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STUDIA MATHEMATICA, T. XXI. (1961)

Joint probability distributions of observables in quantam mechanics
by
K. URBANIK (Wroclaw)

I. Introduction. To every physical system in quantum mechanies
there corresponds @ Hilbert space H of complex-valued functions
Y = (&, s, ..., #). The variables @, #,, ..., 7, may be chosen in se-
veral ways, each giving rise to a consistent deseription equivalent to all
others; here they will be taken to be space coordinates, for this gives
rise to the form of quantum mechanics most commonly used, namely
Sehrodinger’s. The number 2 of variables is associated with the dimension
of configuration space of the classical analogue of the system in question.
The inner product on H is defined by the formula

(91; p2) = _['Wl(mlﬁ By < ooy wn)‘/’;(wla By oovy Bp) A2, AT, .. ATy,
X

where dz,d2,...dz, is the volume in the configuration space X (ususlly
n-dimensional Lebesgue measure) and * denotes the complex conjugate.
Bvery funetion w belonging to the unit sphere of H is called a state of the

. Physical system in question. In quantum theory to every physical quan-

tity or observable there corresponds a self-adjoint (not necessarily bounded)
linear operator on H. For example, consider a system with one degree
of freedom. Let # be the Cartesian coordinate deseribing the position of
& particle with the unit mass on a straight line (—oo < # < oo). Then H
is the space of all square-integrable complex-valued functions on the real
line. The position operator P is defined by the formula (Py)(z) = zy(x)
on the linear manifold of all functions ¢ for which

oo

| @*lp(@)2dw

—co

is finite. Further, the operator of the linear momentum M is assumed
a .
to be wihTZ;, where 7 is an abbreviation for Planck’s constant divided

by 27. The linear momentum operator is defined on the linear manifold
of all absolutely continuous functions from H with a square-integrable
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derivative. The operator E, of the total energy of a simple harmonic
oscillator, i. e., the Hamiltonian operator of a simple harmonic oseillator,
ig of the form

h2 d2 w?

5 A W(m)‘l"? @ty (@),

(Boyp) (@) = —
where o is a parameter comnected with the classical frequency of the
oscillator. Other examples of operators associated with observables are
given in [4], [6], [7] and [11].

A spectral measure is a function /I whose domain is the Borel field
of subsets of the real line 92 and whose values are projections on H, such

that II(?R) is the unit operator and II (U &) = 2 II(6y) whenever
n=1 n=1

&1, &4y ... 18 & sequence of disjoint sets (for the properties of spectral
measures see [5], p. 58). Let A be a self-adjoint operator on H associated
with an observable. Then there exists one and only one spectral measure
T, such that

A= fAHA(dl)

—00

(cf. [12], p. 318, [13], p.180). Let v be a state of our physieal system
and let € be a Borel subset of the real line. The probability p¥% (&) that
the observable whose operator is 4 has at the state y a value belonging
to & is given by the formula

P4%(8) = (IL4(E) v, ¥)-

This is the basic postulate of the gquantum mechanics.

Now we shall quote well-known examples of probability distribu-
tions of observables.

The spectral measure of the position operator P is given by the
formula ITp(€)p = ygv, Where ys denotes the indicator of the set &,
i. 6., ye(®) = 1 or 0, according to wed or #¢&. Thus

) P8(8) = [ lw(@)*ds.

&
Further, the position operator and the differential operator D = ——z%
are uniterily equivalent. Namely, D = F~*PF, where F is the Fourier-
Plancherel operator

T
(F'w)(m)=l.i‘m._l_. f’#(t)e‘mdt.

e Vo 4

Hence we get the nnita;ry eqﬁiva,lence of the spectral measures [I, and
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Hp: Hp(&) = FUIp(E)F for every Borel set & (see [13], p. 242).
Consequently,

@) ()9, v) = (F'Ip(&) Py, y) = (Ip (&) Fp, Fy) = [ [(Fy)()|*de.
&

Hence, by virtue of the equality 3 = iiD, we get the probability distri-
bution of the linear momentum at a state v

