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STUDIA MATHEMATICA, T. XXIL (1962)

On spaces of holomorphic functions

by

8. ROLEWICZ (Warszawa}

In this paper we consider locally convex metrisable spaces whose
elements are analytic functions of several variables. We develop Kol-
mogorov’s ideas [14], which concern the existence of continuous linear
mappings at such spaces. In particular, we consider the following problem :
For which domains D, and D, in Euclidean complex spaces of dimen-
sions %; and k,, respectively, the spaces (D) and +#(D;) — of all
holomorphic (*) functions defined on these domains — are isomorphic
(linearly homeomorphic).

Our results (Corollaries 4.1, 4.2, and 4.3) contain as particular cases
a result of Kolmogorov which states that if D, and D, are polyeylinders
and dim D, s dim.D,, then the spaces #(D;) and +#(D,) are not iso-
morphie, and a result of Pelezydski [21] stating that the spaces of all
entire functions of one variable and #(0,) — of all holomorphic functions
defined for |z| < 1 — are not isomorphie.

We also consider the spaces of all holomorphic functions having
a given degree of growth.

Similarly to Kolmogorov [14] and Pelezyniski [21], in order to estab-
lish that givén spaces are not isomorphic we compute the so-called
“approximative dimension”, which is an invariant of linear homeomor-
phisms. Our method of computing approzimative dimension is dif-
ferent from that of XKolmogorov-Tichomirov [15] and Erochin [9].
It is based on finding some matrix representations of a given space by
basic expansions. A matrix representation determines the isomorphic
structure of the space, in particular it determines its approximative
dimension. Matrix representations of some spaces of holomorphic fune-
tions are found in § 3 and in § 5, seetion 2. Examples given in § 5
show that non-isomorphic spaces can have the same approximative dimen-
sion. However, under the assumption that spaces have matrix represen-
tations of a special form, the equality of approximative dimensions
implies the isomorphism of the spaces (Theorem 5.3).

(*) i. e. analytic and one-valued funetions.
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In many cases the matrix representation is obtained by replacing
every function of a given space by its Taylor coefficients. This allows
us to find estimations of Taylor eoefficients of holomorphic functions for
some functional classes. Examples of such estimations are given in § 6.

Most of the results of this paper were announced in [23] and [24].
Recently some results have been obtained independently by Aizeunberg
and Mitiagin [1], [2].

The results of § 1, section 3, and § 6
with C. Bessaga and A. Pelezynski.

The author would like to express his warmest thanks to Dr C. Bessaga
for his help in the preparation of this paper.

were obtained in collaboration

§ 1. Preliminaries

1. By-spaces; bases. In the sequel we shall consider only B,spa-
ces, i.e. locally convex complete metric linear spaces. For the bagic
properties of such spaces see Mazur and Orlicz [18] or Bourbaki’s mono-
graph [6], in which they are called F-spaces. Now we recall only that
the topology in a Bj-space X can be given by a non-decreasing sequence
of pseudonorms (|||l.), a = 1,2,

Linear topological spaces X and ¥ are said to be isomorphic (writ-
ten X =~ Y) if and only if there exists a linear homeomorphic mapping
from X onto Y. The symbol X £ Y will denote that the spaces X and ¥
are not isomorphic.

Let (X;) be a sequence of Bj-spaces whose topologies are given
by sequences of pseudonorms (li-|L;), j =1,2,..., respectively. The
space & whose elements are sequences (#;), #; being in X;, with the topo-
logy determined by the pseudonorms (@)l = sup {||lallx: 4, f < a}
will be called a product in sense s of spaces X; and denoted by the
symbol (X, ><X2><...) .

A series Z @, of elements of a By-space X is said to be absolutely

n=1

convergent if and only if 2 ||| << oo for every continuous pseudonorm

{l-]| defined on X.

A gequence (¢,) with e,eX is called a basis (an absolute basis) of
the space X if and only if every vector z in X may be uniquely re-
presented as the sum of a convergent (absolute convergent) series:

o0
@ = > te, (t,—scalars).
=1

2. Kithe spaces. We ghall consider a class of “Stufenrdume” in-
treduecd by Kéthe. Let A dencte the set of all systems of & non-negative
integers. Suppose we are given a (k- 1)-dimensicnal matrix of num-
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bers @.,, where a =1,2, ...
(11) [ U

, meA*  such that

SUD Goy >0, @y, < ag, for a<B.
a

A Kothe space # (c,,) is the space of all (k-fold) sequences £ = (&,)
of complex numbers such that -

1€l supaa,,J nl <oo  (a=1,2,...).

Addlmon and multlphcamon by scalars in this space is defined as
usual; the topology is given by pseudonorms f-li,.

In the case of k = 1 we shall write n instead of n; spaces .7 (a,,)
will be called single Kithe spaces.

If X = .#(a,,), we shall say that X has a matrix representation
A (Gan) .

ToeoreM 1.1 [22]. Let X be a By-space with topology deiermined
by a non-decreasing sequence of pseudonorms (||.l,) and with a basis (e,).
Let Gon = lenlla- If

o0
(12) for every o there emisis a B such that D Gu,/as, < oo (here we wnder-

n=1

stand 0/0 = 0),
then & = M (Gay).

For the proof see [4].

A Bispace X with a basis satisfying condition (12) is said to be
nuclear ().

Remark 1.1. It follows immediately from Theorem 1.1 that if
a set of vectors (e,) can be reordered in such a way as to constitute a
basis of X and if for every a there is a § such that Z’ llenllafllenlls < o0,
then X = 4 (Je,]u)- net®

3. Approximative dimension. Let 4, B be subsets of a linear
space X. By M(4, B, ¢) we shall denote the maximal number » of such
points @y, ..., 5, in A that @;—a;¢2eB for 4+ £ j. M(A, B) will denote
the class of all non-negative functions ¢(e) defined for ¢ > 0 such that
for sufficiently small &

gle) > M(4, B, o).

Now let us suppose that X is a linear topological space. Let 2 be
the class of all open sets in X and 9 — the class of all bounded sets in
this space. The class of functions:

=N N MEB,)
UeA BeH
is called the approwimative dimension of space X (Kolmogorov [141])..

(*) For general definition of nuclear spaces see [11].
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Pelezyrhski’s considerations [21] lead 6o the distinetion of another
clags, namely:

(13) N UM(U, V).
Vel Uell

In the case of By-spaces both classes are identical [22].

