236 J.-P. Kahane

Draprés (12) et (13),
X477
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done b;(1) existe pour tout A, et feR,. Cela achdve la démonstration du
théoréme 2.

Démonstration du théoréme 3. Désignons par ¢ P’ensemble
des fonctions uniformément continues et bornées. Soit 4, et 4, deux
fonctions continues, périodiques et de période 1, respectivement nulles
en 0 et 1/2, telles que A7+ 43 = 1. Toute fonetion he( sécrit h = g2,
geC. Posons g, = g4, et g, = g4,. D’aprés le théoréme 2, il existe une
fonetion fy e, ~ ¢ telle que f7 = g7 (f, est construit & partir de g, comme,
dqans 19e théoréme, f & partir de g); de méme il existe f,eR, ~ C telle que
=g Ansl h=¢ =g+ ="7fit+f, soit b= (fi+if2) (fr—ifa), et
le théoréme 3 est démontré.

Remarquons qu’au lieu de 0, on aurait pu considérer, par exemple,
la classe D des fonctions indéfiniment dérivables et bornées ainsi que
toutes leurs dérivées. Il est alors faux que toute heD g'écrive h — s
geD. Mais il est facile de montrer que toute heD est la somme des ca.rré&;
de quatre fonctions «R,()D.
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On some spaces of functions and distributions (II)
Integral transforms in 23r and 9:11
by

J. MUSIELAK (Poznah)

1. Preliminaries. Let @ = (@, ..., %), ¥ = (Y1s---y Ym) and let
k(»,y) be a measurable function of n-4 m variables. We shall write ()
&) Ep(e) = [ (e, y)o(y)dy

for every function ¢(y) such that the above integral exists for almost
every #; the integral is taken over the whole m-dimensional space. Ko
is ealled the integral transform of the funetion ¢(y) generated by the kernel
k(z,y). Assume that k(z,y) is such that K is a linear operator from
.?’{,2 0 Dy,. Then we denote by K* the adjoint of K, i.e. an operator

2

over Py, defined by
(2) (E*T)(g) = T(Ep),

‘where ge %%, . Assuming that N,(u) satisfies condition (A,) for all u,
it is obvious that K*T is a linear functional over %%, i.e. K*Te2%,.
We shall eall K*T the integral transform of the distribution T generated
by the kernel k(wz,y).

The following assumption concerning the kernel k(z, y) will be made

(As) The function k(z,y) is measurable in R" X R™, belongs to &(R")
for almost every yeR™ and satisfies the following three conditions:

1° DEk(x,y) are equicontinuous for meR™ in every bounded set of
yeR™, p being fized,

2° k,(#) = |DZk(m, -, is bounded for every p separately,

3° the double-norm ||| DLk ||la,n, = plly, s finite for every p.
For instance, the function k(z, y) = exp (— #{*— |y{*) satisfies assump-
tion (As). )

As is well known, the following two notions of convergence and
boundedness in & dual space Z' of a Byspace Z are considered: on one
hand, convergence and boundedness defined by the strong topology in

() We apply here the same notation as in [10] and [9].
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4 (ef. [2], vol. II, Chap. IV, 3.1, or [5], 21.1) and, on the other hand,
convergence and boundedness in the sense of Mazur and Orlicz (18],
p. 164). A sequence {«;} C 2" is called MO-convergent to 0in 2" if z;(2) > 0
uniformly in a neighbourhood of zero in Z. A set A’ C 2’ is called MO-
-bounded in Z' if there exist a positive number ¢ and a positive integer m
such that every z¢2 satisfying the condition |z|; < & for i < m satisfies
the inequality |2'(s)| <1 for any @' A’ ([8], p. 164 and 166). Obviously,
every MO-convergent sequence {w;} C £’ is strongly convergent (%) and
every MO-bounded set in £’ is strongly bounded. Conversely, there are
strongly convergent sequences in spaces 2 which are not I O-convergent
(cf. [8], 2.81). However, the notions of MO-boundedness and strong
boundedness in 2" are equivalent; this follows easily from [8], 2.882
(ef. [2], Vol II, Chap. IV, 3.2 Prop. 2 and Chap. IIT, 1.1, Coroll.).
Now, an additive homogeneous operator K* over a space %’ dual
to a By-space & with values in a B-space is called compact if it maps
strongly bounded sets in 2’ onto relatively compact sets. Since strong
boundedness ‘and MO-boundedness in Z’ are equivalent, the operator
K* is compact if and only if it maps MO-bounded sebs onto relatively
compact sets (%).