1 ANt
3 (&) =— Fy)|— ‘ .
3) Phe(6) n,)]‘ o(3)[ 2
The spectrum of the energy operator E, of a harmonie oscillator consists
only of proper values

=0+ (n=0,1,2,..)
corresponding to the proper functions

Pa(®) = f/f;‘i Hn(]/;“n’—m) n=0,1,2,..),

where H, are Hermite’s functions
(=1

;/; Vot onl

Sinee the family of Hermite’s functions is complete, we have the equality

g (6)p = D (95 ¥n)¥ny

ined

H,(o) =

z2\ 4
exp (7)W exp(—a%) (v =0,1,2,...).

whence the formula
25,(8) = X (v vl
ine®
follows.
In the present paper we shall define and study the notion of joint
probability distribution of & system of observables.

IL. Joint probability distribution of observables. Let p be a pro-
bability measure of the Borel field of subsets of the N-dimensional Bucli-
dean space #". To every system i, G, ..., oy of real numbers there
corresponds the family of parallel hyperplames Sji2~+*N given by the

N
equations ) @;w; =1 (—oo <1< oo). Letting for every Borel subset
i=1
EC X

p"lyﬂz,...,aN(g) = p (| Qfro2 )
1753
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we get a probability measure on #. It is well-known (see [3], p.291)
that there is a2 ome-to-one correspondence between the N-dimensional
probability measure p and the family of all induced one-dimensional
probability measures P, ., ..y (—00 < 1y Gy ..oy @y < o). In the lan-
guage of random variables this result is equivalent to the following: the

N
tamily of probability distributions of all linear combinations 3 a; & of ran-
Je=1

dom variables &, &, ..., £y uniquely determine the joint probability distri-
bution of these random variables. This remark leads to the following de-
finition of the joint probability distribution of observables.

Given a Hilbert space H corresponding to & physical system, we con-
sider a system of observables associated with self-adjoint operators
Ay, 4y, ..., Ay. We suppose thab 7\for all systems @, ¢4, ..., ay Of real
numbers the linear combinations >’ a;4; are self-adjoint operators on H.

§=1
Consequently, for every system a,, a,, ..., @y of real numbers and every
state peH the probability distribution pf i .. iayay i8 Wwoll defined.

Given a state ypeH, a probability measure p on " is said t0 be the
joint probability distribution of observables associated with the operators
Ay, Ay, ..y Ay, it for every system a,, a,, ..., ay of real numbers, the

______ ay 18 equal b0 PF 44 yayay. Of course, the joint
probability digtribution is uniquely determined, provided it exists. In
the sequel, we shall denote by p% ., . ., the joint probability distribu-
tion at & state y of the system of observables associated with the operators
A,, 4, ..., Ay. Generalized joint probability distributions (not necessarily
positive) of the position and the linear momentum were first studied by
E. Wigner {14] and J. E. Moyal [10].

It is very easy to formulate the necessary and sufficient condition for
the existence of the joint probability distribution by means of characte-
ristic functions. Namely, denoting by @, 4, . a, the characteristic function
of the probability distribution pg .4, jaydy:

o0

Bty = [ DLt rapay (A1),

—00

we have the following statement:

A system of observables associated with operators A,, A, ..., A has the
joint probability distribution at & state weH if and only if the function of
N wvariables @f 4, (1) is & characteristic function of an N-dimensional
probability distribution. Moreover, the characteristic function of the joint
probability distribution is equal to @f 4, .o (1)

Further, taking into account the obvious equality @f, ,(f) =1
and applying Bochner’s theorem on . the representation of pbéiﬁive deti-
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nite functions (see [1], p. 58, Theorem 3.2.3), we can write the last
agsertion in the following form:

A system of observables associated with operators Ay, dsy ..., Ay has
the joint probability distribution at a state weH if and only if Of 4, 1, (1)
is a conttnuous positive definite function of N wvariables.

