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Integrals of distributions

by
ROMAN SIKORSKI (Warszawa)

It is a great advantage of the theory of distributions that differcu-
tiation is always feasible and that many classical theorems can be formu-
lated in a much simpler way and under weaker hypotheses than in the
classical Analysis. Therefore caleulation in the theory of distributions
is eagier and more automatical than in the classical Analysis. To simplify
the calculation on distributions, it is very convenient to use & notation
similar to that used for functions, and to formulate definitions in the
same way, if possible, as in the classical Analysis. The original theory of
Schwartz [7] does not satisfy these conditions. It was a good idea of
Mikusingki [5] to use for distributions the same notation as for functions
(this notation has systematically been used in our papers [6]). The aim
of this paper is to show that the notion of convolution and of the Fourier
transform of distributions can be introduced formally in the same way
as in the classical Analysis. For this purpose I introduce a distributional
substitute of the notion of the definite integral of functions. Using this
notion I define the improper integrals of distributions and I define con-
volution and the Fourier transform of distributions by the same formulas
as in the classical Analysis. I also show how to deduce fundamental theo-
rems on convolution and the Fourier transform from the definition adop-
ted. The idea of defining the convolution and the Fourier transform of
distributions by this method was suggested to me by Mikusinski.

Tt is irvelevant in this paper which definition of distributions is adop-
ted: the original funetional definition of Soboleff [14] and Schwartz [7],
the sequential definition of Mikusinski [4] or [5] (see also Korevaar 31
and Mikusifiski and Sikorgki [6]), the differential definition of Halperin
[1] and Sikorski [8] (see also Konig [2], Stowikowski [11, 12, 13]), or
the axiomatic definition suggested by Sikorski [8] and Silva [10].

Ounly the sequential topology in the space of distributions is investigated.

§1. Terminology and notation. I & = (&y,...,&) and y =
= (N1, ..., 7y} are points of the g-dimensional space, we write
a

p<yiff <y for j=1,...,4,
sy i Sy for j=1,...,q.
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Thus, if ¢ and b are points in the ¢-dimensional space, then the in-
equalities ¢ <2 <b and o <@ < b define open and cloged intervalg
respectively. By an inferval we shall always understand an open- finite
interval. An interval o < # < b is said to be inside an open subget O of
the ¢-dimensional space if its closure o <{w < b is a subset of O.

Following [5], [6], distributions will be denoted by symbols fl@)
g(@),y ..., o0 by f(&ry .ovy &)y 981y oy &), ... (In general the subﬁtitutimi
of conerete points for the symbolic variables is not feasible). Incidentally
the same symbols denote continuous funetions. The symbols 77 (w), G(a), .
denote only continuous functions, and the symbol (m)——inﬁni;;eln
derivable functions. Y

I w={(&,..,&) and v = (&..1,..., &), then (u,v) denotes of
course the point » = (&, ..., &), and f(u,»), I'(u,»), w(U,0),... is
another notation for f(x), ¥ (x), w(x), ... respectively. ,

. If f(@) is & distribution, and & = (), ..., %,) is a sequence of non-ne-
gative integers (k being usually called order, for brevity), then f®(z)
is its distributional derivative of order k, i. e.

o 9%
T 0EYT 9

1 (o) f(w).

We use the notation

6, =(1,0,0,...,0),

¢ =(0,1,0,...,0),

0 =(0,0,...,0).

Thus f€ (@) is an abbreviation for of (z) [0&;.
; By a well-}mown thef)rem, if f() is a digbribution in an open set 0,
hen #or every interval I inside O there exist an order % and a continuous
tunction F(z) such that f() = F®(x) in I.
‘V;e W’I"lte 7, (») 2F(w). it Fy(2) converges uniformly to I ().
e write f,(x) - f(2) in O (or f(#) = limf,(x) in 0) if the sequence
A

ﬁa(ﬁa)c)-()f flfi?jributions gonverges distributionajﬁy in 0 to a distribution
(@), 1. e. 1L 10T every interval I inside O there exist an order -
tions (@), F(x) such that in T rder k¥ and func

FP (@) = fal),

FO@) = f(z), Fo@)3 ().
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A similar notation is applied to the convergence of distributions
depending on a eontinuous parameter a:

fa@) = f(@) in O for a =g (or f(z) = Hm f,(2)).

u-—)un
This denotes that for every interval I inside O there exist an order & and
functions F.(x) (defined for a near o)) and F(r) such that

F® (@) = folw), FO@)=f(@), F(a)ZF() fora—a.

I k& = (%1, ...5 %) is an order, A is a number, and & = (&,..., &) ‘
is a point, then, by definition,

A = (A&, ooy AEy),
o= pareta 7 = ;,5, o =g 8
I = (s ey &)y ¥ = (915 -++5 1), Then
oty = (G s EFndy @Y = (Ei— M0 oy Ee— s
zy = &1t et Enlln-
Cousequently @* = & 4.4 & Ik = (51, --0y %) ARA T = (A -5 Ag)

&
are orders, [ <k, then (Z) = (:i)(:;)

§ 2. The integral of a distribution. If 0 is an open subset of the
¢-dimensional space, let 0’ denote the seb of all points (&1, ..., E 1M, 0)
such that each of the inequalities

K<L, (<& ST

inyplies (&, ..., &)e0. Obviously, 0’ is an open subset of the (g+1)-di-
mensional space.
Let f(#) be a distribution in 0. The integral

& 9
[#(&ss o0y £0aE, (o simply: [f(#)dé,)
n n

is a distribution defined in O’ such that

[4
0
(1) ’a—gff(c‘u cor L)@y = FlErs oy Gy O,
t n
(@) ff(.fl,..‘, &)aé, = —ff(fla-“:‘fq)d‘fu'
M ¢
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Observe that (1) and (2) imply

