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operator T: X — L, is not weakly compact.. Hence, by a theorem of
Gantmacher ([6], p. 485), the conjugate operator T%: M — X* is also
not weakly compact. Thus, by [17], Theorem 5, X* contains a sub-
space isomorphic to ¢,. Finally, by [4], Theorem 4, we conclude that

If X is a non-reflexive subspace of L., then X coniains o subspace
isomorphic to 1 and complemenied in X.
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Mercerian theorems and inverse transformations
by

J. COPPING (Nottingham)

1. A sequence-to-sequence summability method defined by a matrix
A is called a U-method for bounded sequences if the A-transform of
every non-zero bounded sequence is non-zero ([6], p. 132). Let 4 be
the matrix of a conservative (i.e. convergence-preserving) sequence-to
-gequence method which is a U-method for bounded sequences. It will
be shown that 4 sums no bounded divergent sequence if and only if
there exists a conservative matrix B which is a left reciprocal of 4,
or equivalently, if and only if there exists a matrix ¢ = (6,;) which
is a left reciprocal of 4 and which satisfies

o
sup Z [Gn,kl < oco.
k=1

The hypothesis that the method is a U-method for bounded sequen-
ces may be omitted if the matrices B, ¢’ mentioned above satisfy BA =
= I+P, CA = I+P insgtead of BA = I, CA =1, where

I= (5n,k)s 61L,n = l: 5n,k =0 (k #* '”’)1
and P is a “trivial” conservative matrix (p,;) such thab
Do =0 (k=K n=1,2,..).

Parallel results are proved for certain classes of sequence-to-function
methods, where the matrix ¢ which occurs in the results stated abo.ve
is replaced by a sequence {g,} of functions of bounded variation, with

supvarg, < co.
n

These results depend upon a theorem on the existence of extensions
of certain linear operators on subspaces of separable Banach spaces.
Theorem 1 is the extension theorem, in a form more general than is
required for the applications made here, as it may be of independent
interest. A special case of the theorem was suggested by a remark of
Zeller [117.
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Theorem 2 is not essentially different from part of a theorem of
Mazur and Orlicz ([6], 3.7.1), but the proof is given in full, since Mazur
and Orlicz considered only matrix methods.

Theorems 4 to 9 give the conditions for a method to sum no
bounded divergent sequence, first in the case in which the method is a
U-method for bounded sequences, and then in the general cage.

Finally, I discuss a conjecture of Wilansky and Zeller ([8], p. 384)
concerning the maximal group of the Banach algebra, of triangular
conservative matrices.

2. When linear spaces are considered, it will be assumed that they
are complex linear spaces, but all proofs are valid, with trivial modi-
fications, for the real case.

Let X be a separable B,-space ([5], D. 185), and F any closed linear
subspace of X. Suppose that & is a Hausdorff space, and & a given point
of §, such that there exists a countable fundamental set of neighbourhoods
of & Finally, let ¥ denote the linear space of all bounded complex-valued
functions on 8, continuous at &, with the norm

lylls = Sup y(s)]  (ye¥).

COleazly, ¥ is a B-space under this norm.

TEROREM 1. With the notation of the preceeding paragraph, any
continuous linear operator T:B — Y has a continuous linear extension
Ty: X > Y.

CoROLLARY. If Y, is the subspace of Y consisting of all yeY which
vanish at £, then any continuous linear operator T': B — Y, has a conti-
nuous linear emstension Ty: X — Y, 1

Denote by | [, (n =1, 2,...) the homogeneous semi-norms defined
on X, with the property that for TpeX, lim |lz,), =0 (n = 1,2,..))

M—00
implies and is implied by the convergence to zero of &, under the F-norm
defined on X ([5], p. 185).

For each seS, the functional f(s) defined on F by J(s, ) = y(s)
Y =1T(z), #<E is a continuous linear funetional on E. By hypothe-
sig, f(s, #) is bounded for each fixed wel, as s varies in §, and it follows
that there exist a positive integer p and & positive number P such that

if(s, @) < Psup (J|zl;, llellay - ey izfl,) (se8, zeH).

For in the contrary case, there would exist sequences {@,}, {s,} (m =
=1,2,...), with #,<F and smed, such that

[f (8, )| = MSUD (2]l 5 12]],, -ony lmllm),
which is false, by [6], 3.3, ().
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For each seS, there exists a linear extension g(s) of f(s), whose

domain is X, and which satisfies
lg(s, @)} < Psup(llelly; lzllsy -y lzlly)  (se8, meX).

Sinece X is separable, there exists a sequence {z,} (Zp<X, m =
=1,2,...) such that

melli < 1

and such that the set of all elements of the form iz,, where ¢ is any
number, is dense in X. By (2.1),

lg(s, zn) <P

(2.1)

(i=1,2,...,p; m=1,2,...),

(2.2) (m=1,2,...;5e8).