In classical physies it is possible in principle to determine the values
of physical quantities simultaneously. In quantum theory the situation
is quite different. There are physical quantities which do not permit the
simultaneous definability of their values. For instance, according to the
tamous Heisenberg uncertainty principle the measurement of a particle’s
position disturbs its momentum, and vice versa, so that when one quan-
tity is ascertained with precision, the other loses it. Thus in quantum theory
we have two kinds of systems of observables. The simultaneous measure-

‘rement of observables of the first kind yields definite values for them.

Mathematically, to these systems of observables there correspond systems
of operators A, A,,..., 45 which commube with one another; i. e., de-
noting their spectral measures by Il4,Il4, ..., Iy, for every pair
&,, &, of Borel sets we have the relation

(6D Lay(E5) = TLiy(62) L, (&)

To systems of observables of the second kind there correspond non-com-
muting systems of operators and, in general, it is impossible to measure
their values simultaneously. This classification is of great significance
for contemporary physies. The concept of joint probability distributions
of observables leads to a new classification of systems of physical quan-
tities. Namely, a system of observables associated with operators 4,,
Agy .oy Ay is said to be probabilistically defindte if for every state peH
the joint probability distribution p¥ 4, . 4, exists. Further, the system
of observables is seid to be probabilistically indefinite if for every state
peH the joint probability distribution p%, 4, . .\ does not exist. Systems
of observables which are neither probabilistically definite nor indefinite
will be called mized. For a mixed system of observables associated with
operators 4, 4,, ..., Ay we can find a pair y,, y, of states in such a way
that pil i, . .a, exists and P 4,2y does not exis. In the sequel we
shall show that there exist systems of observables of all three kinds.

II. Probabilistically definite systems. We shall show that the
probabilistic definability of observables is closely connected with the
commutation of their operators.

TeBOREM 1. Huvery system of observables associated with commating
operators is probabilistically definite.

Proof. Let A, 4,,..., 4y be a system of commuting self-adjoint
operators corresponding to a system of observables. There existy then

(B, j=1,2,..., N).
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a gelf-adjoint operator B such that all the operators A4,, 4,,..., Ay are
funections of the operator B. Precisely, there exist real-valued functions
fisfay ooy [y defined on the real line such that

o0

[ Hs@a) (j=1,2,...

—00

4; =

Whm;? Iy is the spectral measure of B (see [11], p. 355). Setting ¢(4) =
= Y f;(1), we have the equalities
i=1

N
S, =
f=1

Consequently, for every state ywe<H we obtain the relation

oo

[ 9(yip@s)  and

—o0

H”MH‘---%‘“NAN(”@) = HB(g—-l (én)) .

-

[ Dt vy (@2)

—00

ngl, az,...,aN(t) =

= [ ag i @, v) = [ 0 (ITp(an)y, v)

= [ explit{fy () + ...+ awfy ()] pB (@2).

Hence we infer that, for every state pe H, DY 4,1y (1) 18 a characteristic
function. Thus our system of observables is probabilistically definite.
Now we shall prove the converse implication under an additional
assumption concerning the spectrum of operators. We do not know whether
this assumption is essential.
o A self-adjoint operator A is said to have a purely poini spectrum
if its spectral measure I7, is purely atomic. The spectrum of such an
operator consists only of proper values.

TemOREM 2. If all operators corresponding to a system of probabilisti-

cally defindte observables have purely point specira, then they commaute with
one another.

Proof. Sinee every subsystem of a probabilistically definite gystem is
the same one, it is sufficient to prove our theorem for a pair of observables.
Let 4 and B be. operators corresponding to them. Let A1y Agy ... and
Hay foay - be sequences of all proper values of 4 and B resi)ectively.
It is obvious that for all states yeH the probability measures p¥ and p%
are purely atomic and concentrated on the sets {4:j =1, 2, ...} and
fw:j =1,2,...} respectively. Thus the joint probability distribution
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p% p is concentrated on the subset {{4;, pd: 4, = 1,2, ...} of the plane.
Since all numbers of the form

i My
Ai—2s

form an at most denumerable set, we can find a real number ¢ which
differs from these numbers. The probability distribution pfs,z is concen-
trated on the set {al;-+ u;:4,j = 1, 2, ...}. Moreover, the equality al;+ u
= ay+py holds if and only if 4, = 4 and u = u,, Hence we get the
equality

(4) P$A+B({M«z+ .“j}) = Z’ﬂ,s’({(im #7)}) (4, =1,2,...).