[4
] ;
3) —%—fﬂf“ ooy EdE, = ~f(Ery s &y )
”

Conditions (1), (2) debtermine uniquely the integral f f(x)dg,.

suffices to prove it only in the ease where f(z) is the zoero dlstmbumon_

Tt g(&; .vry gy 1, £) I8 & distribution such. that

gt 6w fany 8 = 0,

(5) Gl by &) = =gl s 8 1 &)y
then also ’

©) g 016y By 8= 0,

By (4) and (6) g(&yy ...y Eg1y 775 ¢) depends on &, ...,
locally g(£&1, ... &1y 1y §) = B&1y oovy &qn)e By (B)y A&y, ... ) =
= —h(&,y .oy &)y 1000 B(Ey, iy Ep) I8 the zero distribution. Con-
sequently g(&y,..., &1, 7, L) is the zero distribution, i.e. the equations
(4), (5) have only one solution: the zero distribution.

¢

&, 1 only, ie.

The integral [ f(o)dé, exists in O'. In fact, in any interval I ingide 0

n
there exists a distribution ¢(£;,..., &) such that

.{/(517 e Eq) = f(&Ly ey bq)

i
0&,
The formulw

(1) ffsl,. BV = (& ey £ D= g (&

€

defines a distribution satisfying (1) and (2) in the (-,(n-l"onl.)oncling interval 1’
Ingide 0'. It follows from the wniqueness that if /,, 7, are intervals msldo 0,
and the corresponding intervaly 17, I; intersect, then the integrals j Jw)dé,
defined by (7) in Ij, I coineide in I{ ~ Iy, Thus all Ghe chﬂtrllmbmus
(7) defined in intervals I’ determine together the distribution fc f(w)dé,

in the whole open set 0.
Naturally, if a fixed definition of distributions is adopted, we can

: . 7
give a simpler construetive definition of [ f(w)d&,. For ingtance, in the

. . » . b Y
sequential theory of distributions (see Mikusitiski and Sikorski [6]), the
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distribution f(») under oonmdera.tlon can be represented by a fundamental

sequence f, (x) of functions. Then f flo)ag, is the distribution represented
by the fundamental sequence of the functions f Tul@)dg,. In the functional

theory of Soboleff [14] and Schwartz [7], the integral f f(=)dé, can be
defined by the equatxon

<f (@), p(Eyovny by 1)7/11(5)1P2(71)>

= <f &y f dn f Pi{O)Peln) — w1 (n )‘M>
where the carriers of the indefinitely (lerlvable functions ¢, vy, y, satisfy
obvious conditions.

It follows from (1), (2) (or from (7)) that

o &)y w€ry oy )

4 £ £
(8) [f(m)ag+ f fla)dg, = f Fla) gy,

n

4
(9) [ (fs(@)+Fol@) 38, = ff] yd,+ ffz @)déy,
4

(10) JHrae, = f f()aé,,
(11) (’E’njf g, = f—~—f wdt, for 1<j<g.

Substituting in (7) ¢(#) = w(®)f(#) we get the formula on integra-
tion by parts for any distribution f(x) and any infinitely derivable func-
tion w(x):
b=t

Eg=1

4 4
a li;
12 (@) — f(@)d&+ | — (w) A&y = (@) f(2)
(12) ﬂf”(m)aqu(”) 2 knfaqu(w)f

= (&, ooy Eqny OF 61y ooy geny D—w(bry ey &1 MNf(Exy -5 g1y M)

Just as in the classical Analysis, we get from (7) the following formula
for integration by substitution:

a(d)
(13) [ fas -
a(n)
where o(&,) is an indefinitely derivable function with a non- -vanishing
derivative. The distribution on the left side of (18) is of course the result
of the substitution of o(ry) and ¢(¢) for » and ¢ respectively in the dintri-

o Eg1y G(Eq)) o'(&,) A&y

o &), = ff by
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:
bution f fl@)d&,. Such substitution is always feasible (see Mikusiniski

K
and Sikorgki [6], (IT)).
We also have the following theorem:

4 ¢
(14) it fuo)>f(@), then [f.(e)d& — [f(a)aé,.
0 n

¢
Tu the same way we define the integrals f Ffle)dg&; (1] < q) and
n

64 ) ]
the iterated inbegrals [ ... [f(@)@&; ... d&;, (jn % jm fOr n 7= m).
Ty ki
It is eagy to Vel’if’y that the arrangement of integration in iterated
integrals is of no consequence. To simplify the notation, if © = (&, ..., &),
ta (Epprs ey Sy P =q—Dy ¥ = (Eyovey &)y 10 = (N1y -0y M)y WO Wribe

ff(w., t)di

w
g, [
instead of [ ... [ Flu, @&y, - 4.

fir n . . . .
Tt is evident that, in the case where the distribution f(®) is a continuous
function, the integraly just defined coineide with the corresponding in-
tegrals from the classical Analysis.

(15)

§ 3. Distributions continuous in some variables. Let f(#) = f(u, 1)
be a distribution defined in an open subset O of the g-dimensional space,
= (Eqy .uny &)y b= (Epy1y -+ &). The distribution flu, t) is said to
be continuous in the variable t iff, for every interval I inside O, there exist

an order % = (4, ..+ %p, 0,...,0) and a continuous funetion F(w, 1)
such that
(1) F® (g, 1) = f(u, ).

The order & ean be replaced here, if necessary, by any order I = (Mg evey Apy
0,...,0), 1 =Fk.

