,bsolutely contmuous spectral measure having the
spectral dengity T

4
. .(/a'(t) =TTy
[1 (1+12/a)
k=1
where ¢, a,, a,, ... are positive numbers,
(5) : ay < @y < ..,
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and
T O
(6) lim <1.
ksoe akﬂl

By simple computations we get the inequality

~ logg, (t
Logga )~dt = =log
1+ =

- ”(17‘—1/@,0)2
k=1

> —o00.

Thus, by the Kolmogorov-Krein criterion, the process 2(t) is completely
non-deterministic. We shall now- prove that the process x(f) is of Marko-
vian character. From (6) it follows that there exist an integer k, and
a positive number b smaller than 1 such that the inequality ay/a, <b™*
holds whenever n >k > k,. Taking into account this inequality, we
get the following one for k > k,:

. ko1 k-1 -
[1h=2l- I 019 102
n=1 G at e g \On n=k+l n
n#Ek
ko—1 k-1 ky—1 o
>n (‘f" —1) H(b”"‘—l)n (1—b" >H(——1)n(1—b")!.
n=1 O n=Kkgy V=1
Hence and from (5) we obtain the inequality
= a,
(7) 4= inf 1—-%1 >0.
1<k<a;n=1 'n
nzk

Let us introduce an auxiliary funection of the complex variable

F(2) =[7(1+Z—z)

=1

This function is an entire function of exponential type. Since
3 o m
9 :

P (idy) = — (1— 4),

we have, in view of (7),

(8) A = inf |e F'(is) > 0.

1k <os
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Given a positive number ¢, we put

IF Z)| E o~ 1% . had F(z)e"mlf
(&) o(e) = Y —
|1+ iz /ay ? £ F' (iay,) (e— iay) ’
. m
n [l0—isin)e ™™ o [T (G iefa)o
T (2) = | T S i“,—‘
1./:{ F/(zva;)(~~w,‘) s F'(iay)
(n=1,2,..).
By (8), we have on the whole complex 1)1ane
~la | B (2
e < MO o [T
& ARtz
i n;élx
< ZZ o exp oy ).

n=1

Thus v(s) is an entire function of exponential type. Further, we have
the inequality |v, (%) <w(w) (m =1,2,...) on the real line. The se-
quence 9,(#), v4(2), ... of polynomials econverges to v(z) uniformly in
every compact set. We shall now prove that all the funetions v(2), v,(2),
05(2), ..., regarded on the real line, belong to the space L2(u,) and the
sequence vy(u), vy(u), ... converges to v(u) in the sense of L2%(u,), where
1 i8 the spectral measure of the process in question. To prove this it is
sufficient to show that the function w(u) belongs to L2(u,). But this
statement follows from the Schwarz inequaﬁty In fact,

et
w2 (u) <\ —
() ‘1“ y n? 1+ utjay’
whenece, setting
1 [+=]
B = = Z 6—”‘7;
AA.
=1
we get
i N P ()
w(u du) < B el e (du
_l () a0 2 s
= 'BG -""’“ f = Bor Y a6 < oo,
< 1+u /an i

‘We have proved that the funection v(u) is the limit in the sense of
L*(u.)-convergence of a sequence of polynomisls. From the equality

(9) f2™(0)) = (i) (n.=0,1,...),
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where ¢ is the natural mapping from H, onto L*(u.), it follows that the
random variable ~'(v) is the limit in quadratic mean of a sequence of

linear combinations of derivatives x(0), #'(0), ... Thus
(10) THoye M) DL
u<0
To prove the equality
(11) ma(t) = ' w) (¢ >0)

it suffices to show that the random variable x(f)—:'(v) is orthogonal
to all random variables #(s) (s << 0). In the language of L?(u,) the last
statement can be written as follows:

(12) [ (g™ —v(w) e~ g (w)du = 0
—o0

Now we proceed to the proof of (12). Since v(ia) = e k=1,

2,...) and the functlons v(z F(z) and ¢ are entire of exponential

type, the quotient (¢ ( )/F(z is the same one (see [10], p. 37). Put

F*(z) = ﬁ(1*§:)

M=l

(s < 0).

For all complex numbers 2z in the upper half-plane we have

|F* ()] >ﬁ Re(l—:%) _n(1+1m“) >1.