Further, since for all states yeH the probability distributions
pt4.p are concentrated on the same seb {adi+p:i,j=1,2, ...}, the
operator @A+ B has a purely point spectrum contained in this set.
Let Hi', HP and H;*” be subspaces of H spanned by all proper func-
tions corresponding to the proper values A;, p; and ak--p; of the oper-
ators 4, B and ad -+ B, respectively. Taking a state ¢ from H*E we
have pli,s({aki+um)) =1 and, by virtue of (4), »i5({< m}) =1,
which implies the relations p4({A}) =1 and, pj({u}) =1. Hence,
according to the equalities  p%({A}) = ({2} v, v} pB({w}) =
= (Te({p})w, ) and (v, y) =1, we obtain the relations 17, ({A}}w =y and
p{{u})v = y. Consequently, pe H;' ~ H} and Hf = 4 "oHP®. ..,
HP = B4 PoH4+"®..., where @ denotes the direct sum of sub-
spaces. Since II,({A}) and IIs({u;}) are projections on the subspaces
H{ and HF respectively, we infer, in view of the decompositions of
H{ and H? into direct sums, that [T, (A T ({w}) = Ta{{m)) 1L ({2
(1,j =1,2,..). Consequently, 4 and B commute with one another.
The theorem is thus proved.

Given a self-adjoint operator 4, a real-valued function f defined
on the real line is said to be admissible if the operator f(4) defined by
means of the spectral integral

(6 £ 850,0,8,7 =1,2,...)

S

[ fmg(an)

-0

f4) =

is also self-adjoint. Since for every system of commuting operators
Ay, Agy ...y Ay and every system of admissible functions fisTar oo fw
the operators fi(4,), fa(4s), ..., fx(Axy) commute with one another, we
get from Theorem 1 the following

COROLLARY 1. Let Ay, Ay, ..., Ay be commuting self-adjoint operators.
For every system fi,fay ..., Sy of admissible functions the system of obser-
vables associated with operators fy(A,), fo(4s), ..o fn(dy) is probabilistically
definite. .
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The converse implication is also true. For any self-adjoint operator 4
the indicator of an arbitrary Borel set is an admissible function and

I(8) = [ xe(WITa(dh).

Moreover, projection operators have purely point spectra contained in
the two-point set {0,1}. Thus as a direct consequence of the Theorem 2
we get the following

COROLLARY 2. Let Ay, d,, ..., dy be self-adjoint operators. If for
every system fi, fo, ..., fx of admissible functions the observables associated
with the operators fi(4:), f2(4s), ..., fy(Ax) are probabilistically definite,
then the operators A, A, ..., Ax commute with one another.

IV. Probabilistically indefinite systems. Tn the one-dimensional
motion of & particle with the unit mass the Hamiltonian operator H of
the total energy is given by the formula '

nEdz

(By) () = — 7 Y@+ @)y (@),

o
&

where V' is the potential energy of the classical analogue of the system in
question. According to the physical meaning of the funetion V, we agsume
that it is bounded below and locally integrable. It is well-known that
under these assumptions the operator F is self-adjoint (see [2]).

THEOREM 3. If for every positive number ¢ the potential energy V
satisfies the condition

ﬁ-lf—‘ @€e
l'imj V(t)dt = co = lim [ (V(1)+1)ds
100 Z]—>00

and the function V(x)+ 2 is bounded below on the whole lone, then the total
energy and the position form o probabilistically indefinite system.

Since the potential energy 7 (#) = }ow*a? of a simple harmonic oscillator
fulfills the conditions of the theorem, we infer that the total energy and
the position of a harmonic oscillator are probabilistically indefinite ob-
servables.