We shall say that the approximative dimension of space X i3 equal
to, less than or equal to, and less than that of ¥ (written d,X =d,Y,
X <d,Y, LLY¥<4¥) i 2@ = 9(Y), P(X)DP(Y), and
@ (X) 2 O(¥), respectively.

Tt is easily seen that the appromimative dimension is an isomorphic
invariant of spaces; moreover if Y is a subspace or a linear (continuous)
image of X, then &, ¥ < d.X.

Tn the case of B,-spaces it is more convenient to deal with formula
(13): instead of the family ¥ one may take an arbitrary basis (U,) of
neighbourhoods of zero.

Let X = M (&), With net” % be a nuclear Kothe space and let

Mo (X e) = [[B(LA4 ton/(eamm) (-
neAF
Denote by M,;(X) the elass of all non-negative functions ¢(s) defined
for & > 0 such that p(e) = M,(e) for sufficiently small .

THEOREM 1.2. If X = M (8y,), with net™, is o nuclear Kithe
space, then ©(X) = () Lﬂ) Mo (X) (4).

TrmorEM 1.3 (%). Let matrices af) (j =1,..., %) satisfy condition

(12) and let

" =
G = 00, als Nog(e) = {n:af/all > ¢} (%)

Then

1. 145 % 1\ /&
Elog—;” Napi Ve) < log Moy (M (Gun); &) < log (1+ :) Nosi(e).
j=1 j=1

Proof. Write

1 1
Paﬂ(s) = {ﬂ/: aﬁ},{/a,%l,)b = "8-} X X {'n: agﬁ)/agﬁ,) Z-g}.

Right-hand inequality. We have

(*) Ea denotes the greatest integer in a.

(¢} Proofs of theorems 1.2, 1.4, and 1.5 will be published in Studia Math. in
a joint paper with C. Bessaga and A. Pelczyfski.

() of. Mitiagin [19], theorem 1.

(%) The symbol A denotes the cardinality (number of elements) of the set A.
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1 \FapE)
” E(L+ Gan/ (205)) = H B {1+ tanf (605m)) < (1+—) .
ned'l nePople) &

- k
Since Puz(e) = [] ¥ (e), we obtain the required inequality.
j=1

—_ o —
Left-hand inequality. Since B (L4 o/ (2as,)) = 1/Ve for nePuyu( Ve),
we have

2k
~ Pap( Vo),
] B+ tenf(eam) =[], Bt auul (eapa)) > @12
neAk neP.p Cva
TaeoreM 1.4. Let malrices (@), (bog)
where P = (Nyy -y Ne)eN T, @ = (Hyoq, -
where 1 = (Ny, ..., ng) e A . Then

n M5 (A (p)5€bpg[Dag)-

qE_:,r'k—-r

satisfy  condition (12),
) e T andl 16t Cuy = oy bog s

M op( M (Cen); &) =

TEEoREM 1.5. Let X, be a sequence of By-spaces. If d (X;xXX;) =
=4, X,, then (X xX;X...)s=d,X;. In particular, if dX =
=d, (XX X), then d,X = d,(X®s). (Symbol X XY denotes the Car-
tesian product of spaces X and Y).

4. Spaces #, (D). Let D be a domain in a k-dimensional Euclidean
complex space. Let u(z, 2) be a non-negative function defined for 0 < e << 1,
zeD, non-inereasing with respect to & and such that lim g(e,2) >0,

0

for every z in D. By #,(D) we shall denote the space of all holomorphic
funetions # = z(2) defined on D and such that

(14) [l = ’n‘zllll;iw(z)lﬂ(s,z) < + o0

with the topology induced by the pseudonorms |-[..

Since u(e,#) is mon-increasing with respeet to &, the topology of
the space #,(D) may be given by the sequence of pseudonorms i [|ys-
Hence #,(D) is a By-space.

If 4, (0 < e <1)is a non-increaging family of compact sets such
that |J 4, = D and p(e, #) = x.4(2) (the characteristic function of the

set 4), then 5#,(D) is the space of all holomorphic functions defined on
D with the topology of almost uniform convergence. This space will be
briefly denoted by (D).

1f D is the whole k-dimensional Euclidean complex space, then
instead of o#,(D) we shall write #,.

The symbols ¢ and ¢, will be reserved further for denoting the
whole complex plane and the interior of the unit cirele; C will denote
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the extended complex plane, i.e. & = O+ {co}. 0" (resp. () will denote
the Cartesian product of r copies of ¢ (resp. C,).
TEEOREM 1.6. Suppose we are given a space H, = Jfﬂ(G’“) such
that the function w(e, z) depends only on |24, ..., |2z, and let 2™ = ™ ,_,
...k, for me AT If for every 0 < e <1 there emists an ¢ such thai

D112 < oo,

net®

(15)

then the mononomials 2™ constitute a basis of . The space H, has o maotris
representation M ("), where (g,) is an arbitrary sequence such that
0<e, <1, lim e =0.

a=->00
- Proof. Every entire function, in particular every function from 2 ,
can be uniquely represented as the sum. of the series ‘

(16) a(e) = D 62",
nedE

which is absolutely and almost uniformly convergent ([10], p. 74).
By Cauchy formula ([10], p. 24) we obtain |¢, | < (1/r™) max |2 ()],

1251 =w;

1, no__ 7 o 3
where ™ = r{1 ...13%, for every m in 4. Therefore

lon_12" < max{ln(£)]: & = (&, ..., &), |&] = |a}.

Hence
(e 2)6n12"| < p(e, #) max |z(&)].
183l =121
Now, the assumption that u(e,s) depends on [#4] 5 ooy |2] gives us
llen_12™l, < izl for every med™®.

From this inequality we deduce by (15) that the series (16) is convergent
in tl:}e topology of the space #,. Since, by (14), convergence in #,
implies uniform convergence, expansion (16) is unique also in the topol-
logy of s#,, i.e. (2") is a basis of .

The matrix representation of o, follows from formula (15) and
Theorem 1.1.

'5. Tt?nsor products. Let X and Y be B,spaces, X* and Y* —
their (.:onjuga,te spaces. The space of all bilinear forms defined on the
Cartesian px:?duet X*x Y* is called the tensor product of spaces X and ¥
(written X @ ¥) [11].