=1 n=1 n
Hence it follows that the function #* (e"“—v () e [F () F*(2) (1 >0,
s < 0) is analytic and of exponential type in the upper half-plane. Given
a complex number 2 = 6™, where 0 < 6 < 181: or %n < 6 < =, for every
index » we have

iz * 208inf ¢ e ¢ _ 3
e I e L
e w TE e, TET

Hence and from (8) we get

P (eztz (z)) 0—1&5 zﬁei(t—s)s —255 \Z —lan
(=) F* (2 ﬁ (1—1—*/2/(12) AF* (®) |1 iz o,
~ Y.
=1
S —iay, 2esgsin6
gzg(s—t)gsinﬂ = 4
< 5
T 20sinf  o*\'"*
I (1+4¢'eos2 v 4 (1+ gsinf _2_)
n=1 " [
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Since sin @ > 0 and cos26 >0 whenever 0 < § < %7: or %77, <0 <7,
¢ >0 and s < 0, the function =2(¢""— n(z))e”"*/F () F*(z) is bounded
on every half-line z = ¢*, where 0 < 0 <jm or gn < 6 < = Applying
the Phragmén-Lindelof theorem ([14], Chapter V, §5.6), we conclude
that the function in question is bounded in the upper half-plane. In other
words, we have the relation

= O(|2|2
rare O

N {eits_w_”(z))eds: !
|

(t>0,s<0)

in the upper half-plane. Hence, in view of Cauchy’s theorem, we get

oo

~ (6““—’1)(%)) gt
F(u) F* (u)

I

f (™ —v(w)) e~ g, (w)du = ¢ du

—00

. (g'its_v(z)) e—l'.sz
— —_—  dz =
tim ¢ f Fore w0

where s, denotes the semi-circle ¢ = pd? (0 <6 < 7). Equality (12)
is thus proved. From (10) and (11) it follows that the process x(t) is of
Markovian character. Moreover, the prediction =,z (f) (¢ > 0) depends
upon infinitely many derivatives x(0), z'(0),...

The above-mentioned examples show that processes of Markovian
character may have different analytical structure. Therefore a complete
analytical characterization of such processes seems to be extremely
difficult. In the next section we shall give a representation theorem for
2 subelass of the class of processes of Markovian character.

III. A representation theorem

The inner product (£, ) on 9, induces a bilinear functional on the
space Z of all infinitely differentiable functions whose supports are
compact. Namely, for every pair y,, vy, of functions from 2 we put

(13) (P15 ¥2)e = (X("/’l)y X(‘Pz)) .

A generalized process X is said to be distributionally complete if the
convergence lim (y,, y,)o = 0 (p,e2) implies the convergence to 0
T—00

of the sequence y,, y,, ... in the sense of the space 2’ of Schwartz distri-
butions, i. e. the convergence

Em [ . (t)p(t)ds =0

icm
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for every ¢ from. . For distributionally complete processes the bilinear
funetional (y;, ¥.)e is an inner product on %. Moreover, the completion
of @ to a Hilbert space is a subset 2% of the space 2’ of Sehwartz distri-
butions. The strong convergence in 2% implies the convergence in the
sense of the theory of distributions. It is obvious that the Hilbert spaces
$x and Px are isomorphic. The extension of the mapping X(p)— ¢
(pe @) is a natural isomorphism x between Hy and Px.

Let gx(t) be the density of the absolutely continnous component
of the spectral measure uy. A sufficient condition that the stationary
process X be distributionally complete is that for every ¢ from 2 the
integral

le () it
gx (1)

be finite. In fact, applying Parseval’s equality and the Schwarz inequa-
lity, we have

S 2 1 F. . 2
|/ Pl ()] = 5 [ b0
1P e b P 1 F s RO
=5 [ inVox) et < o i fhatdoxtod [
1 Fe Flis o b
b= L l i dt:wm%)gl L

which gives the distributional completeness. For instance, the integral

@ (1) it
gx(0)

is finite whenever gx is a positive polynomial or the reciprocal of a poly-
nomial. Thus generalized processes with orthogonal values whose spectral
density is a positive polynomial and ordinary processejs whose spectral
density is the reeiprocal of a polynomial are distributionally coraplete.
We have seen that processes belonging to these two classes are of M&rko—
vian character. The converse implication is also true. Namely, we'shaj]l
prove the following theorem, where two processes X ajnld Y are said fo
be equivalent if for every funetion g from 2 the equality X (¢) = Y (@)
holds with probability 1:

THEOREM 1. Bvery generalized stationary and distwlbutional.ly complete
process of Markovian character is equibalent to either o generalized Pprocess
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with orthogonal values whose spectral density is a positive polynomial or.

an ordinary process whose spectral density is the reciprocal of a polynomial.
Before proving the Theorem we shall prove two Lemmas.

