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On the characterization of Schwartz spaces
by properties of the norm

by

3. ROLEWICZ (Warszawa)

Let X be an F-space, i. e. a linear space with topology induced by
the norm |z|| (not necessarily homogeneous) such that addition and
multiplication by a number (1) are continuous with respect to both
variables, but not necessarily complete (see [1], p. 35, and [8]).

If, moreover, the space X is locally convex, then there is a sequence
of homogeneous pseudonorms |z, < ol < ... < 2l < ... (?) such that
the sequence , tends to x if and only if the sequences ||z, — #il» converge
to zero for all m (see [8]). These spaces are called Bj-spaces.

A set A is called bounded if for an arbitrary sequence of numbers
t, - 0, and for an arbitrary sequence of elements u,e¢A, the sequence
0, — 0.

A Bj-space is called Montel space ([8], [5]) if every bounded set
contained in X is compact (%).

A Bj-space X is called Schwartz space ([4], [5]) it for every positive
integer i theve is such a positive integer j that the set A, ; = {o: loellg s
<1} is compact with respeet to the topology induced by the pseudo-
norm. |aj;.

Montel and Schwartz spaces have recently been investigated by
a great number of mathematicians: J. Dieudonné, I. M. Gelfand,
A. Grothendieck, A. N. Kolmogorov, D. A. Raikov, L. Schwartz, G. E. Si-
lov and many others.

The definition of Montel spaces can be extended to F*-spaces without
any change (¢). Another case is presented by Schwartz spaces. Schwartz

(*) The results of this note concern multiplication by real as well as complex
numbers.

(%) It means [[tzlhn = [t|[jallm for every &, = and m.

(%) The set Z is called compact if every sequence wne Z contains a subsequence
Zn,, such that |lon,— 2nlle, then %, k' — oo.

(*) Till now an example of a Montel space which is not locally convex was not
been known. Such an example is given at the and of this paper.
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gpaces are defined by quasinorms and thig definition is given below,
after the definition and the proportios of quasinorms.

The aim of this note is the characterization of Schwartz spaces by
properties of the norms.

1. We denote by 2 the class of all open sets 4 C X for which
tAC A (5) for all numbers ¢ such that [f < 1.

Let A be sn arbitrary set belonging to the class 2. The number
[#]y = inf{t:¢ >0, afted} is called the quasinorm (see [2] and [7]) of
the eloment » with regpect to the soet 4.

Quasinorms have the following propertios:

(a) [twly = [} [@]4;

(b) the quasinorm. [@], satisfios the triangle inequality, i.e. it is
a psendonorm. if and only if tho set A iy convex;

(e} it AC B, then [2], > [2]p;

(@) [o+9y]igp < max([w],, [¥ylg) (%)

Let the sequence A,e¥ constitute s neighbourhood basis of zero
([6], p. 3). ‘

(e) The sequence x, comverges to zero if and only if the sequences
[@m].4, tend to O for all n.

(f)  tho sequence a,, is bounded if and only if there is such & gequence
of numbers N, >0 that [@x],, < N, for all n and m.

Properties (a) and (¢) arve trivial.

Property (b) is the well-known. property of the convex sets [8].

Property (d) results from the fact that, if we write r = max([#],,
-[%1y), then zerd and yerB, whence - yer(A@B); therefore [z-+4],0n
<7 =max([a],, [¥]p).

‘We shall prove property (e). If », -0, then for arbitrary e >0,
and n, there is such an m, dependent on & and n that, for m > m,, ¥, ced,,
whenee [wn],, < e Therefore 711'm [@n]y, =0 for n =1,2,... On the

other hand, if lim [@,,] ,,= 0, then for every n there is such an m, depen-
Mp 00

dent on n that, for m > m,, [@,] 4y, §1, whence am,ed, and since A,
congtitutes & neighbourhood basis of zero, then , — 0.

Property (f) is & simple consequence of property (o). Indeed, if there
Iy such a sequence of numbers N, >0 that [@n],, < N, for all m, then
for an arbitrary sequence ¢, — 0, [t,o,] un S Noty—> 0 if m —> oo, whence
property (e) implies that ¢,,@, — 0; therefore the sequence @, is bounded.
On ‘the other hand, if for some n there is a subsequence @, SUCH that

(*) By tA we denote the set of all elements {» where wed.
(*) By AD B we denote the set of all sums x-+y such that sed, yeB.
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[, ] 4, — oo, then the sequence

!0 if m % my,
(B Jan) ™ HE mo=my

converges to zero, but the sequence [4,,2,] ,, does not tend to zero, chaﬂlse
[tmy, ®my ) 4,, = 1, Whence property (e) implies that i,, does not converge
to 0; therefore the sequence x, is not bounded.

