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and thus (5.1) holds with #» = m+1 if we sebt ?,,; = 0. Hence there
exists a sequence {s,} such that (5.1) is satisfied for » =1, 2, ...y and
t, =0 for n = 4.

Let H be the set of all normal conservative matrices which sum
no bounded divergent sequence. Since G C H, and since, by Theorem
11, (F~G)nH is void, it follows that (§—@G)C (H—H). The reverse
inclusion is false, for the matrix 4 in the example given above satisfies
AeH—H, since 4+27 sums no bounded divergent sequence when
|A—1] < 1. To see this, consider the matrix obtained from A I by
deleting the first two rows; this is of the form 100(I+4B), where ||B|f <1
if |A—1] < 1, and bhence it has a two-sided comnservative reciprocal,
and belongs to H. This does not contradict the example given above,
for A4l has no conservative right reciprocal for small 2.

These considerations suggest the problem of determining whether
the condition 4eH—H, which is 2 sufficient condition for a normal
conservative matrix 4 to sum a bounded divergent sequence, is also neces-
sary.
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On some spaces of functions and distributions (I)
Spaces 237 and P
by

J.v MUSIELAK (Poznaii)

1. Definitions. L. Schwartz introduced in [5] the spaces Z,, of
functions and @'Lp of distributions. The purpose of this paper is SO in.ve,-
stigate some properties of spaces £, and Z'yy, the spaees .(t’_ bel_.ug
replaced by Orlicz spaces F3r. We adopt here the notations of [5] ‘Wlth
the only exception that multiple integrals will be denm?ed by a smgle
sign of integral. Further, M (u) will denote an even continuous function
which vanishes only at 0 and is convex for positive w. Moreover, we
agsume for simplicity w'M(u) -0 as u — 0 and «~'M(u) = oo as
% — oo, M_;(u) will mean the inverse function of A (u) _for u >0,
M_,(u) = M_,(—u) for « < 0; N(u) will mean the function comple-
mentary to M(z) in the sense of Young. Let gM(c.p) = [ Mp(x)) dw,
where the integral is taken over the whole n-dimensional space. Then

#% = {p measurable: gy (kp) < oo for a certain k >0},

with the norm [p|la; = inf{e > 0: oy (p/e) <1} is a B-space, called
an Orliez space (ef. e.g. [2]).
We write
Py = {peé: DPpe Ly for every p}.
The system of sets
Ulm, &) = {pe2ag: |1D7gly <&  for

m=0,1,2,..., ¢ >0, being assumed to be a fundam?ntal system
of neighbourhoods of zero, % hecomes a locally convex linear topolo-
gical space and the topology is equivalent to that induced by the F-norm

lp] < m},

w_ w1 L D%l
= ) e 2 o T
Mm=0 =m

where 7 is the number of variables. So @y is a By-space (cf. [1], [31);
the completeness of 2, follows from 2.1.
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If # and % are two linear topological spaces, we shall write & C @&
to denote that £ is a part of #; ' C % will mean that 2 as a linear
space is isomorphiec with a linear subspace 2, of & and the topology
induced in £ by Z is stronger than the topology induced in %, by #,
i. e. each neighbourhood of zero in % contains a neighbourhood of zero
in Z, in the topology induced by %. Moreover, we shall denote by Dy
the strong dual of Zy.

2. Theorems. The following theorems hold:

2.1. (a) If @Dy, then D'p(z) — 0 as |m] - oo for every p.

(b) If @ — O in Dy, then oy, (x) are wuniformly bounded and o () - 0
as |5} — oo uniformly in k.

. 22 (a) If My(u) = O(My(w) asu — 0, then Dyr, C Dy 5 9, C 9,
C& and Dy C L5 for every M(u).

(b) If M(u) satisfies the condition (A,) for small u, then Dy =
= {ped: 0x (D" (kp)) < oo for every p and every & > 0}.

