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e—mar:/ndlu(t) =g, (._W_‘p_) =1
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Cela est facile: en désignant par 8, la masse unité au point m, on prend

o0

(Z‘u = 2 (%1+1~11’f) 571/]'

F=1

la suite {n,} étant choisie de telle fagon que 1° M= = o(n;), 2° n;
est multiple de ! quand j est assez grand ( J > jx). Ensuite on ,,régularige”
dp en remplacant chagque d,, par une fonetion > 0, d’intégrale égale
4 1, et de support [n;—e;, n;4- &] avec lime = 0.

o0
Comme me I'a signalé 8. Hartman, le théoréme 1 admet lo corollaire
suivant: :

THEOREME 2. Soit f une fonction localement sommable sur [0, oo).
Alors ¢(2), définie par (4), ne peut ewister et dire différent de zéro sur un en-
semble non dénombrable. '

Démonstration. Le premier membre de (4) ne change pas si ’on
astreint 7' & ne prendre que des valeurs entitres. Ainsi ’ensemble B des
valeurs des A pour lesquelles ¢(1) existe est P’ensemble de convergence
d’une suite de fonctions continues; c’est done un ensemble borélien. Il en
est encore de méme de l’ensemble B, C F o ¢(4) # 0. Si K, n'était pas
dénombrable, il existerait un parfait 7 C £y, et Papplication du théoréme
1 & F aboutirait & une contradiction.

Regu par la Rédaction le 10. 2. 1961
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A note on the theory of s-normed spaces of g-integrable functions

by
W. MATUSZEWSKA and W. ORLICZ (Poznaf)

1.4. In this paper, a funetion nondecreasing and cont:,inuous for
% > 0, vanighing only at = 0 and tending to co a3 % — oo will bfa called
o ¢-function. Two p-functions ¢, v are called equivalent for large u, in syra-
b 11 .
bols p~1p, if

(+) ap (k) < p(w) < bp(hyw)

y ky > 0.
for u >ty = 0 and for some constants a,b, k,, &, )
If/( —|—0) iolds for w = %, = 0, then @, y are called equivalent for all u,

in symbols prop; it (<) holds for 0 < u < uy, then g,  are called equi-
valent for small u, in symboly (p/iwp (ef. [21, [3])- -
1.2. The following conditions are of importance in.our considerations:

(05) lim p(u)u=* =0, (o0g)  lim p(u)u~? = oo,
U—04- U-»00

(0?) lim pwyu™" < oo, (o0h) u]iroxz pluyu= < oo,
UrO

where 0 < 8 < 1. . .
Eagy calculation shows, (0,) is an invariant of the relation ~, and

(oog) of the relation 2, and both these properties are invariants of the
b
relation . The game holds for (o}) and (o).

1.3. Let  be a p-function satistying (o,) and (00,). The function
¢*(v) = sup(ww—p(u)) for v=0
w0

. ¥
is called the function complementary to p. It i8 Brfwfd e;sﬂgnghtil q; jl; :
convex g-function satisfying (o), (o) a{ld '(qa Yi=¢ T e el
is convex. For arbitrary @-functions satisfying (0-1); (021 o punetich
(0*(w)* <p(u) for u =0. We shall call @(u) = (p* (w))* the
associated with @. .


GUEST


108 W. Matuszewska and W. Orliez

1.41. Let ¢, v be p-funetions satisfying (0,), (oo,), where w is conves
and satisfies the inequality

(+) piu) <gp(w)
for w > uy. Then

(++) p(u) < @(u)

for w = u,, where u, is sufficiently large (or u, =0, if ug = 0). If (+)
18 satisfied for 0 < u < uy, then (-++) holds for 0 < u < u . Jor sufficiently
small w, .

In order to prove this theorem, note that to every » > 0 there exists
the least number %, > 0 for which

Uy 0 — (%) = ¢*(0).