We now construct the required extension 7, of T, and we shall
ensure that for each w¢X, T\ (x) has the value g(£, ) at & .
From the hypotheses concerning 8, it follows thatls there exists a
strictly decreasing sequence {N;} (i=1,2,...) of Jflelghbouhrl}oods of
&, such that if seS, s # £, then 358’—1\.7} for some integer 7. D*en.ote
by 8* the set obtained by deleting the point & frO}n 8, and by N} (4 =
=1,2,...) the set obtained by deleting thg point ¢ from N;. R
Select an increasing sequence of positive integers {n,} (¢ = 1,2, ...)
as follows. Let ¢ be fixed, and suppose that 1 = nl'< iy <o < My,
have been chosen. Let the set of all nur.ubers z satistying |2| <P be
expressed. as & union of finitely many disjoint set.s Zpg (P = 1,*2, d, (AN
where 7, , has diameter at most 1/¢. By (2.2), given any sef tint any
positive }nteger m, there exists exactly one integer p such that g(s,
L) e Zpq-
m) oz;glered collections (Zy, gy Zpy gy +++) Dpge) CaD be formgd from quOf
the sets Z,, in tf different ways; denote these co]lect'mnsv by ,-]_;
(ji=1,2, ..:, #%). To each se8* corresponds exacfly one j = j(s) suc

that if

(2~3) Oy‘,q = (Zpl,qy sz,qa AR qu,q):
then °
(2.4) g(s, @1)eZp g, g(s, @) €Zz72,qs ey 9(8,2) Equ,cp

Let S;, be the subset of §* consisting of all seS8* which corre-
spond to j “in this way; then .
g .
S*zLj;S’,-q; S Sig ds void  (J,k=1,2,...,%; j # k).
iz ’ '

It may happen that for some values of j, Sj4 N¥ is void for all lalfg_e
i, but we ean choose a positive integer n, > m,.; such that for each j,
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either 8, NNy is void or 8, nNF is non-void for § =1 )2, ..
We have thus expressed N;iq a8 a union of finitely many disjoint non-x,roid.
sets of the form §;, n N7, , and each of these sets has a non-void inter-
section with N7 for ¢ =1,2,..., so that each contains a sequence
of elements tending to &.

But if {s;} (6 =1,2,...) is any sequence such that $;¢8, then
by passing to a subsequence and uwsing (2.2), we may assume tha,t’
lim g(s;, #,,,) exists finitely for m = 1,2,... By [6], 3.3.1, lim g(s;, @)

100

1—00

exists for all <X, and defines a continuous linear funetional on X,

Moreover, if s; — £, then this funetional is an extension of f(£), since

g(s) is an extension of f(s), and since f(&, @) = limf(s, ) (xek).
Applying this argument to a sequence in each of fuhgia non-void sets

8500 Ny, we obtain a continuous linear extension ¥;, of f(g)

whose domain is X, and, by (2.1), " ’

(2.5) ¥ia(@)] < Psup (e, lolly .., o) (weX).

It is clear that, when C; 4 is defined by (2.3), we obtain from (2.4),
&Ui,q(ml) EZpl,qy g”j,q(mz)ezpz,q: seey 'zvy‘,q (mq) EZ?Q,H’
and hence
(2.6) I%,g(mm)_g(sy )| < 1/g (m = 1,2, sy 45 Sesiq N ‘N;:q)'
Now define linear functionals I(s) on X by

h(s) =g(s) (se8—N,),
h(s) = 9(3)+g(§)—lpa',q (8eS;400 (N;:Q_N:gﬂ)? g=1,2,..),
h(€) = g(¢).

Since s s & implies that seS— N, for so Gy 1
. i me 4, it follows that h(s)
i8 defined for all seg. By (2.1) and (2.5), the operator T, defined by

hs,2) =y(s), y="Tos) (seX)

satisfies

ITo(®)]] < 3Psup (lelly, oy, ..., a],),
and hence is continmous, By (2.6)

lolss @m)—g(&, o)l <1/qg  (m =1, 2, e @5 8N ),

and since elements 2, are denge in X, » it follows that
h'mh(s, z) = 9(&, =)

st

(reX),
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so that the range of T, is contained in Y. Finally, g(£) and ¥;q are
extensions of f(£), and hence

h(s, z) = g(s, %) = f(s, x) (se8,2E),

and T is an extension of 7. Thus T, has all the required properties.
To prove the corollary, observe that f(£) is now zero, and hence
we may set g(&) = 0 in the proof of the theorem.
We have shown incidentally that if X is a separable B-space, then
we may construct T'y so that |T,]| < 3||T||, and that, with the hypotheses
of the corollary, we may ensure that |7, < 2||T.