Further we ‘shall make use of the following three facts concerning
tensor products:
NI X=X, =Y, thn XQY=X,5Y, X (¥xZ) =
=X RY)x (Xg4)

3
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(18) If D, and D, are open sets in C* and O™ respectively, then 3 (Dy X Dy) =~
~3# (D;) @ # (D) ()

(19) If X~ M(ay);, Y= M(by), with p = (ny,..., nyeA", g =
= (Mypigy + ey M) e, are nuclear Kothe spaces and Cu, = Gupbag
for mo=(P,q) = (g, vy M) A", thon X QY = M (0r)-

§ 2. Some isomorphic relations between spaces s (D)

LevmA 2.1. Suppose we are given an analytic transformation of
an open plane set D, onto an open plane set D,. Then the space 5 (Dy)
is isomorphic to a subspace of #(D,).

Proof. Let

(To)(2) = @(p(z).

We shall show that 7 is an isomorphism mapping of s (D,) into
#(D,). Obviously T is a linear one-to-one mapping. To show that. it
is continuous let us choose ynsT(W(DZ)) (n=1,2,...) such that
Y —0. Let x, =Ty, (n=1,2,...). Suppose that =, -+~ 0. Then
there is a compact set K, C D, such thatlim|z,|lx, = lim su}) |z, (w)] >0.

n n weKy

Since for every compact K, C D, there is a compact set K, C D; such
that @ (K;) D K,, we have lim {ly,llx, > lim sup |z, (w)| > lim [#.]x, >0,
which leads to a contradiction. wea—1(Ky)

LevMyMA 2.2. Let D be an arbitrary k-dimensional domain. Then the
space #(CxD) (resp. the space H# (CyxD)) is isomorphic to ils cartesion
square.

Proof. First we note that the space 5 (C) is isomorphie to its Car-
tesian square. Let us put hx = (u4, #,), Where

ml(z) = W’ mz(z) ==

for any me #(C). It is easily seen that % is the required isomorphism.
In the general case, according to (17) and (18), we have

H(OxD)=<H(C)RH (D) = (%(C’) x&f(O)) ® (D)
=~ (:}f(G) ® .}f(D))X#(G’) ® # (D)~ #(0RD)x#(CRD). )
The proof for the space 5#(C,XD) is analogous.
() This formula follows from the fact that every function x(z) in #(D; X Dy)

can be almost uniformly approximated by sums of functions of form (%), (%)
with #;eD;, #2¢D, and from the example 1 in [11], p. 89-90.
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TuporEM 2.1. Let D be a finite connected domain in C. Let 7,
ooy Zm be components of the complement of D. Then

1° # (D) = o (C) if all Z; are points,

2° # (D) = 3 (Cy) if all Z; are continua,

3° (D) = #(Co) x#(C) if among Z; there are points and continua,
Proof. For m =1 our assertion is obvious. Let us suppose that
it is true for an Il-conected domain. Let D be an m-conected domain.
According to Riemann theorem on conform mappings we may suppose
that the component Z,, of the complement of D is («) either the point
set {oo} or (B) the set {¢: |2] = 1}. Then in both cases there is a positive
number r such that

z(z) = va,nz”-l—anz_” for zes’ (D)
n=0 n=1

é.md for |z| > r in the case («) (1—1/r < |2| <1 in the case B). It

is easy to see that the correspondence x « (2, #,), where

L
.%‘1<Z) = Zanzny
Nn=0

is an isomorphism between <#(D) and #(0)x (D vZ,) (between
(D) and #(Co) X # (D < Zy).

Sinee the domain D U Z, is m—1 connected, by the induction
hypo(tlhesis and lemma 2.2 we obtain the assertion of our theorem,
q.e. d.

ConsecTURE. If D is an arbitrary finite connested domain in O
then (D) is one of the standard forms: #(C), H(Cy), H(0XC,). ’

ﬂ;EEOREM 2.2. Let Dy, ..., Dy be a family of finite connected plane
domams. Suppose that all componenis of each of the spaces C—D, are
pom‘ts for i =1,..,7, continua for i =r+1,...,7-p, points and
continua  for G=r+p+1,...,k, where 1<r<r+p<k. Then
H(DyX ... xDy) is isomorphic to the space

H(O" X)X (O X 05"~ 35 ... x o (CFP % OF).

o
2y (2) = Ea.nz"“l,
==l

This follows immediately from theorem 2.1 and formulas (17)
and (18).
Let 2 be an algebra with two operations, + and -, a i
o , -, and one relation of 1-
ity”, defined by the following axioms: o
) L. .Qphas 'b?vo generators w, v (in other words, elements of 2 are sums of mono-
nomials uPv? with p, g > 0, p+¢> 0, where w? = ... u, ¢ = v V).
I N 4 P times 4 times
COOT Oy = Wyt g, Wty = Wy, 04 (gt w) = (Wi @)+
01 (@ 3) = (w;- @) wg, w1 (0y+ wg) = @y Wyt ;- w,. ’ ' : ’
IIL If p* < p, ¢’ < g, then wPvl+ wPp?" = oPed,
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Let o = uP1%4-...+uPnotn. Denote by w(X, ¥) the space constructed

-+ u v
A .

from the w by substitution )
: X @ #(0) #(Cy)

From theorems 2.1, 3.1 and formulas (17) and (18) follows

TEEOREM 2.3. If w; == ws, then w (X, ¥) = 0,(X, T).

Problem 2.1. Does the relation w (X, T) = w,(X, F) imply o; = w,?

Using theorems 2.1, 4.1, results of § 5, and formulas (17), (18) and (19) we obtain
the following statements:

10 if degree w, 7 degree w,, then w, (X, ¥) 7# wa(X, ¥);

20 if @, depends on ome variable u, w, depends on v, and wy is not equal to any
element of 2 depending only on one variable, then the spaces w:(X, I'), wo(X, Ty,
wg(X, ¥) are not isomorphic. In particular #(C), H#(Cyx C) and 3 (C'y) are not iso-
morphic.

THEOREM 2.4. Let D = DX DyX...X Dy be an arbitrary poly-
oylinder. Then # (D) is isomorphic to a subspace of #(0%).

Proof. According to (17) and (18) it is sufficient to restrict our atten-
tion to the case where D is one-dimensional. By theorem 2.1 we may
agsume without loss of generality that & —D contains at least three points,
for instance {0}, {1}, {oo}. Now by a result of Poincaré ([13], p. 275)
there is an analytic function ¢ which transforms D onto ¢y, To complete
the proof we apply lemma 2.2.