The proof of the Theorem will be carried out in a Lemma.

Lewma. Let A and B be operators associated with o pair of observables.
If v is such a state that the prodbability distributions p*, and Plhip are purely
c'zt{)mio and the probability distribution D% is absolutely continwous, then the
Jomt probability distribution Y% 5 does not emist,

Proof. Contrary to this statement let us suppose that the joint
probability distribution p% 5 exists. Put & = {1:1 = G—ar38,) =1,2,..),
where {a;:j = 1,2, ...} and {:7=1,2,...} are the sets on which the
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probability distributions p% and p% . p are concentrated respectively. Ob-
viously, we have the inequality

Pl plap X&) <pY% . play+E) <p4i, p(2) =0

where 2 is the complement of the set {¢:j=1,2,...}, 6, X&
= {ay, Ay: 1e&} and a;+& = {a;+ A: Ae6}. Hence we get the equality

(F=1,2,..)

25(€) = 3 9% pla X &) = 0, which implies that the probability distribution
Ji=1

p% i8 concentrated on the complement of &. But this complement is at
most denumerable, which contradiets the absolute continuity of p%. The
Lemma is thus proved.

Proof of theorem 3. We already know that for every state peH
the probability distribution of the position pp is absolutely continuous
(see formula (1)). Now we shall prove that for every state y<H the pro-
bability distributions p% and p%,r are purely atomic. To prove this it is
sufficient to show that both operators F and E+P have purely point
spectra. But this fact follows from the following gemeral theorem on
differential operators of the second order (see [9], p. 175): if the function
¢ is locally integrable, bounded below and

xte
lim f qt)dt = co  for all ¢ >0,
[Z[—o0
then the operator
(dy)(w) = y(®)+ g(@)y()

T A

has a discrete and, consequently, purely point spectrum. Thus, by the
Lemma, for every state weH the point probability distribution p} e
does not exist.

Y. Mixed systems. It may occur that for given non-commuting
self-adjoint operators 4 and B with purely point spectra there exists
a common proper function, say y,. Of course, by Theorem 2, the system
of observables associated with operators 4 and B is not probabilistically
definite. On the other hand, it is very easy to prove that this system of ob-
gervables has the joint probability distribution at the state y,. In faet,
denoting by 4, and y, the proper values of the operators 4 and B, respec-
tively, corresponding to the common proper function y,, we infer that
y, i3 the proper function of the operator a4 -- 3B corresponding to the
proper value ale--buy. Thus pY.,5(8) = xe(alo+ buo), Where ys denotes
the indieator of E. Hence, by simple eomputations, @ (1) = exp (i(ak+
+buo)t) and, consequently, ®F0, (1) = exp(i(lot,+ uts)). But the last
funetion is 2 characteristic function, which gives the existence of the
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joint probability distribution at the state ¢,. Thus the system of op-
gervables in question is mixed.

Now we shall present a less trivial example of mixed systems of
observables associated with operators having no common proper function.
We shall use previously introduced notation P and M for the operators
corresponding to the position and the linear momentum respectively
in & one-dimensional motion of a particle. First of all we shall prove the
following

THEOREM 4. The joint probability distribution Phi p ewists at o state
if and only if the inequality

(5) S v+t g—na =0

holds for all & and y. Moreover, the joint probability distribution Py, p 18
always absolutely continuous and its density function g, p U8 given by the
formula

O g =g [olrrge)vli-Tdan.