3. In this section, we shall suppose that & is either a fixed real
number or +oco, and that R, is a given subset of the real numbers,
such that ¢ R, but & is a limit point of R;. To avoid complicated nota-
tion, we shall write lim f(r) when f is any complex-valued function

£
defined on R;, which tends to a limit as » — & through the values of
rin R;. .
As usual, m, ¢, ¢, denote respectively the spaces of bounded se-
quences, convergent sequences, and null sequences (i. e., sequences ¢on-
verging to zero) of numbers, with the norm

(= {#})-

[lul] = sup [t}
k

Define

00

Za,('r, k)t

k=1

3.1) A, u) (reBy, u = {&})
for any sequence u such that the series (3.1) converges for all reR,.
If im A (r, ) = I(u) exists finitely, we say that the summability
et

method 4 defined by (3.1) sums the sequence u to the value I(u).

If I(u) exists finitely for each uec, (fach wuec), we say that the
method 4 defined by (3.1) is conservative for null sequences (conservative).
If, moreover, I(u) = lim#, whenever # = {{;}<¢, (whenever uec), then

k—so0

we say that A is permanent for null sequences (permanent). A method
A is said to be a U-method for bounded sequences if the conditions uem
and A(r, u) = 0 (reR;) imply that » = 0.

It will be assumed henceforth that A satisfies the conditions

U, o
(3.2) ), lalrs B < oo,
(3.3) M(4) = lima(r, k) ewists finitely (k =1,2,...).
r—&
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Conditions (3.2) and (3.3) are together sufficient for 4 to be conser-
vative for null sequences. If 4 is a matrix method, then they are also
necessary conditions, but (3.2) may be relaxed in the general case ([9],
Theorem II). However, (3.2) is the necessary and sufficient condition
for A (r, u) to be bounded on R, for each wem, the proof of this in the
ease in which R, is an interval ([9], Theorem I) being clearly valid in
the general case.

It will sometimes be supposed that A is conservative, and hence
satisfies the extra condition

A(4) = lim 2 a(r, k) emists finitely.

¢ f—1

(3.4)
When (3.4) is satisfied, we define

(3.5) 2(4) = A4)— D h(4);

k=1
a conservative method 4 is said to be coregular if x(4) 5= 0 and conull
if y(4)=0.

Denote by ¢,{R;, 4), ¢(R,, 4) respectively the spaces of functions
A(u) defined on R,, with values A (r, w) given by (3.1), such that uee,,
uec. These are subspaces of the space of all bounded complex-valued
functions defined on R,; the latter space, furnished with the norm

flle, = sup |f(7)l
reRy

is clearly a B-space, and will be denoted by M (R,). In general, the
subspaces ¢y(R,, 4) and ¢(R,, 4) are not closed under || e, -

THROREM 2. With the notation given above, if A is a U-method for
bounded sequences, and satisfies (3.2) and (3.3), but sums no bounded diver-
gent sequence, then oy(Ry, A) and ¢(R,, A) -are closed under || e, -

Lewma 1. Let wy, = {fi}em (n=1,2,...), with sup|w,| < oo,
n

and suppose that Lmip =t exists (k= 1,2,...). If there ewists an ele-

N—>00
ment Age M (R,) such that 14 (w,) — Ao llg, ~ 0, then 4, = A (w), where
w = {ttem.

The proof of this lemma is obvious.
L 2. Suppose that v, = {ti}ee,, with sup|o,l < oo, |o. >
n
Za>0 (n=1,2,...), and lme& =0 (k=1,2,...). Suppose also
00

that |4 (v,)|lg, ~ 0. Then there ewists an element wem — ¢ such that
Lm A(r, u) exists. )
pa

icm
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For by passing to a subsequence, we may assume that

14 (va)]lm, < 27",
(3.6)

g <4™a (1 <k < Cons & > Gnpa),

where {g,} is a suitably defined strictly increasing sequence of positive

integers. Let #, = X t; then w = {#;}em, and

n=1

el = a— Y 47'a = 2q/3

[\l

i

for some k between ¢u, and g,.;; also
[==]
] < 244“ =af3 (quma <k <G,
izl

50 that wem—e¢. By (3.6), there exists an element Aule[(Rl), such
that ||4 (w,)—4,lr, — 0, where
n
Wy, = Zviy

i=1
and hence by Lemma 1, 4, = 4(u). By hypothesis, 4 is conservative
for null sequences; also w,e¢ (n =1,2,...), and |4 (w,)—A (¥)lg, > 0.
Hence lim A(r,u) exists, and Lemma 2 is proved.

r—E

Passing now to the proof of the theorem, we first show that c,(R;, 4)

is closed, i. e. that if u,eqn =1,2,...), if Ay e M(Ry), and if {4 (u,)—

— A, llr, ~ 0, then there exists an element u%,e0, such that A, = 4 (u,).