Tt is easy to see that if f(u,t) and g(u,?) are distributions continnous
in t, then so are f(u,t)--g(u,t), flu,t)—g(u,t), ef(w,t), and £ (a, 1)
for every order m = (Mg ..., fipy 0, ..., 0). ) '

It is a little more difficult to verity that the product w(w, t)f{w, 1)
of an infinitely derivable funection w(u,?) and a distribution. f(, ) con-
tinnous in t is a distribution continuous in ¢. For if (1) holds, then

13 -
w@)f(e) = D' (~1) (Z) (P (@) 0® (@),
I<k
and the differentation on the right side is taken with respect to the va-
riables &, ..., & only. Observe that the last formula enables us to extend

icm

Integrals of distributions 125

the notion of the product o (x)f(x) to the case where w(u, t) is indefinitely
derivable in « only, i. e. all the derivatives o™ (z) where m = (1, -y fyp,
0,...,0) are continuous functions.

If f(u, ?) is any distvibution, then f(u, v+1) and f(u, v—?) are conti-
nuous in {. Observe that they are also continuous in v but, in general, they
are not continuous in (v, 1).

The following notion of convergence is adequate for distributions
f(u,t) eontinuous in . A sequence f,(u, t) of distributions continuous in ¢
is said to converge in O to a distribution f(u,t) almost uniformly in t iff
for every interval I inside O there exist an order k = (%, ..., %, 0,..., 0)
and continuous functions F,(u,?), F(u,t) such that n I:

P (@) = fu(@), FO@)=f@), F.(2)3 F@).

Of course, if f,(u, t) — f(u, t) almost uniformly in ¢, then f(u, ) is & digtri-
bution continuous in ¢, and f,(u, 1) — f(u, ¢) in the sense defined in §1,
Pp. 120.

Let 1, be a point such that the open set 0 of all points  suech that
(1, t,) €0 is not empty. Tf f(u, ?) is a distribution defined in O and continuous
in ¢, we can substitute for the variable 7 the constant value f,, Then we get
a new distribution f(u, %) in Oy. The exact definition of f(u,t,) can be
formulated for instance as follows: If f(u, 1) is a distribution continuous
in ¢, then there exists a sequence f, (u, ) of continuous functions such that
Faltey t) — fu, ¢) distributionally but almost uniformly in £. The sequence
of funchions f,(u,f,) converges distributionally to a distribution which
does not depend on the choice of f,(u,t). The limit distribution ig the
distribution f(u, ).

It can easily be proved that if f,(u,?) are distributions continuous
in ¢, and f,(u, t) — f(u, t) almost uniformly in ¢, then f, (u, %) — f(u, &)
in the sense defined in §1, p.120.

§ 4. Integration of distributions continuous in some variables.
Tt is easy to verify that if f(u, t) is & distribution continuous in ¢, then the
v

distribution [ f{u, t)dt is eontinuous in (w, »), and consequently we can
w

substitute for w and v some constant values w, and »,. Thus we get the
distribution
Yo
(1) [ flu, i
o
depending on the variable « only. For the same reason, if f(u, 1) is eonti-
nuous in #, we get the integrals

@) [flu, @ and fof(u,t)dt
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depending on the variable point (u, v) and {(u, w) respectively, the points
w0, U, being fixed. . : .

However, if f(u,1) is continuous in ?, we can also introduce more
complieated integrals

3) [, nat

where A is 8 bounded measurable set. TE flw, 1) is defined ’in an open sef
0, the integral (3) is a digtribution defined in the open .seii (). ofu all‘pomts "
such that the elosure of the set {(u, ): ved) ig eontmn.cd in 0. The 1.noas.t
convenient definition of (3) can be given in the sequentm]. theory of (1]8.413'1’1-
hutions. In fact, there exists a sequence fulw, t) of 00111;111119113 funct‘lons
sueh that fo(u,t) — f(u,?) distributionally 1_)1115 ‘almost umfp];m]y in I
The sequence _ffn(u, 1) dt then converges distributionally to a digtribution
A

which does n;)t depend on the choice of fy(u, 1). The limit digtribution
is denoted by [f(u,t)dt.
A . X

Integral (3) has many properties analogous to the integral ‘of
a continuous function. Tf A is the interval w, <Ct < vy, then (3) coin-
cides with (1).

Integral (3) can also be taken with regpect to other measnres than
Lebesgue measure. In particular it is possible to define integrals extended
over some hypersurfaces of any dimension <g—p with 1'@313(?013 to the
area of the hypersurface (always under the hypothesis that the 1n§egmted
function is continuous in the variable of integration). We have for instance
the formula

dilo@) = [lgrado(t)d,(@—1)d
8

where § = {#: o(a) =0}, 6,() is the r-dimensional Dirac delta djstributi?n,
and o () is an infinitely derivable funetion whose gradient does not vanish
on § (for details, see Sikorski [9]). o

Integral (3) can also be extended over a larger class of distributions
locally integrable in ¢, which will not be examined here. ]

Observe that, without any additional hypotheses with 1'egs.m?'d to
f(u, 1), neither (1) nor (2) has any sense. However, without fmy additional
hypothesis regarding f(u, t), we can always consider tho integrals

b
[flu,v40at,  [flu,o+0dt (s, b—tixed)
a £

because f(u, v-+1) is continuous in ¢ These integrals are distributions of
the variable (u, v).
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It is easy to verify that, for every distribution f(u,t), we have the
identity

(4)

v

ff(u,t)dt: f flu, w-t)dt.

?
In general, [f(u, t)dt is continuous neither in », nor in . It follows
w

v
from (4) that if ff (w, t)dt is interpreted as a distribution of (u, w, v—w),
w
it is continuous in the variable ¥ = v—w.
Identity (4) shows that the difference between the integral
b

and the integral f flu, w+t)dt is not essential.
a

P

ffu, tydt

w

§ 5. The value of a distribution at infinity. Let f(u, v) be defined

in the open set {(u, v): u 0} where O is an open subset of the p-dimensional
space.