It is easily seen that w, — 0 as v — 0 and %, — oo as v — co. Choosing
vy 80 that w, > u, for » > v,, we obtain

V(0) = ur—p(u) > uv—pu,) = @*(v) for v >n,.

The same arguments applied to the pair of functions ¢*, y* lead
to the relations

wlu) = (p*(w)* < (@" (@) = g(u)
for sufficiently large . In the remaining cases, the proof is performed
similarly.

The previous statement implies

1.42. Let ¢ satisfy the conditions (0,), (oo,). There holds qapr with
a conver p-function y satisfying (o), (co;) if and only if q)qu‘y.

Analogous theorems are valid if we replace A by < or A

1.43. Assume g satisfies the conditions (0,), (oos); them the Sfunction
vs(u) = p(u') satisfies (0,), (c0,) and the associated fumction Ps(u) is de-
fmled. Let x(u)l = p(u’), where y is a g-function satisfying (0,), (coy). If
P~y then @e~p, and conversely.

Hence 1.42 implies the following statement:

Assume ¢ satisfies the conditions (05), (o05); then there holds qai: %
where y(u) = p(u’) and v is o convex function satisfying (04), (o0y) #f and
only if <pzlvzs, where I, = @, (u°).

This theorem remains true if we replace < by < or by ~.

o e 1
1.5. If @ satisfies (0,) (or (02)) and p~vy, where v is a convex function,

then ihere exists a convex function 9 satisfying (o,) (or () such that ?p_friw
and p(u) < p(u) for u =0, >
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o3 s 13
The analogous theorem remains valid if we replace ~ by ~or o,
Define

r(u) = sup @)t~ for 7(0) = 0.

o<t<<u

w >0,

Denote by %, a number such that ¢(u) < by(kyu), b, k, >0, for
w > U, (resp. for 0 < u < u, in the case p~yp). Choose 4 >1 8o that
(1) < Aby (yuo)ug’. The function

plu) =2 [r2n)ar
0

has the required properties. Indeed, P is convex and sa.:,isﬁes (0,), for
r(t) » 0 as ¢ —» 04 (if ¢ satisfies (0%), then @ satisties (0}), too).
Moreover, the inequality

P =2 > e

holds for w >0, for wr(u) = ¢(u), and the inequality @ (u) < 2ur(2u)
holds also for w > 0. Finally, r(u) < Aby(kyu)u~t for u > u, (resp. for
0 < u < Up). Hence p(u) < Aby(2kyu) for u > u, (resp. for 0 <u < fuy),

1.6. If ¢ satisfies the condition (0y) (resp. (02)) and tprL 4 x(w) =‘1p(’l{/3)7
where y is & conves function, fhen there exists a convew funimmi @, satisfying
(01) (resp. (O?)) such that gpr~ys, xs(u) = ‘ps('“/s)’l @ () f ‘Ps(us) for w=0.

An analogous theorem is true replacing ~ by ~ or ~. :

Tt is sufficient to apply 1.5 to @ (u) = @(u'’). ’

21. Let F denote an abstract set, & — a o-algebra of subsets of E
and let & o-additive and o-finite measure u be defined on &. Given a func-
tion @ with complex values, defined in ¥ and u-measurable, we shall
write ]

@) = [ o(e@))du.

E

The set of u-measurable functions such that J,(s) < co we Qenote
by L?(E, u). Moreover, we denote by L*(B, u) the class of functions »
such that AzeL? (B, u), 4 being a positive constant (in general dependent
on ). Functions #<L** (B, y) are called p-integrable. In* the space ?f u-
measurable funections, L?(E, p) is & convex set and L™*(¥, u) a linear
get. In L*?(H, u), an F-norm can be defined as follows

o, = int {e > 0: w2 <.
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We shall call this norm the norm generated by ¢. If p(u) = y(u®), where
0 <& <1 and y is a convex function, then an s-homogeneous norm can
be defined in L*(E, u) by means of the formula
. =
ll@|ls, = inf {a> 0:4, (;1—/8) < 1}.
It is easily shown that || ||,-is equivalent fo the norm || [;,. The above
definitions imply

(+)

where || || denotes the norm || ||, or || ||, in the case when ¢ is of the form
@(u) = p(«’). The above definitions were introduced in [5], [2], [4] by
the assumption that E is an interval and u — the Lebesgue measure.