2. Continuity and compactness of integral operators. We shall prove
the following theorem on the compactness of the operator K and the
compactness of the operator K*:

TueorREM 1. Let BM,(u), My(u), Ny(u) and N,(u) satisfy condition
(As) for all u. Assume that the kernel k(x, y) satisfies condition (As). Then
the integral operators K and K* gemerated by the kernel k(z,y) are linear

operators from %, to Dy, and from Dy to ZLir,, respectively, the operators

K and K* being compact; moreover, the three conditions: K = 0, K* =0,
k(z,y) = 0 almost everywhere in E"XR", are equivalent.

Proof. In the proof of the linearity of K we agsume only that M, (u)
and N,(u) satisfy (A,). First, let us see that [ D%k (2, y)ply)dy is a fune-
tion belonging to &%, This is obtained by applying the following ine-
quality (cf. [13], Chapter 7, §15):

@) J{ 122k, nip@)lay} iy @) do < D2k Ly, ol Il

(*) It is known that .Z’§I is linearly isometric with a part 4 of @}uand the topo-
logy defined in A by #%, is stronger than the topology induced by 2, ([91, 2.3.(b)
and 3.3). It is trivial that every sequence convergent in 4 with respect to the norm
defined in £, is also M O-convergent in F":M to the same limit, i.e. convergence in
&% is stronger than AO0-convergence in 2

(*) Compact transformations of a locally convex linear topological space into
the same space and their adjoints are considered in [1]. :
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Now we have
4)

Indeed, it suffices to show that the integral on the right-hand side of
this equation is uniformly convergent. Take ¢ > 0 and let sup k(@) = k.
&r

"D'Eg(2) = [ Dik(z, y)g(y)dy.

Assume ¢ = Bflogy(kye™ glx,)1+1. As [ Nolg () /l¢ilx,) @y < 1, there isa
set 4 in R™ such that B™\ 4 is of finite measure and TN (n)/lgily,) dy
F 2
< %%, where x>0 is a constant satisfying the condition ¥,(%u) <
< #Ny(w) for all w. Hence [N,(2'p(y)/igly,)dy <1, whence, writing
y 2

24(«} for the characteristic function of the set 4, we have |y lly, <
< 27gll, < ok;". Hence [1DLk(z, y)g (1)|dy < [DE(2, Vi, lgrally, < &
=

and thus we have proved uniform eonvergence, i. e. (4) holds. How-
ever, (4) implies D”(E¢)e %%, i.e. KEgeZy,.

Now, (3) implies

1D* (Kg)lly, = sup {f DP Kg(z)y(@)da: iy, = 1} < U DERH wy, oy »
whence K is continuous.

Now, assuming (A,) to be satisfied by all functions I, (u), My(n),
Ni(u), No(n), we prove K to be compact, arguing as in [13], p. 320.
Assuming that 4 is a bounded set in ,,Sff{-z, there is a sequence {g;}C 4
and gye £%, such that [DVk(z, D () dy —~ [ DLk (x, y)gy(y)dy for every
@, 1. 6. D" Ko () ~ D’Kgy(x), whence Kg; — Kg, in Dy, by the bounded
convergence theorem applied to N, [#D"K (3; — ¢,)(2)], » being arbitrary.