Proof. First let us consider the operator aM -+ bP with the positive
coefficient ¢. It is well-known that the study of any self-adjoint differen-
tial operator of the first order may be reduced to the study of the opera-

. a
tor D = ~z% (see [13], p. 425, Theorem 10.6). Applying this result

0 the operator a M+ P, we get the unitary equivalence of the operators
al+bP and D. More precisely, the formula

(1) (Uy) (@) = Val exp (3iabTia®)y (aliv)

defines a unitary operator on H such that aM +bP = U-1DU. This
equality implies the unitary equivalence of spectral measnres Il 4p(8) =
= U-Ip(&)TU (see [13], p. 242). Hence and from (2) for every state
yeH we obtain the probability distribution

Parassp(€) = (Muriop(6)y, v) = (U-Ip(6) Uy, y)
= (p(&)Ty, Uy) = [ (FUy)(a)}*da.
&

Set yn(#) = p(@) or 0 according to |u| < ahn or [z > afin (n =
=1,2,...). The convergence Limy, =y iy evident. Hence for every
N—00

.(1) This expression for the density function was discovered by L. Szilard and
E. Wigner ([141, p. 750).

o 4
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Borel set & we get the convergence
hm(HD(g) Upn,s U"/’n) = (UD(&?’) Uy, UVJ) = Piuip(8).

N—>00
Thus the characteristic function @f, of the probability distribution
" phar.ep can be written in the form

8) @5 (1) = lim [ 6% |(FTyp,) (2)PdA.

700 oo

Further, according to (7), we have the equality
[ 1@y yeaz

P 1 2
:;h fe“ti fexp(—iml%—?iabﬁaﬁz)zp(ahw)M!dl

A n n
1 .
— 1im 2 f f fexp (z‘lt—z'yl+—2—'iabhy3+ml—

4 2 - - —n

— % iabﬁmz) w(ahy)y” (ahiz) dedydi.

Since the integrand in the last expression is absolutely integrable over
the domain —A <A <4, —n <o <0, —n <y <n, Wwe may change
the order of integrations, which leads to the equality

oc

[ 1T Ty (W2d2

ror 1 sinA(t+o—
—lm 2 f f oxp (— iabh(yﬂ——wg))r——uy)(ahy)w*(a,ﬁm)dwdy.
A0 T “n —n 2 t+o—y

Hence, by well-known properties of the kernel (sindz)/z, we get the
formula

[ 1(F Ty (1120
= aliexp (Yiablit?) [ &'y, (ahi(w+1)) v} (aliw) do,
which together with (8) implies the equality

@4 (t) = aliexp (Yiabht?) [ 6y (afi(w+1))y* (ko) da.

—00
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The substitution ehio - ekt = 2 reduces the lagt expression to the
form

o b ]
(9) - @ (1) = f e”’"‘w(z—l-—(-i—bt) ¥ (z—ﬁ?t) dz.
00 - 4
We have proved this equality under the assumption a > 0. Now
we shall show that (9) holds for every real . For negative a this a direct

consequence of the equality &f , () = (gl)'{‘_a’ -b(t))*- If a=0and b 0,
then, by formula (1),

1 r z\P
bp(8) = - —|| dw
pip(4) ] (J | '/’( 5 )i d
and, consequently,
bo(t) = , ¢ ptp(dl) = f ¢ |y (2)]2 2.

Finally, &f,(#) = 1. Thus formula (9) holds for the arbitrary pair
a and b.

From (9) we obtain the equality

) b ) i .
Df 1, (1) = J iy (Z-{- 35 tl)vp* (z—— TI)L— tl) dz.

—co

Now it is very easy to verify that D} 4, (1) is the Fourier transform
of the continuous funection g4, p Qefined by formula (6). Thus @f , (1) is
a fzhffm'acteristic function if and only if g% »(2, y) > 0 for all o antli 22/ But
t?ns inequality is equivalent to inequality (5). Moreover, ¢%; p is the den-
sity function of the joint probability distribution, I)roviciecl it exigts.
The Theorem is thus proved.

From Theorem 4 we get the following

OOI?OLLAJ.RY. The Unear- momentum and the position of a particle in
a_one-dimensional motion form a mized system of observables.
In fact, setting

Ve 2
¥ (@) = Hy(z) = r:zc exp (——g«»),

Vn
we have the inequality

v ilx 2
J w0yl (i =(% +2y2—1) exp(w“;—z_ya) < 0

-0
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for all # and y for which 4%+ 2y% < 1. Thus, by Theorem 4 the joint
probability distribution p%} p does not exist. Further, setting

2

1 [ P
(10) palo) = Hy(a) = ﬁexp(\—;),

4

we have the inequality

o it 22
[ vty +09i 0 — 0 = exp( —F —p2) >0,

-0

and, congequently, by Theorem 4, the joint probability distribution p'?f P
exigts. Thus the linear momentum and the position form a mixed
system of observables., We remark that the operators I/ and P have
no common proper function.