Fo@) < off i 2l <1,

o0
2.2, The set F may be expressed as H = H, v ¢, where Hc&
v=1 -

is the non-atomic part of ¥ and ¢ are different atoms (we do not consider
the case when the number of atoms is finite). It is clear that u-measurable
functions in # are exactly the functions measurable in F, and constant
in each of the sets ¢, @(f) = u, for tee,. Write u(eh) = p,, then

=
S ol®) =Ef¢(lw(t>|)du+ Zl‘u(e:‘w(mn.
A =
The case u(Hy) = 0 means that L**(F, u) is a space of sequences for which
Do,p(Alu,)) < oo for a A >0. In particular, if 0 <e¢, < p, <6, for
f); =1,2,..., we obtain the space I*? of sequences for which Do (Alu,|) < oo
for a 4 > 0. ) ’
2.21. The following lemma is important in further considerations:

If gy, w(B)< oo, then L*(B,u) = L* (B, u) and the norms
generated by these o-functions are equivalent.

The theorem remains true in the case u(Z) = oo if we replace ~
by ~ Moreover, the theorem is also trueif B = e}, where ¢} are atoms

and we take ~ in place of ~ when inf u(ey) > 0and Zin place of A when
- ki3
infu(ef) = 0. o
n

The proof is similar to that in the case of the space of functions ¢-
integrable with respect to the Lebesgue measure and will be omitted
here (ef. [4]). ’

2.3. An s-homogensous norm_equivalent to the norm gemerated by ¢
eaists in L** (B, u) if and only if

icm
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(a) (pLx, 1 () = p(u’), pis aconves p-function, if B = By, p(B) < oo

(b) gy, where y has the same meaning as in (a), if B = B, u(B) = o0;

(e) q;8~ % where i has the same meaning as in (a), if u is purely atomic,

i.e. B = e, ¢
=1
n=1,2,...

Oases (a) and (b) of the theorem may be found in [2], [4], assuming
that ¥ is an interval and u — a Lebesgue measure. Special cases of the
theorem were already proved in [5] and [6]. In all three cases, the proof
of sufficiency is based on the remarks 2.1 and on the fact (¢f. 2.21) that
the norms generated by two l-equivalent (resp. a-equivalent, s-equi-
valent) p-functions are equivalent in L*?(H, u) if F satisfies the assump-
tions as in (a) (resp. (b), (¢)). The proof given below of necessity simulta-
neougly for all cases (2)-(c)is based on a slightly different idea than
proofs in the above mentioned papers. ’

Let 6 >0 denote a constant < inf(l, x(H)) such that o, < 26
implies [z, < 1 and |#|l, < 20 implies |lzll, < 1, where || ||, is an s-homo-
geneous norm equivalent to || |l,. We shall prove the inequality