It is easy to verify that if the distributional limit Hm f(u,v-+a)
a—r—0C

éxists, it is a distribution independent of the variable ». Therefore the limit
can De interpreted as a distribution of the variable u only, defined in 0.
We shall denote it by f(w, —oo) or by lim f(u, ).
T— — 00
Similarly we define f(u, co) or limf(u, v) as the distributional limit
=00

Hm f(u, v+b) interpreted as a distribution of the variable « only.
b0

More generally for any distribution f(u,v,w) by f(u, —oo, co)
or lim f(u,w,v) we shall understand the distributional limit

Wes— 00
00

lim f(u,w+a,v+b)

a—s—cc
b—oc

interpreted as the distribution of the variable « only.
Observe that if lLim f(u, w, ) exists, then for every order m the

W—sr— 00

V00
limit  lm f™(«, w, v) exists also, and
Wy — 0O
P00
1) Lm f (u, w, 0) = ( lim f(u, w, )™
Wer—00 W—s—00
V->00

V=20
Since the differentation is here commutative with ¢“lim’’, we can use the
symbol f™ (u, —oo, co) to denote distribution (1), without any ambiguity.

§ 6. Improper integrals. According to § 5, we define the improper
integral

fwf(u, t)di
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a8 the distributional limit
] bogp

m [ f(u,t)di = lim [ f(u, )il
’"’7:)_:\;‘0 a ”hin:) wiw

interpreted as a distribution of the p-dimensional variable w only.
It is evident that, in the ease where the distribution f(u, 1) is a con-
o

tinnous function and the ordinary improper integral [ f(w, t)dt exists,
a.lgl converges almost uniformly, the distributional fl%]‘)xnpﬂ? integral
f flu, t)dt just defined also exists and they coineide.
The following theorems hold for any distributions f(w, 1), g(u, 1):

) If the integrals f flu, tydt, f,(/(w,,t)(lt exist, then the integrals
=00 - .
o

_f(f(u,t)—!—g(u, 1)) dt, f(f(’l,b,i)—_(](’ll:,t))(l’ﬂ also ewist, and

(1) [l )+ glu, D)t = Jf (1 1) - fg w, 1),
(2) f(f(u,t)—.f/(u,t))(lt= ff(nr,t)dt-— .J{:Qg('lL,l)d'/,.

. i 00 oo
(i) If the integral f Jlu, t)as ewists, then the integrals [ Af(u,t)dl,
o -

!af(u h--1)d fj’") (uy )@ (M = (Uyy ..vy iy 0, ...,0)) also emist and

el o

(3) [, nat =1 [ ju,va,
* f 1@, tot-1) fmf (u, tydt,
(b) ff(m)('llt,fr)dt = ( fmf(w,, 'ﬁ)dt)(m),

§ 7. The convolution of distributions. Lot flx) and ¢ (=) be dlstrl-
butions defined in the whole g-dimensional space. The product f(z)
is a distribution defined in 2¢-dimensional space. Since the linear tra.nsfor-
mation ¢(@,t) = (z—1, t) has a non-vanishing jacobian, we can replace

in the distribution f(x)g(t) the point z,1) by (z—1,t). We thus geb
the distribution fle—1) (t) (@,1) by | ) &
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By the convolution of distributions f(z), g(») we understand the im-
proper integral

) ® g (i ffrﬂt t)dt

provided it exists in the whole g-dimensional space.

If f and g(x) are continuous functions and the ordinary convolu-
tion f(x)*g(x) exists and converges almost uniformly, then the distribu-
tional eonvolutlon f(z)*g(x) just defined also exists and they coincide.

The fo]lowing elementary properties of the convolution of any distri-
butions. f(x), g(x), h(z) follow immediately from known properties of im-
1)1’01)61 integrals:

) If f(@)xg(s) and f(x)xh(z) evist, then f(@)*|g(x)Lh(z)) evists
also, anrl

fe) *(g(‘b’):i: h(@)) = f(x)* g(#) £ f () h(x)

Similarly, if f(z)=h(z) and g{x)*h(x) exist, then (f(B)+{/(a ))*h( ) also
exists and ‘

(Flx) =g (@) h(z) = f(@)+h(w)+ g ()R (). _
(i) If f(x)*g( x) exists, then (Af () = g () and f (@) = (Ag (x)) also ewist, and

(M (2)xg(2) = A(f(2)xg(x)) = f(m)*[Ag(=)).

It is a little more difficult to prove that

(ili) If fla)*g(z) exists, then, for every order "y fU (@) xg(x) and
flz)*g™ (x) also ewist, and

TN @) ey (@) = (f(@)xg (@)™ = f(w)+g" ().

(iv) If f(z)=g(z) exists, then g(x)=f(x) also exists, and f(w)*g(w) =
= y(x Jxf(z).

The associative law will be proved only in the following two par-
ticular cases to Dbe investigated in this section:

) If one of the distributions f(xz), g(®) vanishes outside an interval,

then the convolution f(x)*g(x) ewists.

Y If a distribution f(x) vanishes outside an infinite interval o = ¢y,
mul a dzstrzbutzon g(x) vanishes outside an infinite interval x = ¢y, then
the convolution f(z)*g(x) exists and vanishes outside the infinite interval
T = e,

The existence of f(x)+*g(») follows from the faet that, in both cases,
for any g¢-dimensional interval I there exist points a, and b, such that

v+b v+by
[ fla—ngmar = [ fla—tgat
w+a w:,a[,

for all a <@y, b=b, and (w,w, v)e[XIXI.
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Henee it follows that

0 Vb
(1) f fla—1t)g(t)ds = f fla—tgydt  for wel,wel,vel.
oo w-- g

The interval I being arbitrary, we infer that this improper integral exists
in the whole g¢-dimensional space.