Firgt suppose, if possible, that [u,]| - co. Let v, = Uy, [Mu,ll; then

4 (va)llg, — 0, and we may clearly assume that if o, = {?:,’:}, then

lim = 1, exists (k = 1,2,...). Putting v = {f}, and applying Lem-
00

;a, 1, we obtain 4 (v) = 0, but 4 is a U-method for bounded sequences,
and hence » = 0. By Lemma 2, 4 sums a bounded divergent sequence,
contrary to hypothesis.
Therefore it may be assumed that sup |ju,|| < oo, and so by Lemma 1,
n

there exists an element u,em such that 4, = A (u,). Clearly ];iD;lA(’l' 5 Up)

exists, but 4 sums no bounded divergent sequence, and hence %,ec.
If w,ec—cy, then there exists a subsequence {u,} of {u.} such
that v, = w,,,—u, satisfies the conditions of Lemma 2, and hence 4
sums a bounded divergent sequence. Thus uge¢, as required.
We now consider o¢(R,, 4). I %, = {fi}ec (n=1,2,...), then
Uy, = Vp a6, Where v, ey, 0 = gt}:, and e = {1}.
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Suppose that ||4 (#,) —Aglg, —~ 0. If |ay| = oo, then
4 (vn]an) —A(—e)llp, = |4 (%n]0n)llz, — 0.

By the result just proved for ¢o(R,, 4), there exists an element vyeg,
such that 4 (v,) = 4(—e¢), contrary to the hypothesis that 4 is a U-me-
thod for bounded sequences.

Thus we may assume that «, - o. Hence [[4 (v,) — {4, — aA(e)}”RI —
- 0, and by the result proved for ¢,(R,, A), there exists an element
voeCy such that 4,—ad(e) = A(v,); i. e, 4, = A(ae+wv,), which com-
pletes the proof of the theorem.

Let R, be the set consisting of £ and all the elements belonging to R, ,
and denote by JM,(R,) the space of all bounded complex-valued functions
f defined on R,, such that limf(r) = f(&). With the norm

&

1flz, = sup £ ()],
reRy

this is a B-space. If wem, and if A(r, ) is defined for reR, by (3.1),
we may define :
A(&,u) = lmA(r, u)
ot

whenever this limit exists. The method 4 thus defines a bounded
linear operator whose domain is a closed subspace of m, namely the
set of all bounded A-summable sequences, and whose range is a sub-
space of M (R,). By (3.2) and (3.3), the domain contains ¢,; moreover,
if (3.4) is also satisfied, the domain contains ¢. Let U,, U be the ope-
rators defined by restricting to ¢,, ¢ respectively the domain of the ope-
rator defined above by A. The ranges of U,, U will be denoted by
Co(Ry, 4), ¢(R,, 4). When considering U, we shall assume that (3.4)
is satisfied so that ¢(Rs, 4) C M,(R,).

TueorEM 3. With the notation of the preceeding paragraph, if A satis-
Jies the hypotheses of Theorem 2, then oy(R,, A) is closed under | Iz, -
If A satisfies also (3.4), then ¢(R,, A) is closed under || |z, .

This follows immediately from Theorem 2. )

4. Theorems 1 and 3 will now be applied to matrix methods, and
to a class of sequence-to-function methods. It will be assumed that
(3.4) is satisfied, and in applying Theorem 3 we use only the result for
0(E,, A), but it will be seen that related results could be obtained by
considering ¢,(R,, 4). When discussing matrix methods, we shall use
4 to denote the matrix, as well as the method defined by it.

THEOREM 4. Let A be a conservative matriz method which is o U-me-
thod for bounded sequemces. If A sums no bounded divergent sequence,

icm
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then there ewists a continuous linear operator Ty: ¢ — ¢ which s an extension

of the inverse of the operaior U: ¢ — ¢ defined by A. T, is defined by equa-
tions of the form

718

t, = b'n.,ko'k (Ty(v) = u, v = {Uk}ecy n = {tﬂ}sd),
k

i
—

where the mairiz B = (b,;) is conservative, and BA =1I.

The existence of T, follows from Theorem 3, the closed graph the-
orem, and Theorem 1. It is well-known that T, is defined by equations
of the form

©
t, = a,lim oz -+ an,kgks
Eoo =

o
where sup(|ag|+ > bngl) < oo, limb,; exists (k=1,2,...), and
n k=1 TM—>00

lim{a,+ > bsz) exists. In particular,
k=1

700

Bug = il A)+ D Dot
k=1

D3
e

[
-

1= anl(A)+ by iy i

k

I
-

%

and hence by (3.5), a,x(4) = 0. But if x(4) = 0, then A sums a boun-
ded divergent sequence ([10], 3.2), and thus o, =0 (n =1,2,...),
and B is conservative with BA = I.

If A is permanent, then the conservative matrix B of Theorem 4

may be replaced by a permanent matrix ¢, for by [17 (4.1, 1), (3),

0=1im Y bypars= D a(Blas (1=1,2,...);
>0 k=1 k=1

hence if ¢,z = byy— 4 (B), then €A =TI and O i8 congervative, with

M(0) =0 (’Io = 1,’2, ...). From the equation e = C(Ae), Where ¢ = {13},

it follows that O is permanent.