The fact that K* is continuous is obvious. The eompactness of K*
results from the following general lemma: If K is a compact operator from
a B-space & into a By-space ¥, then the adjoint K* of K is also compact.
For the compactness of K implies the compactness of the operators K,
from Z to the quotient space #%/|| |i;, defined by means of the formula
Ki(2) = [K(2)], v Z, ye[yle¥/i |;, and applying Schauder’s theorem
to K; we obtain the compactness of the adjoint K} of K;; hence it easily
follows that K* is compact. The compactness of K* may be proved also
without application of Schauder’s theorem; if A’ is bounded in .@},,1,
the set {K*T:TeA’}is bounded in Zﬁ,z, whence A’ contains a sequence
{T'} such that E*T; converges weakly in %%, to a 1€Zr,. However,
every sequence {g;} from the unit sphere in %, contains a subsequence
{pi,} such that K*T(g;,— ) ~ 0 uniformly in A, where g,c2%,. Hence
E*T; — 5 strongly in L,

Finally, the fact that k(z,y) = 0 almost everywhere is equivalent
to K =0 is well known (c¢f. [13]). Obviously, K = 0 is equivalent to
K* = 0. Thus Theorem 1 is proved completely.
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We remark that, assuming the support of k(z, y) in RB"xRE™ to be
of finite measure, condition 2° in Theorem 1 is unnecessary. In this case,
other theorems may also be proved by applying the results of [6], § 15.

Let us also remark that if the assumptions of Theorem 1 hold and if
T %%, , then K*T is the integral transform of the function 7'(z), gene-
rated bv the kernel k(x, y). Indeed, we then have (cf. [9], 3.3):

E*T() = [ T(@) Ky (@)dz = [{ [ ko, y) T (0)do} p )y,
whence
(8) K*T(y f k(z,y)
In the last section we shall generalize this formula.

As another example, take T = &, or T = D?§,, where 6, is the Di-
rac distribution o, (p) = ¢(#). Then (E*8;)(y) = k(z, y) and (K*D"5,) (1)
= Dk(x,y). In general, a linear operator K* from Diy, to &y, may
be differentiated as follows: (D°K*)T = (—1)P'E*(D"T). It is easily seen
that if K* is the integral operator gemerated by a kernel &(,y) satis-
fying the assumption (As), then DPK* is the integral operator genera-
ted by the kermel Dik(z,y).

3. The range of integral operators. We ghall consuier the ranges
of the integral transforms K¢ = y and K*T = y. For this purpose, the
following lemma will be of importance:

Lemma 1. If M(uw) and N (u) satisfy condition (
space Dy is reflewive (4).

Proof. By [5], 24.2(7) and 24.3(9), it is sufficient to prove that every

T(m)dx.

A,) for all u, then ihe

bounded set 4 in Dy is relatively sequentially weakly compact, i. e.

that every sequence {y;} C A contains a subsequence {wij} weakly  con-
vergent in Zy to an element p,c Py, Assume [|[DPyylly < 1, fors =1,2,

and every p and arrange all systems P in a sequence pt, p2, ... 80 that
Ip| < |pf| for 4 <j. Choose a subsequence {y;;} of the sequenoe {wi}
50 that {y,} = {Dr'y,} is weakly convergent to a pl in Ph; L being
reflexive ([13], Th. 6, p. 154), such a subsequence exists. Then extrach
a sequenee {pai} from {1} so that {Dr’y,} is weakly convergent to
in #%, ete; Now, the dlagonal sequence {y;} is such tha,t Dy~
weakly in Y. Write ' = y,. It is easily seen that v = Drly, for
any j. Indeed, assuming this to.be true for |p| < m, taking p = ¢’ =

= (P1s Pay ooy Pu)y P2 >0, |p} = m and writing p’ = (p,—1, s, .-+, Pa),
we have
Jrw@ewin = — [ 070 22 @y

Ty

(*) In the case of @, this lemma is stated in [10], Vol. II, p- 56.
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for every aeZ. Since
JDPpu(@)a(@)dr — [ of (@) ale)dz = o (o)
and

. Oa ] - Oa o o da
[P vsto 32 @ [ D) 22 @de = (0 wo)(b;;)

= (Bw Df’%) (a) = — (Do) (a),

this implies ¢’ = DPy,. Since DPy,e £ for all p, we have p,e Dy (cf.
[10], Vol. I1, Th. XTIX). We have thus proved Dy, — Dy, weakly in
P for every p. Let T eDy . Then there exists funetions f,, fa, ..., fre L

such that 7 = FDP’fg ([91, 2.3(d)). Hence

k

Tlpa) = O (=17 HD ) - D (—
F=1 j

j=1

1?6 (D" o) = T(o)

ag ¢ - oo. Thus, y; — y, weakly in Zy.
We are now able to prove the following theorem on the ranges of the
integral operators K and K*:

THEOREM 2. Assume that M,(u), M,(u), Ny(u), No(u) satisfy the
condition (A,) for all w and that the kernel k(z, y) satisfies the condition (As).
Let ¥ and X be the ranges of the opemtos K and E*, respectively. Then
() if @ is a bounded set in A—q, sequentially weakly closed in .?N,,

then the set K@ is sequentwlly weakly closed in 2y, , whence also
closed in Dy ;

(B) if I'is a strongly bounded set in leu- , weakly closed in .@ful, then the
set K*T is sequentially weakly elosed n £ ar,, Whence also closed in
z3 M3

(y) the set ¥ s a linear subspace of 2y, of the first category in 2\1 and
the set X is a linear subspace of .?m of the first category in ,5,”1,

Proof. Since Sf*y is reflexive, @ is sequentially weakly compact.
However, K maps Weakly convergent sequences in E’*y in weakly con-
vergent sequences in Dy, . Thus K is sequentially Weakly compact in
D, (cf. e.g. [T], p. 92), Whence (). Now, by lemma 1 and [5], 23.5(5),
23.3(1), I' is weakly compact in .@3,1 (cf. e. g. [4], p. 141) and this implies
(B). In order to prove the first part of (v) observe that the spheres &, =
= {pe?%,: lollv, <7}, r =1,2,..., satisfy the assumptions of («),

whence K@, are closed in 2y . Moreover, ¥ = U K9P,. Assuming ¥
1
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0 be of the second ctaegory in Zy, it is easily seen by the linearity of
¥ that ¥ = Zy,. However, this is impossible. Indeed, if ¥ were equal
t0 2y, one of the sets K P, would contain a closed neighbourhood of
rero in @N;’ say

U= {pe@y: ID"lly, <e for |p| <m}.

Since K is compact, U is a compact set. Now, |y|| = sup {lD"y|lx, : |p] <m}
is & B-norm in Zy, and U = {weZw,: Iyl < ¢} is compact in the norm
Il II; but this is impossible ([3], IV.3.5). The second part of (v) is obtained
by the following arguments. Take the fundamental gystem of neighbour-
hoods of zero in Dy, U, = {pc<Dy,: ID%ylw, <1fr for |p] <7} and
let I = UP be the polar set of U,. Then I are strongly bounded in

_@},,1 and I, = 2y, ([5], 29.1(6)). Let us note that I} are weakly clo-
1 5]
sed in 95, . Obviously, X = |J K*I.. Assuming X to be of the second

1
category in 3}2, we should have X = .,5’1{12, by the linearity of X. But
this is impossible, for K*I. are compact in 3’312 and assuming one of
the sets K*I' to confain a sphere we should get a contradiction.

4. Representation of integral transforms. Formula (5) may be
chosen as a starting point of another definition of an integral transform
of a distribution by means of integrals of distributions S e@}} defined
by the formula [8.de = 1(8) (cf. [11], 21, Dét. 4) (5). Namely, an inte-
gral transform may be defined as Jk(z,y)T,dz, where the integral
is understood in the sense defined above.. We shall prove the equivalence
of the two definitions under some additional assumptions concerning
the kernel. First, we prove the following representation theorem for
distributions belonging to D;:

Levma 2. If M(u) and N(u) satisfy condition (A,). for all %, peDy
and TeDyy, then T <Dy, and

[ v@) Todw = T(y).

Proof. Let us take any p, ¢ and any aed, and let us choose », >0

80 that [ N (x4, D% (2))dw < oo; then we have SN (5,4 DP () D () dav < 00,

where 2, = x(sup|D”a(x)|)™", whence DPaD% %Y. Now, given any

& >0 and » >0, choose a number 7 5o that 0 < 5 < #yx~ ', and a set

4 in R* such that R™\ 4 is of finite measure and [N {# D% (2))dz < }e.
A

() A definition of integral transforms of distributions may also be obtained

by applying the theory of integrals of distributions developed recently by R. Sikorski
[12].
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Then if ;—~0 in #, |Dq(x)] <7 for sufficiently large 4 and