(6) 2 C 95 moreover, denoting for a > 0,¢g=1,2,...,

exp[—laf*(a* — [2)7']  for o] < a,

A q(®) =
. 0 for z|>a,

#(2) = ai(@)9(®)  for peDy and suitable s,

we have tage D, gic %, and assuming that M (u) satisfies (Az) for small u,
P =@ 0 D1y honce D is dense in Dy (The relation @; — ¢ holds
also in A.)

2.3. (a) ?f Nz(bu) = O(N.(u)} as w -0, then @julc' D, -
(b) £ C Dy C o, 9y C .

(¢) If N(u) satisfies (A,) for all w and TeDyy then Txae Ly for
every aed. ]

(d) U@der the same assumptions as in (¢), distributions T eDYy, are
ea:,actly Jinite sums of derivatives of functions from the space Zh, and
Dy ={TeD': Teac Py for every ae D},

3. Proofs. First, we prove the following lemma:

3.11. Denote by P the set of all SYstems p = (py, Dy, - .., Py), where

Pi =90,1 and not all p, are equal to 0. T, = = = =
for i #a, j=1,2 .z k aqnd Wwrit 37?Pa10—-~0—17ak—01,17i—0
12y 0, &, ite for an o' = (af,..., 2l),
Dp .760 )} D 0 0
o 3 %) I ¢(w17"'7ma1—19uulimg]-}—l!"‘)mgk—ljuakjmgk+l7 '--:maot)‘
Assume pe& and

() fM[D"q:(m", )@y, ... du,, <I  for all peP,
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where the integral is taken over a k-dimensional space. Let & = (2, ..., 2,)

and o = (%1, ..., %) be two arbitrary points and let maz|r;—z} < b,
i

max (g —al|, |[@;—all, 1) < R. Then
i

y M (IR
_ ’ n on—i " —I\7Y 7
‘P(m) (])(m ) <I . ('I:) = I_R—ﬂv)-ib~i

In fact, we have

.'L'u] mclk

@) p@—p@) =) [ .. [ D, w)du ... dty.
DeP .
o1 %

For a fixed p = (py, ..., Px), We apply identity (i) to the function

mu zak 7 .
fl... [ DP¢(a’, u)du,, ...du, and the points , 2" in place of ¢(x)
g /

o ar,
anld the points z, 2. We easily obtain

. ,

3 x
z, oy v

Fay g 1

f f DPp(a’, u)dug, ... dug, = 2 f f DPg(a’, u)d@u,, ...,
7 7 qeQ 0 hig

mal mak ¢ xy]_ 17’1

where @ is the set of all systems geP, & = 1for j=1,2,...,1, ¢ = 0
for i £ y;, such that p, = 1 implies ¢; = 1. Applying Jessen’s ine-
quality

Af f(@)iw @(A)M-ll';% Af 3t (f(a)) o],

u(A) being the measure of 4, to the integrals on the right-hand side
of the last identity, substituted into (%), and taking into ac‘count jche
fact that w=*M_, (u) is decreasing, we obtain the required inequality.

31. Now we give the proof of 2.1(a). Obviously, it is sufficient to
prove g(z) — 0 ag |@| - co. Suppose it is nob true, i. e. there is ar;c £ >0
and a sequence z° such that |#*| increases to infinity and ¢(a%) > e.

Evidently, we may assume I, = max gy (D) < co. Let V, be the
Ipl<n 5
volume of the unit sphere in the m-dimensional space. The following.

lemma will be of importance:

For every I > I, and for every point o there emists o point o° in the
sphere K with centre in @ and with radius Ry = 2™V5" such that inequal-
ity () holds for all peP. )

¥ p=(1,..,1), the lemma is obvious. Assuming p # (1,...,1)
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we prove it indirectly. Suppose that for a certain z every point 2°cK
satisfies the converse inequality