We say that observables associated with operators 4 and B are
independent at a state ye H if the joint probability distribution p% p exists
and is a direct product of the marginal probability distributions p% end
Y, i. e., for every pair 65, &, of Borel sets pl%, (61X &) = p%(6:)p5(5),
where &; X&, is the Cartesian product of &, and &,.

By (1) and (3) the probability distributions of the position and the
linear momentum are absolutely continuous. Denoting by gb and g%
their density functions at a state p, we have the equalities

2

L
i) = e, el =+ (P (%)

Hence for the state p, defined by formula (10) we have the equalities

% (2) — — ox ?) "z(a")———l ox; il
gp(av)—i/fﬁ p(—a%), g5 V=T P~

and, according to (6),

o2

) 17 . o B
01,2 (@, Y) = 5— J e “%(y+§t) wf}(y—'g" t) 7

—00

1 ( 2 12)
_-;ﬁexp Y

Thus ¢%2 »(%,y) = g% (#)g#(y) and, consequently, the linear momentum
and the position are independent at the state y,. Now we shall find all
such states. :

Studia Mathematica XXI 9
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THEOREM 5. The linear momentum and the position are independent
at « state v if and only if the equality

(11) p(@) = c'i./-z;:—"- exp(-—a,aoz—l—bm——-('ilhglzeg—)—2 )

where ¢ > 0, b and ¢ are complex numbers and |¢| = 1, holds almost every-
where.

Proof. Sufficieney. The identical computations as in the case
of the state (10) leads for every state u of form (11) to the formulae

o0

[ vy +vty—na

—00

2Imb)? Reb)?
=exp(‘2ag/2+2Reby— (ﬂ7+8am ) ! 26“) ),
1 ( (Xmbh — x)? —  Reb\?
irp@,y) =— GXP(— T am (1/2ay— E:) ),
1 (Imbh~—m)2)
g (@) = o o ( Y= ;

2a [ [,— Reb\’
g% (@) :]/—(iexp(—(l/mm—- fi)).
TT Y2al |

Thus the joint probability distribution exists and, moreover, G, p(®, ) =
= g% ()¢5 (y). In other words, the linear momentum and the position
are independent at any state y of form (11).

Necessity. Now let us suppose that the linear momentum and the
position are independent at a state y. Taking into account equalities (1)
and (6), we have the equality

g5 (@) lp ()F = g (2) g3 (¥) = g, p(2, y)

=%ﬁ I e""‘w(.ﬂ/%g t) w*(y——z*t) d
—00

almost everywhere. Since the right side of this equality is continuous

with respect to y, we may assume without loss of generality of our consi-

derations that the function |yp(y)|? is continuous. Further, from the last

equality, by means of the Fourier transformation with respect to the

variable @, we get the following one:

\

B 13
(12) D) lp(y)* = w(y+§t) w‘(ﬁ/—gt)

icm
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for almost all ¢ and y, where @ is the characteristic funetion of the proba-
bility distribution p%;. By substitution y-+3it =wu, y— 3kt =» into
(12), we obtain the equality

(13) o (") o (42 = we o

for almost all pairs u, ». Sinee the left side of the laste quality is a con-
tinnous funection, the function y is equivalent to a continuouns function
and, consequently, may be supposed to be continuous. Then, of course,
equality (13) holds for all v and ». Now we shall prove that

(14) w(u) =0 for every u.