Lemma 1. If the covariance function of o process x(t) n times differ-

entiable in quadratic mean is given on the right half-line by the formula
m
ralt) = Zl 0 (1) exp (ax),

Where &y, Gy, ...y G ave different complex numbers, v, (1), vy(t), veey U (B)
(v(t) # 0) are polynomials of degree sy, 8,, ..., 8y respeciively and

m
m - Es,‘. <n-1,

le==1
then either @(t) is o random oscillation or the spectral density-of (1) s the
reciprocal of a polynomial.

(14)

Proof. Since the covariance funetion is bounded on the whole line,
the real parts of a;, @y, ..., @, are non-positive. Moreover, if Rea; = 0,
then the corresponding polynomial v, (1) is constant. Thus, for positive t,
the covariance function 7,(f) can be written in the form

» q
7a(2) = D wi(t)exp (bit)+ 3 Aexpict),
k=1

k=1

where b,,b,,..., 5, are complex numbers with negative . real parts,

wy (), wa(t), ..., wy(t) polynomials of degree p,, p,, ...y Pp Tespectively,
61 C2; -+, 6g ave real numbers and 4,, 4,, ..., A, are constant coefficients.
For p = 0 or ¢ = 0 the corresponding expressions are assumed to be 0.
Consequently, inequality (14) can be written in the form
|4
(13) P+a+ Yopp <ntl.
i=1
Further, from the equality

i
.1 )
el o) = lim — f ro(t)exp (—ic,)dt = A,

it fol}ows that all coefficients 4., 4,, ..., 4, are positive. Consequently,
72(?) is the covariance function of a random oscillation, provided p = 0.
Now let us suppose that p > 1. It is very easy to verify that the density

9: of the absolutely continuous component of the spectral measure u,
is given by the formula

bl ?
{18) 92 (1) = %_:f Re (2 wy(w) exp (b — it) u))) du.
b =
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Hence, by simple computations, we infer that g,(f) is a rational func-
tion: g.(t) = V({)/W(¢), where the polynomials ¥ (t) and W{(#) are sup-
posed to have no common roots. Denoting by d, and d, the degree of
¥ (t) and W (t) respectively, we obtain, by virtue of (16), the inequality

1]
(a7 d<2(p+ Y-
k=1

By assumption the process x(f) is » times differentiable in quadratice
mean, whence the finiteness of the integral [ ¢*u,(df) follows (see [2],

p. 537). Consequently, the integral

o V(D)
] i £ e

is also finite, which shows that the degree of W (f) should be greater than
the degree of #""'V (1), i.e.

2n+2+d, < d,.

Hence, in view of (15) and (17) we obtain
» B
a24dy <2(p+ Ymi) <2(p+at D)m) <22
k=1 =1

Consequently, d, = 0 and ¢ = 0, which implies that the spectral measure
4z is absolutely continuous and its spectral density is the reciprocal of
a polynomial. The lemma is thus proved.

LemMa 2. Let %(t) be an ordinary stationary process. If there ewist
a positive number 1, and a system of functions ay(?), a,(?), ..., a,(t) defined
on the interval 0 < ¥ << ty such that for all t from this interval the prediction
myx (1) is given by the formuls

b1

> a ()2 (0),

(18) m(l) =

1l

i
then either (1) is a random oscillation or the spectral density of w(t) is the
reciprocal of a polynomial.