(%%) J M [DPg(a, W) dtg, ... duy > T

for a peP, p # (1,...,1). Given peP, write Ay = {8"< K : (++) i satis-
fied}. Obviously 4, are measurable and the measure u(4,) of at leagt
one of these sets, say 4, , is greater than VB2, Let p° —= (D1, -0y p0),
Py =1 for 4=1,2,...,% and let f1y..., Pu_i denote all indices
among 1,2, ..., which are s o, for ¢ =1,2, ...,k Let A}, be the
projection of the set A, on the (n—k)-dimensional space of pointy
(@gyy -5 0, ). Tt is easily seen that #(4p0) > (2Ry) (4 o), whence
A > 2V, B B ’

I, > [ M[D"p(u)ldu > I/ MDp(u))du, ... dug ) duy, ... du, .
4’ ’ "
pD

= Tu(d;g) >1I.27"y,Rr-*,

On  the other hand, R,— 2yt > (2" LITVWO-P whence
I, <I-27"V,Rr* _ 4 contradiction. Thus the lemma is proved.
Now we may apply 3.11 to any point # and #'. Let K* be the
gregtest sphere in the n-dimensiona] space with centre in &* and with
radius 7, such that o(z) > %e for meK*. Obviously, we maj suppose
the spheres K* to be disjoint, for
o> oule) > [ Hp)da > w3e) () B

Oxk !
1

hence Vﬂ%’ % =u(UEY <I, M (3¢) < oo, ie 75 0.

1
It is_clea,r that there is a point % on the boundary of K* sueh
that p(2”) = Le. Further, let 2% be g point corresponding to #* such
thl%t 3.11 is satisfied and let af — 22| <Ry, i=1,2,...,n. Then
loi* —a*| < 2R, for sufficiently large % and writing R= m,ax.(R 1)
We may apply 3.1 to 2*, 2%, 4% ang § — 5. We obtain v

My (IR~

IR-"+iyd

te <o)~ < IZ(“:) gn-i

=1

Since w M, () >0 ag 4 — 0, We get & <0 — a contradiction.

The proof .of 2.1(b) will also be performed by reduetio ad absurdum.
Suppose there is a sequence z*, |a®| increasing to infinity, and g, (2%) >
; € >0. We adopt the notation of 3.1 with the exception that K}‘
will denote here the greatest sphere with centre at * such that g (z) >
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> 3e; let I = max gy (DPg). Then we have r, < & and by 3.11,
Ipi<n
assuming I, = I, = I{Y, we have

n e id i
1, < I y ) gn—i wﬂi{l
7 X L9 l_: 7: Lgk)R—n.‘—i£~i

< 2R M (IPR"Y),
whence I{? > R"3 (27*"R~"), in contradiction to the fach that IP 0
as k- oco. Hence g(#) > 0 as |g] - co uniformly in k.

The proof that g, (x) are uniformly bounded is similar.

3.2. Proof of 2.2(a). By the assumption, there exist K, #, > 0 such
that M,(u) < KM, (u) for 0 <u < u,. Let @eZy,; then by 2.1(a),
p being fixed, for any ¢ > 0 an r > 0 may be chosen so that |D”g(s)| < £
for |#| >r. Write 4 = {z: |D"¢p(a)| > uyx,;'}, where x, >0 is chosen
850 that g, (%, D"p) < co. By 2.1(a), 4 is bounded; we have

011, (4o D7) < Eopr, (0, D)+ u(4) iu})ﬂ[a[%prqv(m)] < oo,

whence @< Zy,. Thus we have proved that Dar, C D3y, Now assume
@ —> 0In @y . Given any p and x > 0, put 4y = {z: | Dy (2)] > uex'}.
Then

o, (# D7) < Kong, (2D o)+ u(4y) f;%:Mz (%D ()]

By the assumption, gz, (»D¢;) — 0 as k — oo for any » > 0; by 2.1(b),
the sets A, are all contained in a compact and u(d;)— 0 as k& — oo,
since convergence in mean of M, [xD”g.(2)] implies convergence in
measure. Hence oy, (#D"q;) — 0 ag k — oo for every » > 0,i. e. g, — 0
in Dyy,. Thus Da, C Dy, - . )