The last remark in theorem (vi) follows from the fact that in the
complement of the set {#: @ 3> ¢, -+ ¢y} the integrated distribution vanishes.

(vii) If any two of the distributions f(w), y(@), h(#) vanish outside an
interval, or 4f all the three distributions vanish outside an infinite interval
& ¢, then

(@) % (g () ¥ (@)} = (F(@)% g (@) *h(®).

The proof is the same ag the proof of the corresponding theorem for
funetions. The proof is based on a change of the order of integrasion,
which is feasible in the cases under consideration because the integrals
defining convo]utions are indeed proper integrals (see (1)).

(viil) If fu(e) > f(®), gu(®)—> J(m), and all the distributions ¢, (a)
vamsh outside a fwad mtefr'ual then f (@) gy (%) — f(2) % g ().

(ix) If fuol2)—fl@ Y —> g () and all t}w distributions f,, (@), ¢ (@)
vanish outside o fimed n, f'imite iﬂterml @ = 6, then f(1)*g, (®) — f(2)xg(2).

Theorems (viii), (ix) follow 1mmodla,1,e1y :thIll (1 ) zm(l the analogous
formulag for f,(@)*g,(®) since f,(w—1)g,(t) —f(@—1)g(t) and conse-

quently
V-t 'u»!—uﬂ
[ fale—gu it~ [ fla—ngwa.
Wty 0 { g

Let 6(x) be the g-dimensional Dirac delta distribution.
(x) For any distribution f(x),

fla) = 8(w) = f(=).
Let d,(z) be a sequence of non-negative continuons functions van-
ighing outside the intervaly —e/n < < e/n, such thatb f Oy (@) dis = 1.

By definition, &,(«) - 6(»), and consequently f(a) *(S“( ) > F ()% 6 (@)
by (viii).

If f(x) is any continuous function, then f(a)x4d,(x) = f(x) in every
finite interval, and consequently f(z)sd,(x) — f(¢). This proves (x) in
the case where f(#) is a continuous function.

If f(w) is any distribution, there exists a sequence of continuous func-
tions f,(x) — f(w). Hence f(z)*8(x) = lim f,(x)*d(z) = lim f,(«) = f().

N—>00

L]
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§ 8. Distributions slowly increasing and rapidly decreasing. All
functions and distributions considered in this section are defined in the
whole g-dimensional space. We introduce the following classification of
functions and distributions from the point of view of their behaviour atb
infinity.

F () is said to be & slowly increasing function iff there exists an integer
» >0 such that the function F(x)/(1-+22)* is bounded. The class of all
slowly increasing funetions is linear. Any indefinite integral

&
fF(fla e oy T &y ey Eg)dT
«

of a slowly inereasing fumnction is a slowly inereasing function.

() is said to be a function slowly increasing with all its derivatives
iff, for every order m, »™ () is a slowly inereasing function. The class
of all functions slowly increasing with all its derivatives is a linear subset
of the class of all infinitely derivable functions.

f(®) is said to be a slowly increasing distribution iff there exist an
order k& and a slowly increasing funetion F(x) such that

(1) f(x) = F®(x) in the whole space.

The order % can be replaced here, if necessary, by any order ! = k (replace
F(x) by a suitable iterated indefinite integral!) The class of all slowly
increasing distributions is linear. The product w(x)f(x) of a function w (x)
slowly increasing with all its derivatives and a slowly increasing distri-
bution f(z) is a slowly increasing distribution, for if (1) holds, we have

@) o@)f@) = ¥ (=1 (’;) (F (@) o (2))* .

i<k

f(®) is said to be a bounded distribution if it is a finite sum of deriv-

atives of bounded continuous funections, i. e. if there exist bounded con-
tinuous functions F,(z), ..., F.(z) and orders %,, ..., k. such that

flae) = F{D (@) + ...+ B ().

The class of all bounded distributions is linear.

¢{x) is said to be a rapidly decreasing distribution iff (14 x2)*g(x) is
a bounded distribution for every integer » > 0. The class of all rapidly
decreasing distributions is linear.

g(w) is a rapidly decreasing distribution iff, for every integer x» > 0,
g(w) = G (@) +... 4G where k., ..., k, are some orders, and all the
continuous funections (1-+#2)*Gy(x), ..., (1+x2)*G,(z) are bounded.

In fact, if g(») is rapidly decreasing, then

(1422 g(a) = F{9(2) +...+ P ()
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where all the functions I (@), ..., F.(v) are bounded. Hence
. .

glo) = 3 (1491 (@)
j=1
_ v
A_I

[23

fl.[\/

(— ) (/‘;)(Im(’ @)((1+a?)” )(t))(kj. 0

and the functions Fy(a){(L

it g(» Z("‘ﬂ ), and G () (1--@2)* arve bounded, then
(14 w%"y(w) = )J

(/0}) ((i’( )(( - ) )([))(’"j—l)
j=11

and all the functions G;() ((1+w2)")“) are Dounded. Thus (1-- %) (z)
is a bounded distribution for every sz z: 0.

Every rapidly decreasing distribution iy of course a slowly increasing
distribution. R

If f(z) is a slowly increasing distribution (or a rapidly decreasing
distribution), then so is f™ (z) for every order m.

i) If f(w) ds a slowly increasing distribution, and g(x) is a rapidly
decr ea.smg dmmbunon, then the convolution f(a)*g(z) ewists and is a slowly
ineressing distribuiion.