TarorEM 5. Let A be o (comservative) sequence-to-function method
satisfying (3.2), (3.3) and (3.4), where E, is the finite half-open interval
(r: b <r < £). Suppose that A is a U-method for bounded sequences,
which sums no bounded divergent sequence, and that a(r, k) (k=1,2,...)

o
and 3 a(r, k) are continuous functions of v on R,.
k=1
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Then A defines o continuous linear operator U: ¢ — ¢ (Ry), where
C(EB,) is the B-space of all functions continuous on the closed interval
R, = [b, £1, with the norm | Iz, - There ewists a continuous linear opera-
tor To: O(R,) — ¢, which is an extension of the inverse of U. T, is de-
fined by equations of the form

£
= [o(r)dgm(r) (To(0) = u, v = 0(r)eC(Ry), u = {1,}ec),
3 .

where g, is of bounded variation in [b,&] (n=1,2, ...), supvarg, < o0,
n

and
&—0
(4.1) (=g (E—N () + [ alr, ) aga(r) = 6,
b
. &0
(4.2) (O =g E=01(A)+ [ Da(r, B)dg,(r) = 1.
b k=1

If, moreover, A is coregular, then

9n(€) = gu(E—0) (n=1,2,...).

The continuity of a(r, k) and AZ' a(r, k) ensures that the range
;=1

of U is contained in ¢ (B,), when U is defined ag in Section 3. The exi-
stence of 7', then follows from Theorem 3, the closed graph theorem,
and Theorem 1, and the expression for i, i8 well-known. Define

@ k) =alr,k) 0 <r<§), &k = A(4),

L A0 = Dal k) b <r <), 4%(8) = A4);

k=1

then, since T, is an extension of the inverse of U,

&
Suge = [ a* (2, k) dg, (r),
(4.3)

b
&
1= [ A*(")dg,.(r),
b
and (4.1) and (4.2) are established.
By (4.3) and (3.2)

©0

D a*(r, k)dg, (r),

k=1

1=

T
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and hence

I3 ) oo
0= [14*()— D a*(r, W)} dga(r) = {8 (&) —gu(E—0)} £ (A),
b. k=1

by (3.5). Thus ¢,(§) = g,(£—0) if 4 is coregular.

THEOREM 6. Let A satisfy the conditions of Theorem 5, except that R,
is now the infinite interval (r:7r = b), and & = co.

Then A defines a continuous linear operator U: ¢ — O(R.), where
C(R,) is the B-space of all functions continuous on R, (4. e. functions con-
tinuous for v = b, which tend to a finite limit as r — co), with the norm
Il llr,- There emisis a continuous linear operator To: C(Rg) — ¢, which is
an extension of the inverse of U. T, is defined by equations of the form

tn = glimo(r)+ [ o(r)dg,(r)
o0 b

(To(v) = u, v = a(r)eC(By), v = {l}<c),

where g, is of bounded variation in the interval (r: r =0) (n =1, 2,...),
supvarg, << oo, Sup|a,| < oo, and
n n

e de(A)+ [ alr, k)dga(r) = by,
. .

A )+ [ D alr, kg, (r) = 1.
b k=1
If, moreover, A is coregular, then a, = 0 (n =1,2,...).
The proof is similar to that of Theorem 5.
~ In order to dispense with the condition that 4 be a U-method
for bounded sequences, we require the following lemma of Mazur and Orlicz

([61, 3.7).
LemMa 3. If

Dlalr, k) <oco  (reRs),
frs
where Ry is any infinite set of real- numbers, and if the system of equations

alr, k)t =0 (reRy)

DMe

k:

I
I

has no bounded divergent solution, then it has a finite number of linearly
independent solutions n ¢,.
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This was proved by Mazur and Orlicz for the case in which (ar, k)
is a matrix, but their proof holds without modification in the genera]l
case.

THEOREM 7. For a conservative matriz method A to sum no bounded
divergent sequence, it is necessary and sufficient that there emist conserva-
tive matrices B, P, with py; =0 (k >Fky, n =1, 2, ...), such that BA =
=I+P.

An equivalent condition is that there ewist matrices C, P, where P
satisfies the same conditions as before, and

sup Z Icn,k[ < o,
T k=1
such that CA = I-+P.

The equivalence of the conditions involving B, C respectively follows
from [4], Theorem 1.

Sinee P sums every sequence, it is obvious that the condition
BA = I+P, where B is conservative, is sufficient for 4 o sum no boun-
ded divergent sequence.

For the necessity, observe that by Lemma 3, if 4 sums no boun-
ded divergent sequence, we may construet a matrix 4,, which defines
a U-method for bounded sequences, by adjoining to the matrix 4 fini-
tely many rows, each of which has finitely many non-zero elements ([61,
3.7.2). The method 4, sums no bounded divergent sequence, and hence
by Theorem 4, there exists a conservative matrix B, such that B, 4,=1I.