The set Z is called compact with respect to a quasinorm [z], if every
sequence x, ¢ Z contains a subsequence @, such that . inn (), — g4 = 0.

Definition of Schwartz spaces. Let the decreasing sequence of
sets 4, e constitute a mneighbourhood basis of zero. The space X is
called a Schwartz space if for every ¢ there is such a j that the set A;;
is compact with respect to the quasinorm [x],. :

If X is a Bj-space, then this definition is obviously in accordance
with the definition given at the beginning of this note.

It is easy to see, as in the case of Bj-spaces, that every Schwartz
space is also a Montel space.

2. Let Y be an arbitrary F*-space with the norm |u||, and let & be
an arbitrary positive number. We write

o(Y, &, 1) = inf{|jia||: we ¥, ||n]] = &}
if there is such an x¢¥ that |»]] = ¢ and

for t#£0
(T, 1) = {8 *0
0 for =0

if, for all e ¥, |z| < .

THEOREM 1. Let X be a Schwartz space. Then, for every increasing
]

sequence of finitely dimensional spaces X,, such that the set X*= | X,
n=1

18 dense tn X, the functions ¢(X/X,, e,1) () are not equicontinuous in 0
for each fimed e.
Proof. We write K, = {#: ||| < #} and denote by K, the largest
set 4 belonging to % and contained in K,. .
Suppose that the theorem does not hold. Then there is such a
sequence X, of finitely dimensional subspaces that X,C X,.,, the
=]
sot X* = |J X, is dense in X and the functions ¢(X/X,, ¢, ) are equi-
f=al
continuous in O for some & It is obvious that also the functions
¢(X*/X,, ¢, t) are equicontinuous for this e.

(") Bx X)Y we denote the guotient apace (see [6], p. 18).
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Leb & be an arbitrary positive nuwmber. By 4 we denote such
a positive number that e(X* Xy, e, A) << 0/2 for 0 << 4 3% 4. We choose
by induetion sequences of positive integers k, and of clements o, in the
following way:
L @ e Xy,
2. ol < 8 (0 =1,2,...);
3. mnEth’
do [o—milglyy = Ao fow 4w Ly 2y 000, N
This is possible. et us suppose thut Loy some n wo have chogen the
elements @y, ..., s, satistying conditions 1-4. By lypothesis there is in
the space X"'/X‘Kn gueh. & residue clags Z that ||Z)] == e and ||3Z] < §/2.
By ,,, we denote an arbitrary clement of 42 gueh that [, < 6,
and by Xy, ., we denote a gubspace containing the element ., (it is
[-+]

possible since X* = ) X,). Since, for cvery e Xy, , (@ni—0) ek,
Nl

(g1 —3) [ A0 1K gjgy W ave [dpg1—@ilicly, > Ao for 4= 1,2, .., n—1,n

Thus the sequence @, is not compact with respect to the quaginorm
[#]x},, Whence the arbitrariness of & implies that the space X is nob
a Schwartz space.

T do not know whether the inverse theorem to the theorem 1 is true
in the general case.

TunoreM 2. Let X be an F™*-space for which there is an & >0 such
that for every meX there is such a number 4, that |[byX|| == e, If there is
such a sequence of finitely dimensional subspaces X, that the functions
¢(X|X,, 5, 1) are not equicontinuous in O for any fived e, then the space X
is & Schwartz space.

The proof of this theorem is based on the following

LEMMA. Let Z be an arbitrary set contained in X. If for every nuwmber
8 >0, there is a finite number of elements @y, ..., @, ¢ X such that for each
weZ there is such am m; (1 =i < n) that [w—w;], < 8, then the sof Z 18
compact with respect to the quasinorm (@] py4.

Proof of the lemma. Let w, be an arbitrary sequonce of elements.

of the set Z. We define by induction the gequences o) in the following
way:
1. @y =,
2. the gequence a,™ is a subsequence of the sequence ab,
. 3.’f0r each psequence ai there is such an clement ;e X that
[wp—m], <1fi for o =1,2,...