Proof. From (18) for every positive number « and every number
¢ satistying the condition 0 < < . we get

(19)  r(t+u) = (), 2(—u)) = (wen(t), 2(—w))

= N a@®(0), 2(—w) = X a®)r @,
k=0 k=0

Studia Mathematica, XXI. 8
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If all the fuanctions a,(t), ¢,(%), ..., a, (1) are identically equal to 0,
then, by the continuity of the covariance function, 7,(0) = 0 and, conge-
quently, the process #(t) is equivalent to a constant one and, of course,
is a trivial random oscillation. Therefore, in the sequel we may suppose
that the covariance function r,(¢) and the function a,(f) are not identically
equal to 0.

First let us suppose that n = 0. From the continuity of r,(t) we
obtain, in view of (19), the continuity of @,({) in the interval 0 <t <t,.
Taking & positive number w, for which r,(u) # 0 for every pair 1,1,
of positive numbers satisfying the condition 0 <i#,+1, <1, we have,
according to (19), the equality

gt 1) 72 (%o) = ra(ty+ 1ot %) = ao(t)r2{la+ 1) = o {ty) @ (82) 75 (Uy),

whence the equation a,(?;+1t5) = @g(;)ay(t,) follows. It is well known
that the exponential functions ¢~ are the only non-trivial solutions of
this equation. Thus, for all positive » and ¢ from the interval 0 <t < [
we have the equality #,(f--u) = e~ %, (u), which leads to the differential
equation 7, (%) = —erz(u) (¥ >0). Hence we infer that 7.(t) is the co-
variance function of a stationary Markov. process in the wide sense
([2], p. 233), which, of course, satisfies the assertion of the Lemma.
Now let us suppose that » > 1. Taking a point #, for which a,(l,)
# 0 we infer, in view of (19), that for all positive « the n-th derivative
7 (w) is a linear combination of differentiable functions T (14 1y), 72(4),
75(%)y -5 £~ (u). Oonsequently, the covariance function r,(#) is infinitely
differentiable on the right half-line. Now we shall prove that it satisfies

on the right half-line a linear differential equation with constant coef-
ficients: :

q
(20) 7 (1) + E\Gkr}c’"(t) =0,
poer)
‘where
(21) qg<n.

Let us introduce the notation

Delty, tyy oevy ) = |

Talte) 50t . O (L) |
T2 (1) T.’::(tl) "'g)(h) l

Tu(ts) ¥ (te) .. 7§

Of course, D,(t,) = 0 on the right half-line. Now we distinguish
two cases. First let us assume that D, (1, ¢, vy by) = 0 for every system
of positive numbers #,,%,,...,1,. Let ¢ be the least integer for which

icm
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Dyltoy by -o-r by) 0 and  Dyyy(tes byy --0y Tgpn) = 0. Obyio_usly, g <.
Take a system £q,%;, ..., I, satisfying the condition D,(t;,%:,..-,%) # 0.

By developing the determinant D,.,(Zg, %,y .-
last row, we get

.y I, ) With respect to the

Dasallos by s lol) _yaoniy 4 Noto =0 (0> 0),
DQ(tO:iU'")tq) k=0
where the coefficients ¢y, ¢, ..., ¢, 40 not depend upon t. Relations (20)

and (21) are thus proved. o
Finally let us suppose that D, (%, 1, ..., &) 7 0 for a system 2y, %,
..., I, of positive numbers. Introducing the notation

) = D (~1F ()l s— )
k=0
we get, in view of (19), the equation

n
(22) A8 erg(u) = D)8 (w) 4 e (0),
=0
whenever # >0 and 0 < (n+1)h <t.. Substibuting » = Zy,1%, ) i,
into the last equation, we get a system of linear equations for q'uantltles
AP+, (0) (b = 0,1, ..., n). The determinant of this system, being equal
50 Dy(By, fry +vrs 1), is different from 0. Thus A§+Ya,(0) (k=0,1,..., n)
can be expressed as linear combinations of A5 Vr (%) (j =0,1,...,7)
whose coefficients do not depend upon h. Hence we obtain the con-
vergence
1
h'n-)—l

A%V, (0) = —¢, (k=10,1,...,m)

ag h — 0. Dividing by k™' equality (22) we get, as b —0, the equation
Tg""”(u)%—ﬁ’ ¥ (u) = 0 (u >0), which completes the proof of (20)
=0

and (21). N )
From equation (20) it follows that for positive ¢ the covariance func-

m -
tion 7,(t) is of the form Y v (t)exp(axt), Where a,, ds, ..., &m 278 different
fo?