If on is the number of rows adjoined to 4, then the matrix B is obtained
by deleting the first m columns of B,.

) THEOREM 8. Let A be a (coregular) sequence-to-function method,
satisfying (3.2), (3.3), and (3.4), with %(4) # 0, where y(4) is defined by
(3.5). Let R, be the finite halfopen interval (r: b <r < ), and suppose

that a(r,k) (k=1,2, o) and 3 a(r, k) are continuous Sfunctions of r
k=1 :

on R,.
For A to sum no bounded divergent sequence, it is necessary that
there exist a conservative mairiz P — (Pag);, with P, =0 (& > kg,

n=1,2,...), and & sequence {g,} (n = 1,2,...) of functions of bounded
variation on [b, £], with

(4.4) supvarg, < oo,
(4.5) In{€—0) = gn(£) (n=1,2, c)y
such that
‘ o0
(4.6) OnptPuz = [ a(r, k)dg,(r).

b
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If, moreover, A (u) is continuous on R, whenever wem, then the? condi-
tions stated above are together sufficient for A to sum no bounded divergent
seqUence. . ‘

First suppose that 4 sums no bounded divergent sequence. le
a number d such that b < d < &; the conditions of Lemma 3 are sabis-
fied for the interval R, = (r: d <r < £). Thus the system of equa-
tions .

a(r, ), =0 @<r<é)

NP

(4.7)

k=1

has finitely many linearly independent solutions in ¢, and hence fini-
tely many in ¢. Define

a(r, k) =alr, k) (@<r<& kE=1,2,...),
a(ry k) =a(r, k) (b <r<d, k>k),

where k, is the number of linearly independent solutions of (4.7) in e.
Let 7y,7, .5 7, be numbers such that b <r <1y <... <7y < a,
and deﬁfxe a,l(n-,ok) (3,k=1,2,..., k) so that if (4£7) holds for some

{tx}ec, then

E;:%(Ti; k)t = 0

integer 4. Complete the definition of a, (7, k) for'k =1,2,...,k
foO; ?nngzrli];y fn the renc};ming intervals of r, thus making th;: c.olum;i
continuous functions of . The method A, defined by a,(r, ) is eoen_
gular, a U-method for bounded sequences, and sums the samelse;lu )
ces as A. By Theorem 5, there exists a sequence {gn} (0 =1,2,...

of functions of bounded variation on [b, &], satisfying (4.4) and (4.5),
such that
&0
Sup = [ a(r,})ag.(r).
b
Also, {g,} defines an operator Ty: O(R,) = ¢, and hence {p,x}ecec for
each fixed k, where

&—0
Pajp = [ {alr, B)—au(r, B)}dga ().
b

The conditions are therefore necessary.
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To prove the converse, define

a0, k) =a(r k) b <r<§, @& =h4),

a(r k) (b <r < §), A% =A4).

D3

A* ()) =
k

]

‘Let C(R,) be the B-space of all functions continuous on the closed
interval B, = [b, £], with the norm || llr, > and let B be the closed linear
subspace of C(R,) spanned by the functions A™(r) and a*(r,%) (k =
=1,2,...). By (3.2), (4.5) and (4.6), ’

k=1d

ko oo § &
(4.8) 14+ kZPn,k = D' [a*(r, B)dga(r) = [ A*(r)dg,(r),
=1 b

and hence by (4.4), (4.6), and (4.8), and since P is conservative, the
sequence {g,} defines a continuous linear operator T: B —¢. By ’The-
orem 1, T has a continuous linear extension 7T,: ¢ (R,) — ¢; moreover
T, is defined by equations ' ’

&
t = bf oM@ (r)  (To(v) = u, v = o(r)0(Ry), u = {t}<c),

where h, is of bounded variation on the inter

n s val [b =

and supvar h, < co. In particular, LA =02,
n

&
(4.9) gty = [ a*(r, K)ah,(r),
b
ko &
(4.10) 1+;2 Dap = [ A*()dh, (1),
=1 b

- and henee by (3.2), (4.9), and (4.10),

€ =)
0= J{#7 0= 3o, B} o) = () ale-0)}2(4),

g0 that

(4.11) ha(8) = ha(€—0) (n=1,2,...).
Now suppose that w = {f;}em; then by (4.9),
& o0
(4.12) a* (r, k)t dh, (r) = 3 S
bf{g (ry k) k} () kg;(an,k—f‘l?n,k)tk =1l,+ k;;pn,ktlw

icm®
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If % is also A-summable, then

A(E,u) =limA(r,u) = lim‘z1 a(r, k)i

r—é r—¢ i1

exists (finitely), and the function 4 () with values 4 (r, v) is eontinuous
on the closed interval [b, &, for by hypothesis it is continuous for
b <r< & By (3.2) and (4.11),

z

3 £ )
(413) [ A, wdh,(r) = | {Z a*(r, k)tk}dhu(r),
b b

k=1

but {h,} defines the operator Ty: C(R,) — ¢, and so by (4.12) and (4.13),

ko

[+ > Poxti}ec. Sinee P is conservative, it follows that {t,} = wec;
=

thus A sums no bounded divergent sequence.