The existence of such sequences trivially follows from. the assumption
of the set Z. The sequence a; i the required sequence. Indeed, property
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(d) of quasinorms implies that [af—onligs < 1/n if n <m, because T
and o™ are elements of the sequence #} (n being fixed) and there is such an
#, that [al—wpls < 1/n, [2h—ay]a < 1/n, q.e. d.
Proof of theorem 2. We write K, = (JtK,. Let 0 < &< &/2,
lt<1
Suppose that there is such a sequence of finitely dimengional subspaces X.
that the funections ¢(X/X,,s,1) are not equicontinuous in 0, i.e. that

- there are a sequence 1, of positive integers and a number § > 0 such that

for each u >0 there are a &, and a sequence ux, 0 < uy < 4 for which
o(X | X, 8, ) > 0 provided that % > k,. It means that, in the space
XXy, piy K, O K,y whenee also K3 D Ky and thus uK, D K;. Let
weX and |jz]l << 6. By Z we denote the residue class containing . Since
IZ u]] < &, there is an element w,eZ, such that |2 /ul| < &, whence
o], < pir < -

We can write & = @+ (2— 2,). We have (23— %) eXy,, (38— z0) e KD
@ Koy K, DK e K, (8). Bince X, has a finite dimengion and
2¢ < g,, there is such a finite number of elements ¥, ..., ¥m that for
each w, |lp]] < 8, there is an y; for which [(z— o) — ;1] < u. The property
(d) of the quasinorms implies that [o— ]z < p. Hence by the lemma
the set K, is compact with respect to the quasinorm [o]g*. And since
the sets K.* constitute & neighbourhood basis of zero, the space X is
a Schwartz space, q.e. d.

COROLLARY. Let X be an F*-space with basis e, (see [1], p. 110) and
suppose that there exists such an g, >0 that for every zeX there is such
& number tw that |[iyzl| = 0. The space X is a Schwarts space if and only
if the functions ¢(X,,, &, 1), where X,, is the space generated by the elements
bty Onyay oy OTC MO equicomtinuous in O for any fived e.

A gimple consequence of this corollary is an example of a Schwartz
gpace which is not loecally convex.

Tet X be the space of all sequences # = {£,} such that

o

ol = Y 18" < 400

n=1

with the topology induced by the norm |z||. It is easy to see that it is
an F-space and the sequence e, = {0,0,...,0,1,0, ..., 0} is a basis
lace

7D
in this space. This space is not locally convex. Really, let & be an arbitrary
positive number.

(®) We denote Z@® % by Z2% Z"® Z by Zrtl,
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By a we denote af, = {&"'}, where
0 for isp,

51’:{817 for i =p.

Obviously |wpl| = &, but

S SRS 2

1 P

|
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n

On the other hand, it iy easy to verify that

e ) (e for |t <1,
g =
m YT, for i >1,

whence X is a Schwartz space.
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Anerkénnung der Prioritiit
zu meinem “Beitrag zur Theorie des MaBringes mit Faltung”

von

8. HARTMAN (Wroctaw)

Satz 3 aus meinem Beitrag [3] ist implizit in [6], [1] und [2]
enthalten. Die Autoren haben nimlich bewiesen (z. B. Theorem 3 in [2],
8. 189), daB im Ring aller Funktionen von beschrinkter Schwankung
in (—oo, c0) eine Funktion f immer dann eine Reziproke (im Sinne
der Faltung) hat, wenn ihre Fouriertransformierte ¥, ihre sprungartige
Komponente h und ihre stetige singulire Komponente s folgenden
Ungleichungen geniigen:

@) F@) >6>0 (—co<n< o),

(2) " Var s(t)'<inf fe‘”‘dh(t)].
~co< < oo T e

Ubertrigt man diesen Satz von der reellen Achse auf den Kreis,
was keine Anderung der Beweismethode erfordert, so erhilt. man ein
Ergebnis, das sich vom Satz 3 aus [3] dadurch unterscheidet, daf anstatt
8(t) = 0 das dem Kreis angepafte Analogon von (2) angenommen wird
und daB jede Lokalisierung der Sprungstellen der Reziproken von f fehls.
In logischer Hinsicht sind diese Aussagen unvergleichbar, sie sind aber
nicht wesentlich verschieden.

Meine Beweismethode ist der in [2] ganz analog, insofern sie das
Dichtliegen der stetigen Charaktere in der Charaktergruppe der ,,diskre-
ten Zahlenachse” (Theorem 2 in [2], S. 177) ausnutzt. Somit ist Satz 1
aus [3] auch teilweise als bekannt zu betrachten, nimlich fur den Fall,
wenn die Gruppe @ die reelle Achse oder (durch naheliegende Modifi-
zierung) die Kreisgruppe ist. In dieser Beziehung muB ich den Einwand
des Referenten in Mathematical Reviews [4] dankend anerkennen und
mich durch den erschwerten Zugang zu der von ihm zitierten Literatur
(aus den der Kriegszeit dicht benachbarten Jahrenm) zu rechtfertigen
suchen.

Andererseits kann ich dem Referenten- der Mathematical Reviews
nicht vorbehaltslos beistimmen, wenn er [3] als ein bloBes Wiederholen
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