complex numbers and v, (), va(t), ---, U (F) a:re polynomials not identzi—
cally equal to 0. Denoting by 81, 825 ---5 Sm their degrees, we have, accord-
ing to (21), the inequality

m
m-+ ]?21 s <m+1.
Further, we have supposed that a, (1) £ 0 in 'the i{lterva.l. 0 ét;< .
Consequently, by formula (18), the process z(t) is » times dJﬁerentlable.
Applying Lemma 1 we get the aggertion of our Lemma.
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Proof of Theorem 1. Suppose that a generalized process X satis-
fies the assumptions of the Theorem. Taking a funetion ¢, whoge sup-
port is contained in the right half-line, we have the relation 7o X (p)e (M) HEO.

u<0

Consequently, we can find a sequence Y1y P2y ... Of functions from <@
in such a way that

1
(23) s(%)C(*;,O) (m=1,2,..)

and the sequence X (y;), X(w,), ... converges to 7z, X(p) in quadratic
mean. In the language of the space L*(ux) this means that the sequence
of Fourier transforms 9y, 9, ... converges to a function f from L2(uy)
in the sense of L?(ux)-convergence and

(24) tm X (p)) = f,

where : denotes the natural isomorphism between Dx and L*(ux). More-
over, from the distributional completeness of X it follows that the se-
quence i, g, ... is distributionally convergent to a distribution T from
9%. By formula (23), the distribution T is concentrated at the origin.
Consequently, T' is a linear combination of the Dirac é-distribution and
its derivatives

m
(25) T = }b,s0,
k=0
where, of course, the coefficients by, by, ..., b, and the integer m depend
upon ¢ (see [13], Chapter III, § 10).

First let us suppose that for every function ¢ from 2 whose support
is contained in (0, oo) the corresponding distribution 7' vanishes. Hence
we get the equality =, X (p) = 0 whenever () C (0, o). Consequently,
the process X has orthogonal values.

Now we shall prove that the spectral density of X is a positive poly-
nomial. Contrary to this let us suppose that the spectral density of X
is a polynomial having a real root. Since this polynomial is non-negative,
ity every real root must be of even multiplicity. Consequently, the spectral
density gx may be written in the form 9x(8) = (t—a)?v(t), where o is
a real number and o(f) is a polynomial. We define aaixiliary functions
Jiy /ey ..., i setting

{Ml- if a-l-i<t
Ju(t) = {i—a kBT (k=1,2,...)
0 otherwise,
1 .
fw(t)=[:?q AL
-0 otherwise.
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Obviously, all the funetions fi,f,,...,f, belong to L¥(ux) and the se-
quence fi, fa,... converges to f,, in the sense of L*(ux)-convergence.
Further, for every index & we can find a sequence Yk Yo, --- Of fune-
tions from £ such that

o0
(26)  lm [ g —fidFltgx@)d =0 (k=1,2,...).
n—ro0 g
Hence, in particular, it follows that the sequence 9,4, ¢az,... is con-
vergent to f in the sense of L2(ux)-convergence and, consequently, by
the distributional completeness of the process X, the sequence Piks
Yoy --- 18 distributionally convergent to a distribution, sa,y. T"'f from
a@,'x. Moreover, the sequence T, T's, ... of distributions is distributionally
convergent in 9. In order to obtain an explicit formula for T we apply
the Schwarz inequality and Parseval’s equality:

- 1 T oita) B
f"/’n,k(t)gu(t)dt—g f gﬂ(: )dt1

1k

| owaA . 1 ~ N 2
= 151;_ Jo %,k(t)qﬂ(t)dt—g_ i fk(t)m(t)dtl

iy st (t)|1‘(t)|-'z—'1~)2
<4n2( [+ ax@ltpnsd—F 0116 01 7

N A o e [_1OOF
<Z7—T;(_f m) _l (14 gx (8)) 901 () — Fr ()] dt—i Tt9=0)

The integral
_le@F
_J 1+gx(1)

is finite for all functions ¢ from 2. Further, the integral
f” a
_J 14gx()

is finite, because 1--gx(f) is a positive polynomial of degree at lea,gt 2.
Congequently, aceording to (26), we get the formula

1 [ ¢lt+a) ¢(a) = s
Th(p) = 5; f (p—-g—dt = Eglogk%—o 1) (& 1,2, )

1k
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which contradicts the distributional convergence of 14, 7,,...
gx is a positive polynomial.