THEEOREM 2.5. Let D = D, X Do X ... XDy be a bounded polyeylinder.
Then # (D) contains & subspace isomorphic to (0%,

Proof. As in the proof of Theorem 2.4, it is enough to restrict our
attention to the one-dimension case. D* denotes the complement of the
unbounded component of the complement of D. Let # : o (D*) — # (D)
be the restriction of functions in #(D*) to functions in #(D), i.e.
r#(2) = 1(z) for zeD and ze#(D*). Obviously 7 is a linear one-to-one
operator and according to the maximum principle r~! is continuous.
Hence #(D*) is isomorphie to a subspace of # (D). Sinee D*, is a boun-
ded domain, #(D*) is isomorphic to #(C,), q.e.d.

From theorems 2.4 and 2.5 we obtain

COROLLARY 2.1. If D = D,X...xDy 48 a bounded polycylinder,
then the spaces # (D) and # (C%) have the same linear dimension in the
sense of Banach ([3], p. 193).

THEOREM 2.6. Let Dy be an arbitrary k-dimensional bounded domain.
Then, for every k-dimensional domain D, 3 (D) is isomorphic to a subspace
of the space (H#(D)XH (D)X ...)s-

Proof. There exist points ™ in C* and positive numbers s, such
that

g— 2™

D=\D,, where D,= {zeG": — eDo}.

n=1


GUEST


144 ) 8. Rolewiez
Obviously all the spaces s#(D,) are isomorphic to #(D). Let h,
denote an isomorphism from s#(D,) onto #(D,) and let 7,: # (D)~

— #°(D,,) be the operation of restriction of functions in (D) to fune-
tions in ##(D,). Let us put hx = (h,7,2) for ze#° (D). We omit the
asy checking that h is the required isomorphism.

COROLLARY 2.2. Let D be an arbitrary k-dimensional domain; them
#(D) is isomorphic to o subspace of the space (%’(O’;)x&f(oo)x s

§ 3. Matrix representations of spaces #,(D)

1. Matrix form .(exp(a(nfi+ ...+ nf)— % ( ‘"“—l—...—|~n}‘c’¢))).

Por 11
Now we prove
TaeorEM 3.1. We have
(07X O5) ol (exp (gt o1y = (it .-
Proof. The sequence 2" = 271 ... 2% constltutes a bagis of the
space # (C"x CF") ([10], p. T4). We assume as pseudonorms
Izl = SUP{W DRyl ey 2] < €% lzr+1i -zl < G—Ua}-

Since Z'k||za"|]u/[]z”[|u+1 < co, by Theorem 1.1 we have #(C"x (%)

ned”
= M (") Bub ("], = exp(a(n+-.. -i-%r)——* (g1 ), g e.d.

Now we shall establish single matrix representations of the spa-
ces A#(CF) and #(C¥). We shall use the following

LEyyma 3.1, Let [ ] denote the number of all mononomials of degree

§ of & variables. Then §*[k! < [] (j+ 1)
Proof. It is easy to see that

o 1= 2]

. omtl

Let fr(t) = [?f] By (31) we have [f,_,(t)dt = fi(n); therefore

1

offk-l('”)df < fel®)
in particnlar [kf_l]
On the other hand, from (31) it follows that [;c] < G+ 1)[k J 1],

Hence, by induction, we obtain fi,,(t) = ¢"/k!;

=ikt

and by mduetmn[ ] G+1)4", q.e.d.

THEOREM 3.1'. #(C%) =5 4 (exp a}/n) and 3 (0%) z./l(exp(—,;/'r—b/a)).
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Proof. Let p(n) = (pl('nv), ...,pk(n)) be an arbitrary one-to-one
function from 4! onto A4 * sueh that |p(n)| < [p(n’)] for n < n’, where
Ip(n)] = py(n) ...+ pp(n). Write e, = 211™ ... &P+, By Lemma 3.1,
there are positive constants A and B such that

E
expad Va < expaB l/n for

< el < #(0%),

exp(—A4 ﬁ/a) < Jlenlls < exp(— Bl/n/a) for  #(CE).

Thus the formula T(e,) = 2 2™ gives the required isomorphic
neAt

mappings from 4 (expallc/n.) onto s£(C%) and from 4 (exp(_lf/n/’a))

onto #(Ch), q.e.d.

The next two theorems will concern matrix representations of spa-
ces of holomorphic functions defined on cireular or p,, ..., pp-circular
([10], p. 113 and 117) domains D. For simplicify we shall formulate
these theorems for the case where the centre of D coincides with (0, ...,0).

THEOREM 3.2. Let D be a bounded domain in C* such that

(32) aDCD for every laj <1(®).

k-
Then 3# (D) = A (exp(—Vna)).
Proof. Let D, = (1—&)D. We introduce scalar-products

(2, %) = fﬁ(zu ey BY (Bry ey 2R) Ay .. dapdy .. Yy,
Ds
where 2, = #;--diy; for j = 1,..., %k, and the integral is taken over the
domain D in a 2k-dimensional real Euclidean space ([10], p. 119).
The pseudonorms ||, = Viz,s), (0 <e<1) give a topology
equivalent to the almost uniform convergence, because

1Dl il

< sup la(2)| < m ol

2D,
where |D,] is the volume of D, and r,, is the distance between the set
D, and the complement of D, ([10], p. 120).

For the scalar product (z,%), we can construct an orthonormal
basis (e,) constituted from homogeneous polynomials ([10], p. 132).
The number of elements of the basis which are polynomials of degree j
is equal to [;J Since e, are homogeneous polynomials, we have

(ry &), = 0 for r #£8, (6,6), = (1—eY|e,llo, where j is the degree of
the polynomial e,. Let &, = 1— exp(—1/a). Then [e,l., = lleplloexp(—7/a),

(8) 4 denotes the closure of the set A.

Studia Mathematica XXI 10
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where j is the degree of the polynomial ¢,. Now, applying Theorem 1.1
| p—
Vn+ %/a)). But this space

I —

l/n/a)), q. e. d.
THEOREL.I‘333A. Let D be a bounded domain in O such that (33)

there are positive integers py, ..., Py Such that for every real t

and Lemma 3.1, we obtain # (D) =.# (exp (—

is trivially isomorphic to the space .# (exp(—

{(zlexpiplt: b} zkexl)ipkt): (zu vy zk)e-D} C -D;
(34) tDC D for each 0 < t< 1.
Then # (D) = 4 (exp(— If/f;;/a)) .

Proof. Let @(z) = (&1, ..., 25%). It follows from (33) and (34)
that the domain D* = ¢~'(D) fulfills condition (32). Let us assign to
any function @(z)e#’(D) the function (Us)(z) = (P(2)) with zeD*
It is easy to verify that U is an isomorphic mapping from (D) onto.
a subspace X of the *space 5 (D*).