TazorEM 9. Let A satisfy the conditions of Theorem 8, except that
R, is now the interval (r:7 >1b), and § = co.

For A o sum no bounded divergent sequence, it is necessary that there
ewist a conservative matrizc P = (Dpz), with prx = 0 (k >ky,n=1,2,...)

-and a sequence {g,} of functions of bounded variation on the interval (r:r>b),

with supvarg, < oo, such that
n

gt puz = [ alr, B)aga(r).
b

If, moreover, A(u) is continuous on R, whenever wem, then the con-
ditions stated above are together sufficient for A to sum no bounded diver-
gent sequence.

The proof is similar to that of Theorem 8.

TamorEM 10. Suppose that A is a conservative matriz method, or
a coregular sequence-to-function method of the type considered in Theorem

8 or Theorem 9, such that a(r, k) (k =1,2,...) and > a(r, k) are conti-
=1

nuous functions of r. Suppose also that given any sequence of numbers {6x},
such that 0 < 6 < 0.1 — oo, there emists an unbounded sequence {f;}
with 4, = 0(8), whose A-transform 1is bounded. Then A sums & bounded
divergent sequence.

For if A is a conservative matrix method which sums no boun-
ded divergent sequence, then by Theorem 7, there exigt conservative
matrices B, P, with pnx =0 (k >k; m=1,2,...) such that



GUEST


192 J. Copping ’
BA = I+P. By [2], Lemma 2, there exists an unbounded non-de-
creasing sequence {6} of positive numbers such that

So.

k=1 i

n=1,2,...).

[bn ellas ] < o0
=1
Hence if # = {;}, % = 0(0;), and if Az is bounded, then (I
+P)z = (B4)x = B(Ax) is bounded, and thus # is bounded.
A similar proof holds for the sequence-to-function methods. For
by a proof analogous to that of [2], Lemma 2, we have

o £—0

k=1 b

la(r, B)lldga(r)] < oo (n=1,2,...)
for a suitable unbounded non-decreagsing sequence {0}, when {g,}
is the sequence of functions appearing in Theorem 8. The result then
follows as before, since {g,} satisfies (4.4). The result for the case & = oo
follows in the same way from Theorem 9.

For matrix methods, Theorem 10 was given in [3], Theorem 5(see
algo [7], Theorem 2).

5. In a recent paper [8], Wilansky and Zeller discuss the algebra
of all triangular conservative matrices. A matrix A = (a,;) is trian-
gular if @, = 0 (k >n). For any conservative matrix 4, define

n

I4fF = sup Dol

then the algebra A of all triangular conservative matrices is a Banach
algebra under the norm | [[*. The inverse of a matrix 4 e4 is the matrix
A~'ed such that AA™' = A4 = I. Clearly A4 has an inverse if and
only if 4 is normal (a,, # 0), and sums no divergent sequence. Let @
denote the maximal group of 4, i. e., the set of elements of 4 with in-
verses, and let @ denote the closure of @ under || |[*. Wilansky and Zeller
conjectured ([8], 7) that a normal conservative matrix 4 sums a boun-
ded divergent sequence if and only if 4A<G—@.

TurorREM 11. With the notation of the preceeding paragraph, if A is
normal, and if AeG—@G, then A sums a bounded divergent sequence.

For suppose that 0 <G, C+Fed, and |F|*|C7|* < 1, then (+Fe G,
since

(C+F)™ =07 Y (—FC Y ed.
=0

It follows that if AeG—G, 4,¢G¢ (n=1,2,.

.), and 4, —4[F >0,
then [|4;* — oo.

icm

Mercerian theorems 193

Suppose, if possible, that A sums no bounded divergent sequence.

By Theorem 4, there exists a conservative matrix B such that B4 = I.
Hence

B = B(AnA;l) = (BA) 47! = (BA) A7+ {B(4,—A)} 45"
= A7 Q. 4570,
where ||@* < [BI |4, — All". Hence
IBIF = AR {1 — 1B My — AL},

which is false for large n. Thus A sums a bounded divergent sequence.
The converse, however, is false. Suppose, for example, that 4 is
the matrix of the transformation {w,} - {z,} defined by

2y = 99w, —Ws,

(n =3).