[ N (D () Dy (a)) de < [ N (a)dr+te < e

R 4

for < 1 N ( ¢ )
b ———— ] .
TS s D) B @A)
Thus D%¢; D% — 0 in £%. Consequently, the formula

[Fepr (p@)at@)]do = Y 2({:) (P”) [ ¥ (:D0a(2) DOy (),

Y,
=0 =0 "

where p(v) = (v, ...5m), q0) = (P1—w, ... s Dn—"y), implies yaePy
for aeZ and pa; — 0 in 2y if ¢; » 0 in B. Henee pT(a) = T (o) is a li-
near functional over Z, i.e. ’y)Te@;}, and fw(:v)T:dx = 1(pT) = T{yp).

Lemma 3. If M(u) and N(u) satisfy condition (A,) for all u, then @
is dense in Zy.

Proof of the density of 2 in @y, is analogous to the proof of the den-
sity of 2 in 2’ ([10], Vol. I, Chap. III, Theorem 15).

THEOREM 3. Let M,(u), My(u), Ni(u) and N,(u) satisfy condition
(A,) for all u. Assume k(z, y) satisfies assumption (As) and let | DEE(-, N,
be a bounded function of y for each p separately. Finally, let the support
of k(z,y) be contained in o sirip {(z,y): ye A}, A being a fiwed set of finite
measure th R™. Then

ET(y) = [ bz, y) Tode

Jor every TeZy .

Proof. By lemma 2, T(k(-,¥)) = [%(z, y)T.dz. Thus it is to be
proved that [E*T(y)e(y)dy = [T(k(,y)e(y)dy for every pef%,,
i. e. that

(6) ([ k0, oW ay) = [Tk, »)ew)dy.

I Teg, formula (6) is evident and the function T(k(-, %)} belongs to
Lir,- I T¢ D, by lemma 3 there is a sequence {T;}C 2, T; -~ T in D'y, -
Since the set of all k(-, y)e @y, Wwith y¢R™ is bounded in Dy,s We have
Ty{k (-, y)) = T(k(-,y)} uniformly in y; the support of T(k(-,y)) being
of finite measure, this implies that the funetion T (k(-, ¥)) belongs to E’Lz.
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Now take a bounded measurable funection ¢(y) of compaet support. The
uniform convergence of Ty(k(-,y)) to T(%(:,¥)) implies

If 7.6, o) dy — [ T(EC, ) o)y
On the other hand,
([ 56, 9)pl)dy) = Ti(Eg) ~ T(Ep) = T [ 5, 9)p()dy).

Thus (6) holds for every bounded measurable ¢(y) of compact support.
However, both sides of formula (6) are linear functionals over £%, and
the seti of bounded measurable functions of compact support is dense in
&%, Hence (6) holds for every PeZy,-
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A characterization of the class & of probability distributions
by

L. KUBIK (Warszawa)

1. Let us consider the sequence
(1) 5n1+§n2+-"+£nkn_‘in (r=1,2,..),

where 4, = const and the random variables & (kK =1,2,...,%,)
are independent and uniformly asymptotically negligible, i. e. for every
e >0

lim max P(|&,;] >¢&) = 0.
n—>c0 1<h<hy,

It is known that the class of all possible limiting distributions of sums
(1) is equal to the class of all infinitely divisible distributions. The elass
of infinitely divisible distributions can be characterized as follows (see
Gnedenko and Kolomogorov [2], § 17, theorem 35):

(i) The class of infinitely divisible distributions is equal to the class
of compositions of a finite number of Poisson distributions and of their
Iimits (in the sense of weak convergence).

Let us now consider the cumulafive sums of independent random
variables

St &t b

2 4 5,

—A4,, A, B, =const, B, >0,

where the random variables &,/B, (k = 1,2, ..., ) are uniformly asymp-
totically negligible. The class of limiting distributions of sums (2) is called
class #. The aim of this paper is to give a characterization of class &
which would correspond to characterization (i) of the class of infinitely
divisible distributions.

2. In the sequel we shall use the following two lemmas (see Kubik
[4]): ;

LemmA 1. Let f(z) be a continuous function defined in the interval
{a, b>. Let the right derivative f'.(z) and the left derivative f_ () emist at every
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