Ip the same way as in the proof of Theorem 3.2 we can construct
@ basis of X chosen from. the homogeneous polynomials. The elements
of this basis are sums of mononomials 277...4%% such that =, is divisible
by p; for ¢ = 1,2, ..., k. Let v; denote the number of such mononomials
of degree not greater than j. As in Lemma 3.1 we can prove that there

are pos.itive constants 4 and B such that 45" < s; < Bj*. From this
inequality follows the assertion of the theorem.
13
THEOREM 3.4. Let p(e,2) = exp(— Z ()2, w,..., 7% =0,

=1
Trps oo T >0, 95 > 05 then #, zull(exp(cz(nl—i—.. e L (1 +
+...+Ank))). ¢

The isomorphic mapping from H#, onto M (exp(a(m-f— )

1
— (n,+1+...+nk))) is of the form

& k
(35) T N e,a" = (d,0,), where d " ”’ '
2, )s n g 1 [p;)"17) exp ( — gnf/pf)-
Proof. We have

k

"l = max [ exp (— ' (z;+2) 25/79)
2607 F=1

%
= 13713021 exp (Zn]logt 2 (vr+ &) 7).
Let =t ‘
Fltg, - Zn,t,— 1:,—{—6)

icm
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Solving the equatwns df|0t; = 0 we find that the funetion f has its

maximum for ; = l/n, [(ps(m+ +e), j=1,..., k, whence
S in p;\Pil®i iﬂ

"l = ( I] (——-) )exp( V1)
1 T+ ) =

Thus the formula U }' ¢,2" = (¢,) gives an isomorphic mapping from
net"

#, onto J!(d,,exp(a(nl—}—...—;—n,)—% (n,+1—l—...+'n.k))), where d, are

given by formula (35). This is equivalent to the assertion of the theorem.

TEROREM 3.5. Let u(s, 2) = exp(— Zk‘ (z;-+ 2)|Llog |2];|™) , where p; > 1,
Tyy ooy Tr =0, Trpryoon and let g =pilpi—1), j=1,.., k.
Then #,~ M (exp(a(n‘fi + ..t ﬂrk"'))) .

Proof. In the same way as in the preceding proof we obtain

_k
o
= l iA";",
&

If 7; =0, thenhmA-*oo if 7; >0, thenhmA,j

Theorem 1.6 it follows that o, =~ (|#";,) , Where (e) is an arbifrary
gequence tending to zero. The transformatlon
k

. aj
where 'd, = A;”ij for
j=r+1

, 7 >0,

q q
o) — ; (et +

1 4
where A,; =ex p((m) ¢; )

4;. From

U(n) = (@nén)s ned”,

maps this space onto the space given in the assertion of Theorem 3. 5,
Remark 3.1. The space #, considered in Theorem 3.5 is isomorphic

to the space Fp, of all holomorphlc funections «(z) which are periodie

with the period 2= with respect to every variable and such that

k
lall, = sup lo(a) exp (— 3 (-+e)Tma[77) < oo
=l
The isomorphic mapping from #, onto F;“;, is given by the formula
(Un)(z) = 2(eXPi2y, ..., OXD %)

THEOREM 3.6. Let
k

(s, 2) =exp(——52(10g li )—Si), 5> 0.

j=
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Then

E
3 1
‘%h(oﬁ) =~ (GXD (— ZZ '”’?j))’ where g5 = s;/(14s;).

i=1

This isomorphism is realized by the transformation T( > @) = (0,).
ned’k
Proof. We have

M
N\ s+
k"]l = exp <~Z (»ﬁ%) ! (4 s)).
: J

F=1
Hence if |n| is sufficiently large, then
3 3

exp( ’)nmx(es 1’59“247,“1 < . < exp( Fmin (gs) "%+ y )
ia i

This inequality gives us the assertion of the theorem (?)
Remark 3.2. Let u(e, z) be the function defined in Theorem 3.6

and let u(z,2) = exp{—e 2(1 lz;1)%). Then #, = #
This follows mmedlately from the fact that

HL®

11—t
1o 1log(1ft)

r+1
k
TEBOREM 3.7. Lot u(s, #) = exp(— ;Zl'|o'.|7’f+’5), Where Pry.ovyPp=10,
Pry1s ooy P > 0. Then I, =5 M (0. .037)% (nprid.. i)~ ue
Proof. We have

k

[t="1, Hﬂ"ﬂ“’} W(p -+ &)~ "W+ . oxp (—n,/ (ps+¢ )

2. Matrix form .#((nf1...n7)% (njr{1...n3%) "), Now we prove

Hence for arbitrary 5 >0

I

k
[ mitereesn < ), < [] ngiterss—n
j=1 =1

k
for sufficiently large |m|. Therefore #° N.///( H u (B9 by Theo-

(%) It is enough to notice that Theorem 1.6 holds true if we replace spaces
#u(0) by #,(Cy).
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rem 1.6. But this space may be isomorphically mapped onto the space
given in the assertion of the theorem by the tramsformation

T(¢,) = (dn0,), Where d,= n nivr,
F=ri1

3. Matrix form . (exp(ni+...+ng-Fnfp "+ +af 7). Now
we prove.

&
THEOREM 3.8. Let u(e,2) = exp(— > log|e V™), where po,y ..., pr =1,
j=1

Doty -y P > 1. Then #, = A (exp (nf+ ...+ n§-+afii= o4 fafF=1),
4 = ps/(p;—
Proof. We have

&™) = H exp {1y /(ps+ )| PHHIEHD- (4 e 1) [+ 2)).

Hence, for every n >0,
k
neXp’n (Dj+e—1)|(@f+e-n—1) < H., I < expny (Djre+n)/(@5+etn—1)
j=1

for sufficiently large |n|. Hence, by Theorem 1.6, we obtain the asser-
tion of our theorem.

§ 4, Approximative dimension

1. Space .# (exp (a(nBi+ ...+ nir) —% (mirpt4. .:+ni’°‘))). Now we
prove
TeEOREM 4.1. Let X—J.I{(exp(a(n?’—{—...—{—n )— — (n,ﬁ;ﬂ + .

&
—i—?z%’»‘))), with ¢; >0; s = D gi'. Then
=1

{¢: m(10g1)8+1/1og¢(£) - o}, i r=o,
{(p hm(log ) /1og<p oo}, if r>0.