2 = —1U,
== 10010nﬁ2+99wn-1—wn

Then A sums the sequence {(—1)"}. Suppose that Bed, and that
|B—Al* < 1/100. We shall show that B sums an unbounded sequence

{s,} satisfying
(5.1)
Define

18! >9018n_1‘| (n=1, 2, ce)e

n
t, = Z bn,k's'ka
k=1

and suppose that (5.1) is satisfied for n =1,2, ..., M. Then
tme1 = Ump1 " Vmy1y

where
Umi1 = 1008m—1+993m+ Bms

m
Ism = E (b1n+1,k—am+1,k)8k7
=5t
Vmi1 = (l—Ym+1)5'm+1: Ymy1 = nt1mal " Gmag1mtds
1Bl < l8ml/100,  ymgal <1/100,

and hence by (5.1), with n = m,
97 {8m| < 99 \Sm\"loo l&n—l"“ﬁm‘ < [Umaals

but we have also

100 B yq) <101 [smsals

18
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and thus (5.1) holds with #» = m+1 if we sebt ?,,; = 0. Hence there
exists a sequence {s,} such that (5.1) is satisfied for » =1, 2, ...y and
t, =0 for n = 4.

Let H be the set of all normal conservative matrices which sum
no bounded divergent sequence. Since G C H, and since, by Theorem
11, (F~G)nH is void, it follows that (§—@G)C (H—H). The reverse
inclusion is false, for the matrix 4 in the example given above satisfies
AeH—H, since 4+27 sums no bounded divergent sequence when
|A—1] < 1. To see this, consider the matrix obtained from A I by
deleting the first two rows; this is of the form 100(I+4B), where ||B|f <1
if |A—1] < 1, and bhence it has a two-sided comnservative reciprocal,
and belongs to H. This does not contradict the example given above,
for A4l has no conservative right reciprocal for small 2.

These considerations suggest the problem of determining whether
the condition 4eH—H, which is 2 sufficient condition for a normal
conservative matrix 4 to sum a bounded divergent sequence, is also neces-
sary.

Bibliography

(11 R. G. Cooke, Infinite matrices and sequence spaces, London 1950.
[2] J. Copping, K-matrices which sum no bounded divergent sequence, Jour-
nal London M. 8. 30 (1955), p. 123.127.

[8] — OConditions for a K-matriz to evaluate some bounded divergent sequences,
ibidem 32 (1957), p. 217-227.
[4] — Inclusion theorems for conservative summation methods, Konikl. Nederl

Akademie van Wetensehappen A, 61 (1958), Pp. 485-499.

[6] 8. Mazur et W. Oxlicz, Sur les espaces métriques linéaires (I), Studia Math.
10 (1948), p. 184-208.

[6] — On linear methods of summability, ibidem 14 (1954), p. 129-160.
[7]1 A. Wilansgky and K. Zeller, The inverse mairiz in summability : reversible
methods, Journal London M. S. 32 (1957), p. 397-408.

[8] — Banach algebra and summability, Illinois Journal of Math. 2 (1958),
D. 378-385. .

[9] L. Wiodarski, Sur les méthodes continues de limitation (I), Studia Math.
14 (1954), p. 161-187.

[10] K. Zeller, Faktorfolgen bei Limitierungsverfahren, Math. Zeitschrift 56
(1952), p. 134-151.

[11] — Review of [4], Math. Reviews 20 (1959), p. 989.

Regu par la Rédaction le 17. 2. 1961

icm®

STUDIA MATHEMATICA, T. XXI. (1962)

On some spaces of functions and distributions (I)
Spaces 237 and P
by

J.v MUSIELAK (Poznaii)

1. Definitions. L. Schwartz introduced in [5] the spaces Z,, of
functions and @'Lp of distributions. The purpose of this paper is SO in.ve,-
stigate some properties of spaces £, and Z'yy, the spaees .(t’_ bel_.ug
replaced by Orlicz spaces F3r. We adopt here the notations of [5] ‘Wlth
the only exception that multiple integrals will be denm?ed by a smgle
sign of integral. Further, M (u) will denote an even continuous function
which vanishes only at 0 and is convex for positive w. Moreover, we
agsume for simplicity w'M(u) -0 as u — 0 and «~'M(u) = oo as
% — oo, M_;(u) will mean the inverse function of A (u) _for u >0,
M_,(u) = M_,(—u) for « < 0; N(u) will mean the function comple-
mentary to M(z) in the sense of Young. Let gM(c.p) = [ Mp(x)) dw,
where the integral is taken over the whole n-dimensional space. Then

#% = {p measurable: gy (kp) < oo for a certain k >0},

with the norm [p|la; = inf{e > 0: oy (p/e) <1} is a B-space, called
an Orliez space (ef. e.g. [2]).
We write
Py = {peé: DPpe Ly for every p}.
The system of sets
Ulm, &) = {pe2ag: |1D7gly <&  for

m=0,1,2,..., ¢ >0, being assumed to be a fundam?ntal system
of neighbourhoods of zero, % hecomes a locally convex linear topolo-
gical space and the topology is equivalent to that induced by the F-norm

lp] < m},

w_ w1 L D%l
= ) e 2 o T
Mm=0 =m

where 7 is the number of variables. So @y is a By-space (cf. [1], [31);
the completeness of 2, follows from 2.1.
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