being different atoms, and 0 << ¢, < p(es) < ey for

) plaw) < 5 ofp(us)
to be satisfied, namely: («) for 0 < o <4, d’p(ué~*) >1 in the case
(a), (B) for 0 < o® < 8, u = 0 in the case (b), (y) for 0 < o < 6, 6~2p(us~
< (26,)"! in the case (e).
Indirect proof. Suppose
pla® ). > o (& (0 57)
holds for a pair «*, u* satisfying conditions agin (), (B), (1), resp. Define a
positive integer 7 as follows. If (o*)° =16 we define I =1, if 0 < (d*]" < 44
we choose I > 1 so that 35 < (")’ < 6. In all cases, | disjoint u-measu-
rable sets ¢, may be defined so that u(e,) = oy (u* 61)"'ky,, where 1 <k,
< 2. This is possible in the case (), for the measure is non-atomic and
w(B) = 6 = 1" =lp* 61k, k, =1 In the case (B) it follows
from the assumption that the measure is non-atomic and u(E) = ooj
here &, = 1. Finally, in the case (y) we choose a 8et 6, = i  €hyy v
.uel,, choosing r(n) so that pu(en) > Sp(ut 6Nt > pl6n)—
— (62, ,). Sinee u(el,,) <oy < dp(u*d71)1-3< dp(6n), We have u(e,) =
= Sp(u*6-1)"1f,, 1 <k, < 2. Sinee n may be chosen arbitrarily large,
disjoint sets ¢, may be obtained. We have 4, (u” z,, §7) = ple) o (u* 6-1)
= ok, <26; thus |juy,l, <28; whence 14" %o, < 1. Hence the
inequality s
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1 1 1
|
1 D ey, ||, < ;’a:nu*xe,uo < 2 o
1
1
iy satisfied. Assuming «, = o™ we have ;‘a‘;’ = 1(a*)" < &; i. e., there
1
holds ||§a*u* el

< 1, whence

14
1z %(217 Pty ) = ot u*)ue,)
1 1

s 2 0
= Slp(d"u")p (u* 5—1)"1>5l75;( ") 2'6—"‘2‘=1
and we have a contradiction.
In all three cases the inequality () holds for § < o' <1 andu >0,
for .
plau) <

1
Pus™) < Srap(uo).

| o

Substituting « = #4,, « = u,/u,, where u, < u,, (+) yields the in-
equality

2
(++) Plu)ur® qua(uz)_u{s,
which is satisfied for w, > u, >u, =0 in the case (B) and for
0 < u; < uy < o, Where u, is sufficiently small, in the case (v). In the
cage (o) we verify first the inequality

lim g(ué2)u * >0,
U0

substituting «* = @(u6-1)~1 in (+). Hence it follows that a constant u,
exists having the following property: the inequality (--) is satisfied for
all a, u sueh that o’u®>wu,. Substituting again « = u,, ¢ = %, /u,, where
Uy 3> Uy > U, we verify that (4 +) is satisfied in the case (o) for
Uy = Uy = Up. )
Define a function
1)
7(t) = sup w ,
ugd(t) w ;

where 1 > uy, 4(t) = (uf,, t) in the case (a), t >0, 4(t) =
case (B) and 0 < 1 < ug, A(L ) (0,t) in the case (y). In the case («) we
complete the definition of r(¢) in <0, ug) linearly and in the case (y) we
complete (i) linearly in (u§, oo), in order to get a monotone function.
(++) implies r(#) to be finite in the considered cases and the convex
function

(0, % in the
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t
= f r(v)dr
0

satisfies the required conditions. We shall consider e. g. the case (x). The
following inequalities are satisfied:
-8

2
p(d) < w'r () < w,ss—atp(u)u

2
= ggqa(ﬂ) for % > uy,

(') = hufr(3u°) = g(u-27)  for  wu > 2,

2.4. Let u(E) < oo and let ¢ satisfy the condition (08). Assume gLy,
where y(u) = (1) and v is a convex funetion. By these assumptions,
an s-homogeneons norm may be defined in L™ (R, u) equivalent to the
norm generated by ¢ and such that

Sp) <ol for i <1.

The theorem remains true for u(E) = co, replacing ~L by ~, and

for B = (_J¢f, where ¢ are atoms with mf ulen) >0, repla,cmg by ~.
1
‘onsider the function g, defined m 1.6. Since

(@) < Iy (w)  for  zeL* (B, u),

it is sufficient to take [z|) = llnlle,, and to apply 2.21.

25. Let B = By, pu(B) < oco; the relation
(+) ]111:190r L) =0 for

[ AR,
holds if and only if ¢ satisfies (0,) and (/ri' 2 ()
vex funetion.