We have f(z) = F™ (@) where (122 *F(») is a bounded function,

=0, and g(z) = G (%) 4-...+ G (@) where (1 #2)*'G;(#) are bounded

functions. By a simple ecaleulation, the 0011volu13i011s F(w)*G,-(m) exist
and are slowly inereasing functions. Henee f(@ = (I () Gy (o))"
+ oo+ (F (@) £ G () **) exists on account of §7 (1) and (111)

By the same method we can prove thatb

il) If one of the distributions f(x), g(x), h(z) is slowly increasing and
the two remaining ones are rupidly decreasing, then

(f(@) % (@) #1 (@) = f(2)*(g (@) % h(@)).

A sequence f, () of slowly increasing distributions is said to converge
strongl y to a distribution f(w) iff there exist slowly increasing functions
F,(®}, F(x), an order &k and an integer » = 0 such that, in the whole space,

-u2) 7O (14-02)* are bounded. Conversely,

=
/—\

"\t\/

3) FO@) =), FY@) =fl@), (140 Fula) = (L+0?) (o).

The limit f(2) is then also a slowly increasing distribubion.

Replacing x by a greater integer we can always assume that the fune-
tions (14 22" F,(») are commonly bounded. Strong convergence implies
of course the convergence defined in § 1, p. 120.

Integrals of distributions 133

The following two lemmas follow immediately from the definition
of strong convergence.

(iii) If F,(z), F(z) are continuous functions, and for some integer
2 =0, 1+ F,(2) = (1+22)"F(x) and the functions (1-+22)7"F, ()
are commonly bounded, then F,(v)— F(x) st)ongl Y.

(iv) If fo(®) — f(x) strongly, then fi™(z) — f*) () strongly for every
order m.

The next 1emma follows immediately from (iii), (iv) and identity (2).

(v) If fu(x) = flz) strongly, then o(z)fy(x) - o(®)f(x) strongly for
every function w(x) slowly inereasing with all its derivatives.

Now we shall prove that

(vi) If fu(z)— f .1;) strongly, and g(x) is o rapidly decreasing distri-
bution, then f,L(.n *g(x) — f(x)*g(x) strongly.

Suppose (3) holds, (1-+ x2)™*F, () are commonly bounded, and g(x) =
= G (@) 4-... 3 QF (r) where (142G, (x) are bounded functions. It
follows that the functions (1+x2) *(F,(2)*G(2)), (1+a%) *(F(z)*G;(w)
satisfy the hypotheses of (iii) and consequently F,(x)* G;(x) — F(3)*G;(x)
strongly. By differentation and addition we get (vi).

§9. The Fourier transform. By the Fourier transform Ff(z) of
a distribution f(x) (in the ¢g-dimensional space) we understand the improper
integral (over the g-dimensional space)

oo

(1) Ff) = [ fltyexp(— 2rist)dt

-0

provided the integral converges in the whole ¢-dimensional space. By de-
finition, Ff(x) is the distributional limit

v v4-b
im [ f(t)exp(—2rint)dt = lim [ f(t)exp(— 2mixt)ds.
sl G wia

Observe that if a continuous function f(x) has the Fourier transform
in the ordinary sense and (1) converges almost uniformly, then its distri-
butional Fourier transform just defined also exists, and they coincide.

The following properties of the Fourier transforms of any distributions
f(®), g(x) follow immediately from the definition.

() If Fflaw) and Fy(x) ewist, then F(f(x)Lg(z)), F(A(z) also ewist,
and

F(f@)£y0) = F(f@)£Fg(@), F(af(@) = IiFf(a).

In the sequel, t; will denote the j-th coordinate of the point ¢, and
& — the j-th coordinate of .
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(i) If a distribution f(x) has the -properiies:

(a) for any systom ji,...,J of different positive intogers < g, p >0,
the integral o
[ F@) oxp (— 2riat) ey, ... dy,

converges everywhere;
(b) for amy system ji, ..., dpsr of different posilive integers < q and
any p =0, r >0,
91 &
lim j e j f(t)e.xp(—-Zvc'liwt)dry-l.‘.drjp == ();
Loy Ap—>—00 m
Loerer o>
AU L
then all the derivatives f(x) also have these properties. Morcover
(2) T () = 2mil; T f(w).
If j is one of the integers ji, ..., jp, say j = j,, then integration Ly
parts yields

ny
00

b %
J] f‘“’f)(t)exp(—Zniwt)drh...d-rin
n k)
4 fp—1
= f f f(t;)exp(——2mmtc)(trjl...clr,”ml——
n1 -1
& -1 '
— .. f Flt) exp (—2miat,) vy, ... dzy, -+
mn -1
31 51)
+2mig; [ F(0) exp (—2rizt) dvy, .. dr;
K I

where 1., t, are points whose coordinates, except the Jp-th coordinate,
are all equal to the corresponding coordinates of ¢, the j,-th coordinate
of ¢ being equal to {,, and the j,-th coordinate of i, being equal to
- It immediately follows from the equality just obtained that f©)(z)
also has properties (a) and (b). Moreover, in the case p = ¢, we obtain
(2) by passing to improper integrals.

If j is none of the integers jy,...,J,, then

h L2
j f P (W exp (— dricst) s, .. dry
kid

n,;
P f v
- _0_1:(] oy j'(t)exp(~2ﬁ7lwi)drjl...dt,-lj)v|_

m K

5% ,93
+ 2mif; f woo | fyexp(—2miat) d, ... dz,.

mn i

icm
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It immediately follows from these formulas that f*(x) also has properties
(a) and (b).
(iil) If Ff(®) ewists, then TFE&f(x) also exists, and

(3) FEf (@) = —(2m0) (T f ().
Moreover, if f(x) has properties (a), (b), &f(x) also has them.