Proof. Put af) = exp(an¥) for j =1,...,7, a8 = exp(—n%/a)
for j =r+1,..., k. Since, for any ¢ >0,

O(X) =

1 1\
exp(an?)fexp (fn?) > ¢ if and only if n < (ﬁ—alOg.e_)

and
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n? n? . ) 1\
exp —;—)/exp s > ¢ if and only if n < ((l/a—l/ﬂ)_llog-—> ,
&

we obtain
( )
|1+E(ﬂ~:—log ) for j=1,...
Nuﬁ]( ) {

1\
Il—i—E((l/a——l/ﬂ)“log-;) for  j=r+41,..., %

(

Henece, for sufficiently small e,

k
ok
n Ns( V.
7=1
[7 Veple) <29

where 8" = 1/gy+...+1/¢r, 8" =1/¢ey+...+1/gy, s =s'+s". Thus,
according to Theorem 1.3, for sufficiently small ¢ we have

?7.7

— 1 , - s
) > 5 (=1 a=1p) (10g 2)

and -

@) (Lja—1/8)"" (1og%)3,

1 241
g7 0= a~*wia—1/p(0g )" <10g1,500

1 2k

<20 (p— o afa—1/p" (10 1]

In virtue of the definition of M (4, B), pe (Kg, K,) (") if and only
if there exists ¢, > 0 such that

logg(e) > log M(X;e) for every

Hence, by (41),

oF “llm( (B—a)"Aja—1/8)" (log ) )/logqo(a) <1

& < g.

implies
A pe M(Kﬂy K.),
which implies

1 — , " y
S ((ﬁ~a)‘” (1/a—1/p)" (log%) )/logqa(,s> <1

Now Theorem 1.2 gives us the assertion of the theorem.

COROLLARY 4.1. If 0 <r <k, then (0" xC5") = a,#(C"
< asih o o) =dut(0%) <

() Eo = {@:zlla < 1}, Ep = {m:|zllp < 1}.

icm
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COROLLARY 4.2. If d,# (D) = d,9¢(D,), then dim D = dimD,.
COROLLARY 4.3. If D 4s an arbitrary bounded domain of the k-dimen-
stonal Buclidean. complex space, then

o(#(D)) = {¢: ljfol(log }E—)m/logqa(e) = 0}.

These corollaries follow from Theorems 1.5, 2.4, 2.5 and 2.6.
2. Space #((nft...up)" (nyrit...ni#) %), Now we prove
THEOREM 4.2. If X =~ .#((nt... k)%, then geD(X)
if and only if
1)"
- l

1 k+1
(Iog ——) / (loglog
&
Proof. Put aif) = n™ forj =1,...

J— /
lim
0 logg(e)
It is easy to verify that
1
[Ex(
B—

Ex((l/a—l/ﬂ)“‘log%)+1 for j >,

nyr)¥(mertt..

=0 in the case where r =0,

< -+oo in the case where r > 0.

1y a) =w™ for j =7, ..., k.

1
log—)-i—l for .7 <7,

a e
Nogi(e) =

where x(f) is the function inverse to the funection f(f) = tlogt.

Sinece
(1)

t.0 tflogt

=1,

for sufficiently small &, we ha,ve—Aaﬁ,log —/ loglog— Nyile) <

24 .5 log*/loglog—, where Ay =1/(f—a) for j=1,...,7, Aoy =

(1/a—1//3)“1 for j = , k. Therefore, for sufficiently small e,

r+1,.

E ok a2 2
[[7a=(5)" <ﬂ—a>—’(1/a—1/ﬁ)'-k(1og§/mglog =
-1

2

and
2%( —k 1 1\
”N,,m < 2%(f—a)"(1/a—1/p) ~*(log~ floglog =) .

Now in the same way as in the preceding section one can deduce
the assertion of the theorem.
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3. Space (exp(ni+...+ni4nl" Vel 4 afmlY). We now
prove

TeeoREM 4.3. If X =5 M (exp(ni+ ...+ np4nfiyt~ e 4 nftin)
then

&(X) = {p: lim(log1/e)*t' " /logp(e) = 0 for some 5 > 0},
a0

where s = 1/gp 1+ ... +1/qx.

Proof. Let af) —expn® for j=1,...,7, af)=expn¥ ' for
j=r+1,..., k. It is easily seen that, for ¢« < 8,

expn’ . . 1
- > ¢ if and only if » < A (log —
P > ¢ if and only if » < °5(Oga)’
and
expni~l/® . .
W;eﬁandonlylfngl g__log

where 1,4(t) is the function inverse to the funetion f(2) = ## —1* (a < §).
Hence

1
Eluﬂ(log ;) for j<r,
nﬂJ { 1
lE/’lqi_é’qu%(log :) for j>r.

Since limA,(¢)/t"" =1, we obtain, for sufficiently small e,

00
1

2k~
N (Ve) > e

1\1/8 1\
(log ) v Nog(e) <2(10g ——) for j <o,
€
and

(z-1/8) !

W (Vo) = 1) ey 1o 1)

N«ﬁ,-(a) <2 (10g "

1\@-up-t .
for j >r.

Therefore, according to Theorem 3.1, we obtain
(r1p+3@-1/H =141 1\ 18+ Z@-1/)~1)+1
Ay (log m) " < Mople) < Bk(log ~) !
€

where 4, and B; are constants.
From the last formula follows the assertion of Theorem 4.3, because

H

Um (r/p+ 3 (= 118)7) = s.
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§ 5. Power spaces. Single mairix representations. Examples of non-isomorphic
spaces having the same approximative dimension

1. Definition. Nuclear Kothe spaces of the forms .# (aj) and .# (/%)

"will be ealled power spaces of infinite or finite type, respectively.

From Theorem 1.1 it follows that in the case of power spaces
(B1) There exist B > 0 such thatZaﬁ< oo; for every t >0, Z:biL < co.
n n
Without loss of generality it may be assumed that
(52) 1< <0, < o5 12by=b >...

Let ¢(e) and y(e) be functions defined for & > 0. If there exists
gg >0 such that g¢(e) > p(e) (resp. (&) > p(s)), for ¢ < e we shall
write

ple) Zy(e)  (resp. p(e) > w(#))-

Let X = #(a2), ¥ = #(b}/°), with (a,) and (b,) satisfying con-

ditions (51) and (52). Put

M, (X; s)=ﬁE(1+1/(sa;;)), MY HE(l by fe),
n=0

and
M (X)={p:g(c) > M(X;6)}, M(T)={p:p(e)>M(Y;e)}
fore =1,2,...

THEOREM 5.1. &(X) = GMQ(X), DY) = ﬁ M,(T).

a=1 a=1

This theorem is a simple consequence of Theorem 1.2.