This theorem remaing true when E = Hy, u(E) = co and ~ is repla-

0eL* (B, )

= (), where v is a con-

ced by ,f,’ or when F = (Je;, e, are atoms satisfying the inequalities
1

0 <o <ule) <o for n=1,2,... and L is replaced by ~.
Let us consider the case E = B, u(B) < oo.
Sufficiency. Write e, = {t (8} =n,teh}, e, = B—é),.

there exists a eonvex function v, satisfying the inequality

By 1.6,

@ (1) < ()

for w = 0 and quy)g Hence it follows
ts

(%) e (the ) jws(tw% ) < = j?s(zﬂer;,‘)a 0 <t <y
0

Let () < oo, then .f3 . (4®) < oo for a cerfain 1, > 0. Choose 1,
50 that J’,,s(/l,, ey, ) < ehg. The inequality 2, oty ) <o (tno) () holds;
hence by (o), we have .7, (tmx,," 1i7% < & for sufﬁelenﬂy small ¢. Thus

Studia Mathematica XXI 8
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I ()1 P, (10 oy )5 T (Wersy ) E° < 2e

for sufficiently smell ¢
Necessity. If (i) = 1 for t X, there is p(t)u(E)t™° = S, (to)t° > 0,
whenee (0g) is satisfied. If (--) holds, then the inequality

(+4) plau) < cd'p(w)

is setistied for 0 < a < ay, % > Uy, Where ag, %, ¢ > 0 are certain congtants.
For in the contrary case, & sequence a, — 0 and numbers %, would exist
such that

o pw) <pB),  plaw) =2 Gpu)  for n=1,2,..

‘We choose disjoint intervals e,, u(6,) = 27" ((p('un))“l and we define
@(1) = u, for tee,, #(f) = 0 for teH—|_Je,. There is S, (2) = So(u,)pule,)

=1 and

o0
Fplar) o = o D plant) (p(w) 127 > ai " plau) (p(w) 227" > 2,

p=1
whence we get a contradietion.

Similerly as in the proof of 2.3, (sx) implies ¢,L %, where y is a ¢-
funetion, as in our proposition. Note that if B = H,, u(F) = oo, then
(%) must hold for « > 0; in the case of purely atomic H, () is proved
for sufficiently small « based on a remark applied implicitely in the proof
of 2.3: it numbers y, ere sufficiently large, then there are disjoint sets e,,
n=1,2,..., satisfying the condition u(e,) = yuk, where 1 <k, <2
for n =1,2,...

It follows from the above proof of mecessity that if

(++) E—faf‘,,(taa)rs<oo for @<L (B, u),
+

then gaia 7, assuming B = B, p(#) < oo, and analogously in the remain-
ing cases. So we have

2.51. By the same assumptions on E, u as in 2.5, the relation (+-+-)
holds if and only if ¢ satisfies (o}) and qori» y (resp. (pi: % (priax), where yx
hag the same meaning as in 2.5..

The sufficieney is proved analogously as in 2.5, and the necessity
follows from the remarks in concluding the proof of 2.5.

o0
3. THEOREM. Assuming E = E, or B = ¢, where ¢, are atoms
. v=1
such that 0 <oy < plen) < ¢y for m=1,2,..., the following properties
are equivalent:
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(a) @ possesses the property (og), there exists an s-homogeneous norm
in L*(B, p) equivalent fo the norm generated by o;
(b) there emists an s-homogeneous norm | s én L** (B, u) such that
Fo) <llalls, o o <1;
() Hm S, (t)t~° < co.
10+

If ¢ satisfies the condition (o), then (¢) may be replaced by (+)
from 2.5.

2.3 and 2.4 imply (2) = (b) and substituting ¢z in place of # in (b)
we state (b) = (¢); 2.52, 2.21 and the definition of s-homogeneous norm
given in 2.1 imply (e) => (2).

Let us yeb note that if an s-homogeneous norm satisfying (b) exists,
then it may always be chosen so that it is equivalent to the norm genera-
ted by ¢. This follows from 2.4.
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