The first part of (iii) can be obtained by the differentiation of (1)
The second part follows analogously from the identity

b &
J f 7 () exp (— dmint)d, ... dv;,
n p
K} a1 D
3 [ f Flt)exp(— 2miat)d, .. .

g Ip

(iv) For every slowly increasing distribution f(x), the Fourier transform
Ff(x) exists and satisfies the identities
@) FfO) = @ri) T (@),  Falfe) = (—2=) " (Ff(@)®.

Morevver, every slowly increasing distribution has properties (a) and (b).

This immediately follows from (ii) and (iii) since f(z) = ((1+w2)"F(w))(”
where F(r) is a continuous function such that f (1+22)? | F () |dax < oo,

—o0
and consequently F(x) has properties (a), (b).

(v) The Fourier transform of a slowly inereasing distribution is a slowly
increasing distribution.

If Ff(x) is a slowly increasing distribution, then so are F&f(#) and
FfNz) by (3) and (2). If F(x) is a eontinuous function such that
(14 #2)? F () is bounded, then FF (x) is a bounded function (by a classical
theorem), and consequently 7F(x) is a slowly increasing distribution.
This implies that 7 f(z) is a slowly increasing distribution for every slowly
increasing distribution f(z) since f(x) can be represented in the form
flo) = {(1+2)"F(2))® where (1-+22)?F(s) is a bounded continuous
function.

(vi) The Fourter transform of a rapidly decreasing distribution is
a function slowly inereasing with all its derivatives.

Any rapidly decreasing distribution is of the form f(a) = GV (%)
4o+ G (3) where (L4 2%)'G;(x) are bounded econtinuous functions.
Thus @;(«) are bounded continuous functions and consequently Ff(z) =
= (2ri) 181 TG (0) + ...+ (2ol TG (m) (see (4) and (i) is a slowly
inereasing funetion. Since #f(x) is also a rapidly decreasing digtribution,
we infer that {Ff(2))® = (—2ni)*F2"f(z) (see (4)) is a slowly inereasing
function for every order k.
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(vii) The Fourier transform of a function slowly increasing with all sts
derivatives is o rapidly decreasing distribution.

We precede the proof of (vii) by the following l‘ema,lk For every
slowly increasing distribution f(x) and every integer » = 0

Fl—da)f(a) =

where 4 is an abbreviation for the differential operator

(5)  Fa+a)Tla) = 1—4)Ff), (L+ w2 (z)

A = (2m)~

o8 Tl

)% 0% )
Formulas (5) are an immediate consequence of (2) and (3).

To prove (vil), suppose that f(x) is a function slowly increasing
with all its derivatives. Since f(») is slowly increasing, we have f(x) =
= (L #2)"F" () where (1 #?)“F () is a bounded continuous funetion. Con-
sequently, by a classical theorem, 7 F(x) is & bounded continuous func-
tion and, by (5), Ff(x) is a bounded distribution. Since f® (z) is also a
slowly mclcd,smg function for every order %, we infer from (5) that
(14w Ff () = F(1—4)f(#) is 2 bounded distribution for every x > 0.
This proves that 7f(x) is a rapidly decreasing distribution,

(viil) If f(&) 4s a slowly inereasing distribution, and g(») is a rapidly
decreasing distribution, then

(© F(f(a) g @) = Ffw) Fy (o)

By a classical theorem, (6) holds if f(«) and ¢(») are continuous func-
ions such that (L4 #2)*f(®), (14 2%)%g(z) a,u, bounded.

Hence it follows that (6 ) holds if (14 #%)*f(x) is a bounded continu-
ous function and ¢(») is a rapidly decreasing dlstnbutiou. In faet, g(2) =
= G{"(@) 4. ..+ 68 (z) wheve (L-+a2)'@, (), ..., (1+?) G, (z) are boun-
ded continuous functions.

We have
(0te) = 3 (rtanat o) = 3 (1) 6001
Faal
)_J Va1 T (f(@) %Gy (@) = S Ff(a)- (2r0) 2" 7 65 (a)
i=1 el
= D Ff(@) F6 @) = Ff(w) Fy(a).

F=1

. To complete the proof, it suffices to show that if (6 (6) holds for a slowly
© increasing distribution f(z) and every rapidly decreaging distribution

icm
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g(z), then (6) holds also for the distributions f’(z), g(x) and for the
distributions &;f(x), g(»).
The first statement can be proved as follows:

0 a) g (a)) = (((f Y(@)) = 218, (7 @) »g o)
i&F () Fg(@) = Ff (@) Fy(x).

The second statement follows from. the identity
(M) (=22 F (Fo) +g (@) = F((&:F(@)) %9 (@) + 7 (F(@) (&9 (@)
Since &g¢(x) is also a rapidly decreasing distribution, we have
(f(vv)*(Eg -Z))) = Ff(x)-F(&g(x). Consequently
17(_(5ff(w))*y(»v))=(—2ni)*‘(r7f(»v)-i'ig( )N — Ff (@) F &g ()

Y(Ff @) - Fg @)+ Ff(@)-(Fg (@) T f (@) Fég (@)

on account of (3).
By the adjoint Fourier transform of a distribution f(z
the distribution

) we understand

(1" Ff(@) = [ f(t)exp (2rint)dt

provided the integral converges in the whole space. By definition,

Fflw) = Ff(—a).