THEOREM 5.2. Let X = .#(a) and Y = M (b}l") be power spaces
of infinite type and of finite type, respectively. Then do X # d,Y; there-
fore X # Y.

Proof. Suppose that

(53) &(X)D B(Y).

We shall prove that in this case ®(X) 3 o(Y).

From the definition of functions M, ( ; ) and M (Y3 ¢) it follows
that

(B4) ... < My(Xje) < My(Xje);  My(T;6) < Mu(T50)
whence, by Theorem 5.1 and by formula (53), we have
(85) M (Y6 <« My(X38) (e=1,2,..).
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Inequalities (54) and (55) imply the existence of a decreasing

sequence (&), with lim g = 0, such that
k00

M (Xj5e) > Mp(X;8) > ... > Mp(X;e >_Mk(Y &) > My 1 (¥;e) >
. > Ml(Y; g) for &<g.
Put
1 for e>¢,
p(e) =11 5
E(M"(X; &)+ M (Y; s)) for & >e > e,
We have

M(X; 6) > p(e) > My(Y;e);

this means, according to Theorem 5.1, that &(X) = &(Y), q.e.d.

2. Lemma 5.1. Let X be a nuclear space that satisfy the following
condition:

(36) @c®(X) if and only if p*e®(X).

If X =.#(a), then O(X) = Ulfp:logp(e) log— 3 N (Ve)}

if X =M (bL%), then B(X) =

n:a, <1fe}, N(e) = {(n:b, > & > e},
Proof. 1° X = #(a,).

N {p: logp(elog— > F (e}, where N (s) =

Theorem 1.3, for &k = 1, gives us

a,~ 1 . 1 26— 1
N (Vellog - >log M(X;6) 55 N(V/e) log—.
Let pe®(X). Then, by (56), Vpe®(X) and, according to Theorem
5.1, we have

q“;.){zp Hlogp(e) > 1N (Ve )log }

On the other hand, if gelJ {¢:210gqo(a) >N (Ve) 1ogi}, then
a &

9’ P (X) and, by (86), pe®(X).
2° X = M (b)®). The proof in this case is based on the inequality

o 1. - 1. 1
2 N(s")log: >log M (X;¢) >§N(s"’z) 10g:.

icm®
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Remark 5.1. It is easily seen that in Lemma 5.1 assumption (58)
may be replaced by “pe U {p: p(e) = N(Ve) (resp. weU{w p(e) = F ()

FVo) resp. 29 N v 2 p(e) >
THEOREM b5.3. Let X and X, be power spaces satisfying condition
(86) and let d, X = d,X,. Then the spaces X and X, are isomorphic.
Proof. 1° X = #(a;), X, = H(c;). Suppose that conditions (51)
and (52) are satisfied. Let N (¢) and N,(¢) be functions defined in Lemma
5.1, for the spaces X and X,, respectively. By Lemma 5.1, we have

Ulp:pe 25 Ve}~uw w(e) = N, (Ve

eU{w:o(e) >
Thus there ex_mt positive integers a, and B, such that N (e) > N,( 1/_),

Ni(e) /N( ]/ ). Sequences (a,), (¢») being non-decreasing, this implies
that, for sufficiently large #, @, < ¢ and a, < ¢, i.e. the identical
mapping T'(£,) = (&,) is the required isomorphism from X onto X;.

2° X = 4 (bY"), X,=#(d}"). Let (b,) and (d,) satisty conditions
(51) and (52). Denote by N (¢) and ¥, () the function defined in Lemma,
5.1 for the spaces X and X,, respectively. By Lemma 5.1

O{wW(S > N }‘ﬂ{w (&) =

if and only if 2ye U {w:v(s) > N(e")}

whence N (e U{w w(e) =N, 1/5} and N, ( >N V; }-

(67 > Ny (e}

‘We shall show that there exists a positive integer a, such that
F(e9) = Ny(e).

In fact, if the last inequality held for no a, then there would exist

a decreasing sequence (g,), with lim ¢, = 0, such that N (&%) < ¥, ().
a-0
Let
1 for & >e,
Tyl =1 .
N(e") for & =e> g
Then weﬂ{w y(e) > (&%)} and wéﬂ{tp p(e) > Ny (e)}, which eon-

tradicts formula (87).

Now N(e) > N, (e) implies that, for sufficiently large =, d, > 2.
The assumption of the theorem being symmetric with respect to X and
X,, we have also b, > d% for sufficiently large n. Hence the mapping
T(&,) = (&,) is the required isomorphism from X onto X,, g.e.d.

Since nuclear Kothe spaces of type . (a2), 4 (bL/®) are isomorphic
to power spaces, we have
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COROLLARY 5.1. If X =.#(a), X, =M (c%), ¥ = M(bm, ¥,
= H(&}) are nuclear Kothe spaces satisfying condition (56) and d,X
=d,X,, 4,Y =4,Y,, then X = X,, ¥ = Y,.
Spaces considered in § 2.3, sections 1 and 2, satisfy condition (56).
Hence
COROLLARY 5.2. Let

It

X=uw (exp (a(nB+.. .+ nZ) — —2 (4. - %3’)})

with g; >0, and let q= (1)g;+...+1/g)" . Then if r=0, then
X = M(exp—nila); if r =k, then X = .4 (expant).

COROLLARY 5.3. Let X =ﬂ((n’fl...nff)“-(n’}ﬁl...nﬁ")‘”“). Ifr=0,

%_ %
then X :Jf(ﬂ“/”’“); if r==Fk, then Xx.ll(n“'/").

To prove these two corollaries we apply Theorems 4.2 and 4.3 for
an arbitrary % and for ¥ = 1 and verify that suitable spaces have an
equal approximative dimension.

3. In general, Kothe spaces with the same approximative dimen-
sion need not be isomorphie.

Example 5.1. Let X = A (expan),
X =4,Y, bwt X F Y.

The quality of approximative dimensions follows from Theorem
1.5. X # Y, because there exist continmous (homogeneous) norms defi-
ned on X; in the space s (of all numerical sequences), which is isomorphi-
cally contained in ¥, no continuous pseudonorm is a norm.

The next example will concern the spaces in which there are conti-
nuOUS NOrMS. :

Example 5.2. Let X = #(0,), ¥ = H(0o) XH#(C). Then d,X =
=d, Y, but X% Y.