Now let us suppose that there exists a function ¢ belonging to @
for which the distribution T defined by formula (25) is different from 0.
Let w,, 9s,... be the sequence defined above and convergent to the
distribution T' in the distributional sense. The supports of these functions
satisfy condition (23) and the sequence of their Fourier transforms con-
verges to a function f from L2(uy) satisfying equality (24). From the
distributional convergence of the sequence g, ,,... it follows that
there exist an integer s and a sequence F,, F,, ... of continuons functions
which is uniformly convergent to a continuous function F in every finite
interval and

(27) (n=1,2,..),
(28) FO =T,

where the last derivative is taken in the distributional sense ([137], Chapter
III, §6). From (27) we get the equality

Thus

F'gf) = Yn

i+h fg+h tat-h
(29) APF, 1) = | j O N AL .
t s o

which implies the following one:

1— exp (—ihu)\®
Wr, = (_%M)¢n(u) n=1,2,..).

Hence it follows that the sequence A )F (%) A/%QFQ(M),

. is convergent
tio the function ¢

(1 —exp( _ihﬂ)sf(u)

in the sense of L2(ux)-convergence. On the other hand, in view of (23)
and. (29), the supports of the functions AL 7, ( (n =1,2,...) are bounded

of the

i

AN\
in common, which 1mp11es the uniform convergence to APF(u

sequence A&,)Fl(u A(S)F( u), ..

. Hence, for every real mb
get the equality ’ ¥ mmber B, we

N 1—exp (—hu)\*
apr(w - (PO,
nx-almost everywhere.
) Eurther, according to (28), by simple computations we get the
equation
N\ 1— i s
0P () — ( exp ( —ihu) ok
( iw knbk( )",
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©

Stationary processes 279

m
where the polynomial } bi(—iu)¥ is the generalized Fourier transform
=0

of the distribution T (see [4]. p. 212, [13], Chapter VII, § 2). Comparing
the last two equalities we get, for every real number 7, the equality

(1——exp(—ihu) )Sf(u) _ (1—exp(ihu) N

m
- - by (—iu)*
i il ) 2 il )
k=0

ux-almost everywhere. Consequently, to every number % there correspond
a set 4; of ux-measure 0 and a set By consisting of multiples of 2= /h
different from 0 such that the equality

m

= Db —i)
k=0

holds whenever ueAdy ' Bj. Taking a pair %y, h, of incommeasurable
numbers we observe that Bj ~ By, = = 0 and, furthermore, formula (30)
holds if % do not belong to the inbersection (dn, ~ By) ~ (Ap, ~ Bry)y
which is contained in A4; “ Aj,- Consequently, equahty (30) holds px-

m

-almost everywhere. In other words, the polynomial 2, bp(—iu) belongs
. k=0

(30)

to L*(ux). Of course, we may assume that b, == 0, which implies the
oo
inequality [ u*™ux(du) < co. Hence it follows that the process X is equi-

valent to an ordinary process z(f) m times differentiable (see [2], p. 337).

Tn the same way as previously in the proof of formula (25) we can prove

that for every positive number ¢ there exists a linear combination
n

T, = ¥ (-1

k=0

(1) 6® such that, according to (24) and (30),

n

) = Zak (fu )
holds. Hence we- get the equality

ES 3 a(t) :c(’”)( 0)

k

(31) e (t (t =0).

By continuity in quadratic mean of the prediction m,z (t) with respect
to t, the orders of the distributions T, are bounded in common when i
runs over a finite interval. Consequenﬂy, for every positive number i,
we can find a number » such that for all ¢ satisfying the inequality
0 <t <1, the quantity », from formula (31) is equal to n. Applying
Lemma 2, we conclude that either the spectral density of () is the reci-
procal of a polynomial or z(t) is a random oscillation. Consequently,
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to prove the Theorem it suffices to show that the random oseillations are
not distributionally complete.