The proofs of other parts of 2.2(a) and of 2.2(b) will be omitted
here, being trivial. We proceed at once to the proof of the second part
of 2.2(c). We shall base ourselves on the following lemma:

3.21. The functions a,q(x) being defined as in 2.2 (e), we have
ay9€D. Moreover, given any n >0, B >0 and p, where 1 < [p| < 2q,
there emists & number a, such that |a,q(x)—1] < 7 and ll)”az,,’q(aa)ll i n
for || <R and a >a,. Here the constant @, = max[R(1-+ 5 ")/,

m
8Ep|ayn (B4 by, 1], where 6y =b; =1, a, = H[(27—'3)2"+”]:
m
b = [] Bv+1)24+1] for m >1.
v=32
This lemma follows essentially from the formula

1 Ny (8 o) afl(ala™)
(**) DPag (@) = o u<m1 ’l?l) (o] g~ Tyi="

y=
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for |#| < @, where W,(&,...,§,) are polynomials independent of g
(for the details of the proof cf. [41).

Now take peZy and any k >0 and write g,(0) = o, ;(2)p(a).

By 2.2 (b), our(2kp) < co, whence for any ¢ > 0 there is an 4, > 0 such
that
f M(2kp(@))do < fe.
{z1> 4y

Choose 5 >0 so that pa (kng) < 3.
then have |as, (%)

Applying 3.21 with R = 4, we
—1| < 5 for |z| < 4, and % > a,, whence

ox(lng)+ [ M(2kp(e)ds < e,

lz|>4q

ox (k{p— o)) <

i. e, QM(k(qa,;»—q:)) - 0.

Now take an arbitrary p. We sghall show that D” ((p %%ﬂ) -0
Z;
in &y a8 i — oo for every j. Since
a \ Py Dy
O s
P lp—2) = 1 ... [Pn) pre) 20 (g
=3 S
o =
where p = (Py;..., Pn)y B) = (B1—, . sy Pn—)y D) = (v, .0,

Y1y i+ L, %iga, .oy %), it 18 sufficient to prove that the terms of this

sum tend to 0 in £, 1. e. that 9 DPa,;— 0 in £} for an arbitrary yeJy,.

Write m; = max ]J)”asi,i(m)[. Applying (++) we can easily see that
xz

m = gupmy; < co. Given ¢,k >0, let 4, >0 and 5 >0 be such that

[ M(kmy(a))da < }eand oy (kyy) < bs. Applying 8.21 with B = 4;,

1Z1>4;

we get |DPay;(2) <7 for |z

loar (RD (a,4)) <

< 4, and s >max(a,, §|p|), whence

ou(knp)+ [ M (lemyp(a))do < e,
le1>4,,
i.e. 'lpr(aaii)—-> 0 a8 ¢—oco. Thus for any p and any index j,
( Dy, 1) 0in £
Q—= ij — 0 in ' A8 i —> oo,
Now let m be an arbitrary positive integer and assume D (pag, ;) -
— DP(p) in &3, for an arbitrary | < m and for any peDy,. Then we
prove D (pag,;) - DP () in 4 as i — oo for |p| = m and for an arbi-
trary  pe@y. If we take y = d¢/0m;, P’ = (D1, ..., Dj_1s Pi— 1, Prevy
-ey Pu)y We have
D? (pas, ;) —D" (p)

= D" (poy,y) —D”'(w)JrD”'(oﬂ 06&,;,3) -0
L
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and, consequently, D?(pag;)—~ D®(g).
in QM .