Contrary to this let us suppose that y(u,) = 0 for a point u,. Since @ is
the characteristic function, we can find a number 7T such that ®(f) % 0
whenever [t} < T. Substituting into (13) % = u, and v = u,--22, where
[2| < BT /4 we have @ (42/li)|y(u+2)|? = 0. Thus the funetion g vanishes
on the whole interval u,—hT /4 < u < %+ hT /4. The iteration of this
procedure leads to the equality w(u) = 0 for all «, which contradicts the
equality (y, ) = 1. Relation (14) is thus proved.
Setting » = —u into (13), we get the formula

- s(20) _ vy (—u)
(15) 45(7) = ———W(O)lz

which together with (13) gives the equality

u— — I 12
a5 (5 () = worsmwo.

‘We introduce the auxiliary function

[y (@)?jp(—=)j2
) = —— "~
(@) (O

By (16) is satisfies the equation

an Fa(u—@)F, (E“’F_”_) = F(u)F(v).
Moreover, by '(15),

(18) 1@ (—)| = F(u).

We now proceed to the problem of determining the form of the
function F.
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First by induction on » we shall prove the formula
(19) Flut) = F(1) (n=0,1,2,..).

For » = 0 and 1 it is evident. Suppose that our assertion is true
for all non-negative integers smaller than # (n > 2). By substitution
w = nt, v=(n—2)tinto (17) we get the equality Z/’z(t)lf"’z((%—~1)t) =
F(nt)F((n—2)t). Hence
P F2((n—1)1) B (1) PP (3)

F(n—2)) —  po-viy

which completes the proof of (19).

. Substituting t=mn (m=0,1,2,..) into (19) we have the equal-
Tty F(m) = F*(m[n). But, on the other hand, ¥ (m) = F’”z(l), which
implies the equality 7 (m/n) = FO™ (1) (n, m =1, 2, ...). Since the func-
tion. F is eontl;nuous and even, the last equality implies the following
one: F(u) = F*(1) (—oo < u < oo). Hence, by (18), we get the formula
1@(@4)]2 = ex.p( —@ou?), where @, is a real constant. Since, by (15), the
ﬁ.u-mtlon @ is integrable over the whole line, thisg constan{] nust bt’a 1)0-’
sitive. In. other words, we have proved that the product @-@* is the
characteristic funetion of a Gaussian distribution. Applying Oramer’ﬁ:
The.orenl on decomposition of Gaussian distributions (cf. [8] P 271)
we infer that @ is the same one, i. e., G (t) = exp (i, — ay1?) whe:re ;a a
are real constants and e, > 0. By the last equality and “lom’;ing e

F(nt) =

— sz

(20) @) = 2@ o (— s | 20,00
p(0) T h2
we have, according to (13), the equation
I 9
21 %+v\ "
(21) ‘G( ! )i = G (u) @ (v).

Eegtze;,) mTXwWGOf: the eql.lau.lity G(0) = 1, we obtain the relation |G (u/2)|*
= f us Is.a, positive function. and equality (21) can be written
the form Q(u-}- v) = G(u)&(v). It is well-known that all continuous
positive solutions of the last equation are of the form G(u) == ¢%¥, where
:131 ;sf::l 11;?.(1) Ifons.tantf. Comparing this result with (20), we conclude that
tho funct ¥ 18 of the form y () = y(0)exp(— aw?-+ba), where & >0
I8 a complex constant. From the normalization condition

©

J ly(@)2de = 1 we get the formuls

oy =1/ 2 exp(__.(M)’

. da
which completes the proof of the theorem.

e ©
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Denoting by o} () and o}, (P) the variances at a state y of the linear
momentum and the position respectively, we have Heisenberg’s uncer-
tainty relation

It gives an indication of how far one can escribe values simultaneously
to the position of a perticle and to its momentum. It is well-known that
the necessary and sufficient condition for equality in Heisenberg’s rela-
tion is simply that the state y is of the form (11) (see [11], p. 124). Thus
as @ direct consequence of Theorem 5 we get- the following

COROLLARY. The linear momentum and the position of a particle are
independent at a state v if and only if at this state the equality in Heisen-
berg’s relation holds.
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