Consider a random oscillation () with the covariance function of
form (2). We can easily find a function ¢, (pe ¥ 0) belonging to 2 whose
Fourier transform vanishes at the points 4, A, ..., 4,. From the equality

(e} n
(pur go)a = [ 150D = 3 belpo(A)[* = 0 it follows that the ilinear

functional (g, ¥)e is not an inner product on 2 and, consequently, the
random oscillation «(¢) is not distributionally complete. The theorem
is thus proved.

1V. Strong Markovian character

A generalized stationary process X is said to be of strong Markovian
characier it for every generalized stationary process ¥ orthogonal to X
and for every function ¢ from £ whose support is contained in the right
half-line the prediction =F+¥X (¢) of X (p) based on the full past of the

process X-+Y up to time 0 belongs to () ﬁ%‘f)y. A complete character-

u<0
ization of processes of strong Markovian character is given by the follow-

ing theorem, which is a consequence of Theorem 1:
THEOREM 2. Generalized stationary processes with orthogonal values
are the only processes of strong Markovian character.

First of all we shall prove two simple Lemmas.

LEMMA 3. The sum of two orthogonal processes of strong Markovian
characier 4s of Markovian characier.

Proof. Given two orthogonal processes X and Y of strong Marko-
vian character, we have the relations

7 T X (p)e N %Ny, a Y (p)e M OE Dy,
u<

u<0
whenever s(g) C (0, co). Hence, by equality
% (X @)+ T (p) = % T X (@) +m T (@),

we get the relation
Y (X (p)+ X (p)) e ﬂo oY,
u<

which implies the Markovian character of the sum X Y.

LevmA 4. Let X, Y be a pair of orthogonal processes. If the processes
Y and X+ Y have orthogonal values, then the process X also has the ortho-
gonal values.

icm
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Proof. Assuming that s(g) ~ s(y) =0 (¢, ve 2), we have
(X(@), X)) = (X(@)+T (@), X+ () — (@), T)-
— (Y (@), X)) (Y (@), ¥(p) =0,
which implies the assertion of the Lemma.

Proof of Theorem 2. First we shall prove that every generalized
stationary process X with orthogonal values is of strong Markovian
character. Let Y be an arbitrary stationary process orthogonal to X.
Obviously, X (p) is orthogonal to S’J&Ejﬁ""” whenever s(g)C (0, c0), which
implies the strong Markovian character of the proeess X.

Now let us assume that a generalized stationary process X is of
strong Markovian character. Taking an arbitrary generalized stationary
process Y orthogonal to X with orthogonal values with positive spectral
density, we conclude, in view of Lemma 3 and the preceding part of
the proof, that the sum XY is of Markovian character. Further, the
spectral density of Y, being a positive polynomial, is bounded below by
a positive number. Consequently, the density gx,r of the absolutely
continuous part of the spectral measure ux,y is also bounded below by
a positive number. Therefore, for every funetion ¢ from &, the integral

i
% gX-{-Y(t)

is finite. We have proved in Section ITI that the last condition implies
distributional completeness. Thus the sum X-+¥ is & distributionally
complete process of Markovian character. By Theorem 1, the process
XY has orthogonal values, because its spectral density is bounded
below by a positive number. Hence, and from Lemma 4 it follows that
the process X itself has orthogonal values, which completes the proof.
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On modified Landau polynomials
by

J. RADECKI {Poznai)

This paper contains some theorems on the approximation of conti-
nuous functions f(¢) in an infinite interval by means of polynomials

[ 7ty [1— (z_ ;;)] ar
Polfit); 2] =
2f (l___t?.)ndt
0

where %, >0 and lim}, = co. This kind of polynomials were first in-

N—=00
troduced by Hsu [1, 2], who also showed their convergence in the case
of h, = n® and f(f) of certain classes of continuous functions. The results
given in the present paper are more general.

TagoreM 1. If & > 0, then UmP,(1; ) = 1 if and only if

00

h,
lim—gs().

oo Vi

Proof. First we prove the sufficiency. Easy transformations give

Vn 7 ¥n 2\ % )
f (1—1:;—) du+ J (1— Y ) du

— (]
(- /fp) Vi K

VR S\
w=
2 f (1"7?) dat

0

Since (1—w'/n)" < e for u| < Vn, we have

W ey e

0< J (1——»——) du < [ e du,
n

zVnhy xVnjhy,
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