Hence it follows that the adjoint Fourier transform has, roughly speaking,

the same properties as the Fourier transform. More exactly, theorems
(i)-(viii) hold for the adjoint transform, but (2), (3), (4), (3), (6) should
now be replaced by

(29 F N w) = —2mif;Ff (x),

(3) F&f(@) = (2md)= (T (@),

(4 Ff@) = (—2mi)dTf (@), Fa'f(2) = 2m) 7 (Ff@)P,
(5  F+a¥f(w) = 1—AyFf(@), FA—-A7f(z) = (1+x2)Ffla),
and

(6" Ff((@) g (@) = Tf(w) Ty ()

respectively.
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(ix) For every slowly increasing distribution f(@):
FFf(a) = f(o), FFf(@) = ().
In fact, by a classical theorem, the formulas FFE (@) = F(w), FFEF (@)
= F(2) hold if (122" F («) is 2 bounded continuous funetion. Any slowly
inereasing distribution is of the form flz) = (1422 F (2 ))<’”> where
(1+ @) F(w) 1& a bounded continuous function. Hence, by (1), (5),
4", (57 F((L4-a2) B (@) = F ((@ni)fa” (L~ AV F P (@) =
= [(1+a)FFF @) = f(o). |

The second identity can be proved analogously.

The following theorem. ig a supplement to (v), (vi), (vii):

(x) Every slowly inereasing distributdon (every rapidly decreasing
distribution, every function slowly inereasing with all dts derivatives) f(z)
is o Fourier transform of a slowly increasing distribution (a function slowly
increasing with all its derivatives, a rapidly decreasing distribution) fo(@)

For it suffices to assume fy(x) = Ff(@).

(xi) For every slowly increasing distribution f(w)
g(@) slowly increasing with all its derivatives,

F(f(@)g (@) = Fflo)*Fglw).
) Jol®) = Fg(x), L e. f(o) =

and for every function

Let fo(w) = Ff(x)
We have by (6)

Fl@)g(@) = TFfol
Henee, by (ix),

Fhol@), g(@) = TFoo(®).

@) 7J0(9” ‘(.fo("”) *!Io(‘”))-

F(f(@) g () = fol@) %go(w) = Ff (w)
(xii) If fu(®) —f(®) strongly, then Ff,(x) — Ff(o) strongly.

Suppose that F,(z), F(z) are slowly increasing funetions such that,
for an order % and an integer » > 0,

FO@) = fol@),  TP() =f(@), (1409 F,(a) 3 (1+a?)™F (),

and all the functions (1+ «?)™*F,(¢) are ecommonly bounded. Henco it
follows that

*Tg ()

F((14a2) OBy (@) 3 F (LA a¥)” O ()
and the functions on the left gide are commonly bounded. By § 8 @iii),
the uniform convergence = cen be replaced here by the strong distribu-
tional convergence —. Consequently, by §8 (iv) and (5),
FI, (@) = (L—AY*F (14 a2) 0P, (1)) — FF (s) strongly.
Multiplying by (2ni)*a® we get by (4)

Ffalm) = 2ni)a " FH,( w) — Ff(x) strongly.

icm®
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We finish this section by proving that the ¢-dimensional Dirac delta
distribution 6(x) is the Fourier transform of the funection identically equal
to 1. In faet,

- ki exp ‘77—1 '[) )
Fl= fexp( it I l l 21 (Zr,
,,m-,
e 1

:(F[ 151)' 8(x).

The theory of the partial Fourier transform (i. e. the Fourier transform
with respeet to some variables & , ..., &, only) can be developed in a si-
milar way.

References

[1] I. Halperin, Introduction to the theory of distributions, Toronto 1952.

[2] H. Konig, Neue Begriindung der Theorie der ,,Distributionen’
Math. Nachrichten 9 (1953), p. 130-148.

[3] J. Korevaar, Distributions defined from the point of view of applied mathe-
maties, Proe. Kon. Nederl. Akad. Wetenschappen Ser. A, No 2 and Indag. Math.
17.2 (1955), p. 368-383; ibidem 58.4 and 17.4 (1955), p. 463-503; ibidem 58.5 and
17.5 (1955), 563-674.

[4] J. Mikusiniski, Sur la mélhode de géneralisation de M. Laurent Schwarts
et sur la convergence faible, Fund. Math. 35 (1948), p. 235-239.

[6] — Une définition de distribution, Bull. Ac. Pol. Se. CL III, 3 (1955), p.
589-591.

[6] — and R. Sikorski, The elementary theory of distributions (I), Rozprawy
Matematyczne, Warszawa 1957; (II), ibidem, to appear.

{71 L. Schwartz, Théorie des distributions (I), Paris 1950; (II), Paris 1951.

[8] R. Sikorski, 4 definition of the noiion of distribution, Bull. Acad. Pol.
Se. CLOIII, 2 (1954), p. 209-211.

[9] — On substitutions in the Dirac delta distribution, Bull.
CL III, 10 {1960), p. 691-694.

[10] J. 8. E. Silva, Sur une construction axiomatique de la théorie des distri-
butions, Publicagdes Centro de Estudos Matematicos de Lisboa, 1954-55, p. 1-186.

[11] W. Blowikowski, 4 generalization of the theory of distributions, Bull.
Acad. Pol. Se. CL III, 3 (1955), p. 3-6.

[121 — On the theory of operators systems, Bull. Acad. Pol. Se. €L III, 3(19855),
p. 137-142.

[13] — A theory of extension of map systems (I), Fund. Math. 46 (1959), p. 243-

von L. Sehwartz,

Acad. Pol. Se.,

15

75,
[14] 8. Soboleff, Méthode nouvelle a résoudre le probléme de Cauchy pour
les équations hyperboliques normales, Recueil Math. 1 (1936), p. 39-71.

Regu par la Rédaction le 2. 7. 1960


GUEST