The equality of d, follows from the inclusions X =~ X xXJ2¥YDX
(see Theorems 2.2 and 2.4). -

To prove that X and ¥ are not igomorphic, we shall apply the fol-
lowing result of Dragilev [7]:

Bvery basis (e,) of the space H(C,) i c-equivalent to the basis ("),
i. 6. there ewist a sequence (z,) of positive numbers and o permutation (p,)
of indices such that the series Ztn(rﬂepn) converges iof and only if the series

Y=(XXXxX...);. Then

D 1y, converges.
n

If X =~ XY then the space # (Cy) would be isomorphic to the space
A (Can), Where ¢, = expan for n — 2m—1, ¢, = exp—mn/a for n = 2m.
Now according to the theorem of Dragilev there would exist an inerea-

icm
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sing sequence (%k,) of non-negative integers such that . (expa, n)=
== M (exp — k,/a), which contradicts Theorem 5.2.

4. General remarks. Let

1
@) #(5) ={pie) = ogp(e)log - pe @)
Condition. (56) formulated in terms of ¥(X) has a form
(56") pe¥(X) if ‘and only if 29p¥(X).
It is easy to prove the following ' N o
THEOREM 5.4. Let X and ¥ be power spaces satisfying condition (56).
Then W(EXT) = {p = p+p, : e P(X), peP(X)}, P(XQY) =

{p = pops: Y e P(X), pee?(X)}). )

ATl the spaces considered in §4 are tensor products of % copies
of single Kéthe spaces; the results of § 4 are illustrations of Theorem
of § 4.

The theorem of Dragilev cited in section 3 has been generalized by
Mitiagin [20] in the following way:

In an arbitrary power space oll bases are c-equivalent.

Applying this theorem, by the same consideration as in Example
5.2 we obtain

COROLLARY B.4. If X and Y are power spaces of finite af,d of in-
finite type, respectively, then XxY # X, XX Y$Y; ¥I®YFX,
XéY+ Y.

In particular we have

. 1 Tyt .
Example 3. Let X;= ./{(exp (a(n§1+...+n,?)— - (’”r:3.1]+ ceo b

+n‘#‘))}, Y; = .lz’((n’fl...')bf:i)“- (n’:zf};j'll...')zzk)“l-’“) for i =1,2 be spaces
of type considered in §§ 3,4, sections 2 and 3. If ry =1, 7, < k, then
4, X, = d,X,, 4,¥, =4a,Y,. If r,=1, r>1 or 11 <k, 1, =5,
then X, % X, and Y, & Y,.

We do not know whether (56') is true in the case where 1 < r <
< 17y < k; in particular we do not know whether H‘((}’0 x 02) & H(Cp X Q) 2

This is obviously connected with the following -

Conjecture. Let X, and ¥, be power spaces of infinite type,.let
X, and ¥, be power spaces of finite type and leb X, ’AY“ X,, Y&2 satisfy
condition (56). If X, # ¥, or X, # Y,, then X, %X, & Y0¥, (cf.
Problem 2.1).
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§ 6. Estimation of Taylor coefficients

Let n = (ny,..., n;). We shall write [n| = n,4 ... +n.
THEOREM 6.1. Let ¢ > 0. (fn)e(expaln|?) if and only if

7 12
| Hm V]&,| = 0. (&,) < (exp—[r|Ya) if and only if lim VIEd <1.
12{—00 In|-0
Proof. 1° The following conditions are equivalent:
(al) (§a) e (expain|®),
(a2) lim [&,|expa|n|? =0 for e=1,2,..,
|7|—>c0
(a3) ]I'im(logffn\j'—a]n[q) = —oco for a=1,2,..,
7| —>00
(ad) ’lli‘m(log|£"]+a[n|‘1)<0 for a=1,2,..,
1
(a5) lim 085 _
Intsoo |7}
(a6) Lim |g,]/m" — o,
[ [->c0
2° The following conditions are equivalent:
(b1) (én) e (exp (— [n|*[a)),
(b3) Illim (oglénl—n|%a) = —co  for o = 1L,2,...,
— 1
(b5) Tim 522 _ g,
Inj—-oc [”’,q
(b6) Lim [£, < 1,
[n]—-o0
q.e.d. [
Applying Theorems 3.1, 3.4, 3.6 we obtain
nl _
COROLLARY 6.1. 3 ¢,e"e#(C") if and omly if lim Ve, = 0.

net%
I7e]

%kc,,z"saf(cﬁ) if and only if limVe, < 1 (where n = (ng, ..., ),
ne.
2" = 21, k),

_ COROLLARY 6.2. Let u(e, 2) = exp (—(7y+ &)l Pl — ... — (7 &)] 2,"%)
with 7% 20,9, >0. If r; = ... = 7, = 0, then D Cud™ e, if and only
- nedk
if limVe,d, =0. If all 7 >0, then D tafeH, if and only if
ini nett

lim I/o,,d,, <1, where d,, are given by Jormula (35).
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COROLLARY 6.3. Let u(s, 2) = exp(—s(logl/z)~"), with s > 0. Then
a

2

_
0n2" e #,(Co) if and only if limVe, <1, where ¢ = s/(s+1).
0

n

1
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Bases, lacunary sequences
and complemented subspaces in the spaces I,

by

M. I. KADEC (Kharkov) and A. PELCZYNSKI (Warszawa)

In this paper we investigate the isomorphie struefure (invariants
of linear homeomorphisms) of subspaces of the space L, (1 < p < ~+o0).
We consider especially the properties of basic sequences (bases in sub-
spaces), as well as the properties of subspaces complemented in L.
These properties ave conneeted with classical problems concerning
lacunary series. We explain them in a more detailed way.

Let p >2 and let (¢,) be an orthonormal system. Then.
1 n y 1 n . i
r o o .
(] Yt [ at)” = ([] 3 ugatn) " at)" — ()
0 i=1 b = &

for any scalars fy, %y, ..., 0, (B =1,2,...).
An orthonormal system is said to be p-lacunary iff (*) the converse
inequality

(f ‘ﬁ:tlﬂpi(t) |p dt)llp <0 (2” Itilz)llz

holds for some ( depending only on (p,) and for any %y, ..., 1%
r=1,2,...).

In the language of the functional analysis this means that there is
an isomorphism (linear homeomorphism) of Hilbert space I, onto the
closed linear manifold in L, spanned on the functions g,. Under this
isomorphism the unit vectors in I, correspond the functions g, i. e.
the basic sequence (g,) is equivalent to the unit veetor basis in I, (see

1

$he definition in section 1). Moreover, the operator T: 2 — { [ #(t) e, (1) di)
[
is a projection of L, onto this manifold.

(1) We write “iff” instead of “if and only if”.
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