This proves that ga,;— ¢

3.3. Si.npe 2.3(a) follows from 2.2(a), we proceed to the proof of
2.3(b), £i C Dyr. Assuming that N(u) satisfies (A;) for all u, %5
is the dual of %, and the above inclusion follows from .@‘NCER.
If (A,) is not assumed, we perform the proof as follows. Let ¢e#7,

i.e. gu(kp) < oo for a k >0. Then ¢(p) = [¢(x)y(z)dr is finite for
every pe Ly, for

1
le(w)] <=

| < i Losr (kp)Fon (k'p)] < oo,

if %' is sufficiently small. Assuming y; — 0 in 9y, we have y; — 0 in &%,
whence @(y;) — 0 and so ¢(y) is a linear functional over %} . Hence
P C Dy We now prove the topology in £3; to be stronger than in
9%. We fix a bounded set B in Zy, i. e. for every p, [[D” ||y is bounded
in B. In particular, [p|ly <2 for a 4 > 0 and all yeB. Choosing g%,
llollyy < 271, we then have @(p) < 1, i. e. peB®, where B° is the polar set
defined by B. Hence each polar set in 2, contains a sphere in %%,
ie £ C9Yy.

We come now to the proof of 2.3(e); the idea will follow essentially
the lines of Sehwartz’s proof. Z being dense in £y, the set B = {pe2:
lplly <1} is dense in {peZy : lgly <1} in &y. For a fixed acP and
a variable peB, the functions arpeD and the set of these functions
is bounded in Py. In fact, D”(a+p) = DPaxp and denoting by S(a)
the support of a(#), u = the measure of S(a), sup|D’a(s) = K, we

’ z

have by Jessen’s inequality

1
V<= [ Fukpe—ta,

Sa)

N[(D? (axg) (@)1

whence by Fubini’s theorem
p(@)
-1

ex[[D? Grg) @) r] < [ N(
for > uK. Hence HD” (a+¢)|ly are bounded for peB.
Now, for any Te2’, the numbers (T*0)(p) =T(a*g) are bounded
for peB; indeed, B’ = {Se@M '8(a+p) <1, peB} being polar in 2,
we must have :I:Z“TeB for & A >0, ie [(T*a)(p)] = ]fT*a)(m)
p(3)dw] < A for peB. Hence (T+a)(p) is a linear functional over Zy,
ie TxaeZLy.
The proof of 2.3(d) follows the lines of Schwartz’s proof, with the
use of 2.3(c). The proof that distributions T2y, are finitee sums of
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derivatives of functions belonging to #3; may also be obtained by
applying [3], II. Indeed, by [3], 2.21 and 2.28, every Te 2}, may be
represented in the form 7' = ZT;, where T; is ]mea,r with respect to
D7l Hense T(p) = [f(0) D”p(a)da = f(D%p)
with fje%3; thus T = 2

the pseudonorm

= (—1)”" D}, () [””D’”f
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On the radicals of p-normed algebras

by

W. ZELAZEKO (Warszawa)

A p-normed algebra is a complete metrie algebra in which the me-
tric is introduced by means of a p-homogeneouns submultiplicative norm,
i. e. such a norm ||| that

< el iyl
a1},

1 leyll
(@) ozl =

where #, y are elements of the algebra in question, « is a real or complex
sealar and p is a fixed real number satisfying 0 < p < 1. For every lo-
cally bounded complete metric algebra there exists an equivalent metric
introduced by a norm satisfying (1) and (2). The theory of commuta-
tive complete locally bounded algebras is developed in paper [2]. The
present paper is a continuation of [2]. We give here a solution of the
following problem 1 of [2]: “Is the radical of a commutative p-normed

- algebra R characterized by the relation

rad R = {zeR: |o], = 0},

Here
3) . fiells
denotes the spectral norm in R (see [2], definition 1 and theorem. 4).
We shall show that the answer is in the affirmative. It is based upon the
following

TEEOREM 1. Let R be a commutative complex p-normed algebra. Then
the unit sphere of the spectral norm

= {zeR: ol <1}

= 1im V"]

i8 a convex subset of R.

Proof. By theorem 4 of [2], property 87, K is a closed subset of B;
consequently it is sufficient to prove that |l <1 and |lylls <1 imply
@ +v)/2]s <1. Tt may easily be seen that it is sufficient to prove
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