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Linear spaces with mixed topology
by

A. WIWEGER (Warszawa)

This paper () contains a systematic investigation of a topology called
mived topology and determined in a natural way by two given topologies
defined in the same linear space X. The theory of mixed topologies here
presented is closely related to Alexiewicz’s investigation of two-norm spaces
([11, [2]) and Orlicz’s investigation of Saks spaces ([9], [10]). Roughly
speaking, the mixed topology is the unique natural neighbourhood topology
corresponding to the sequential topology in a two-norm space. It is also
the unique natural extension (to the whole space) of the topology in the
unit sphere considered as a Saks space. The connection between spaces
with mixed topology and Saks spaces or two-norm spaces makes it
possible to apply the theory of linear topological spaces (in particular
locally convex spaces) to the investigation of Saks spaces and two-norm
gpaces. As an example of such applications a theorem on the extension
of y-linear functionals will be proved (see 2.6.4)

1. Preliminaries. By a linear space we understand any linear space
over the field of reals 9. The restriction to real spaces is not essential
and the passage to complex spaces presents no difficulty. If X is a linear
space and aeX, AC X, BC X, ac®R, then we shall use the following
notation:

a4+ A = [a+x:2ed],

A+ B =[oty:wed and yeB],
ad = [an: wed].
If y = f(») is a mapping from a set X into another set ¥ and Z C X,
then the restriction of f to Z is denoted by f|Z.

Let X be a linear space. If a topology 7 is defined in X in such
a way that addition and multiplication by scalars are continuous in both

(1) Presented as a Doctor’s Thesis at the Mathematical Institute of the Polish
Academy of Sciences on May 9, 1959. .
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variables, then v is called a linear topology. A. linear space X with a linear
topology 7 is called a linear topological space and is denoted by (X, =,
If 7 is a linear topology, then () denotes & basis of neighbourhoods for
0 in the z-topology. For each aeX the family of sets a-- U, Uell(v), is
then a basis of neighbourhoods for the element a.

If 7 i8 a linear topology, then there exists a basis () satisfying the
following conditions:

(1) if Uesl(z) and AR, 4 + 0, then AUe8(r),
L) if Uel(r) and AR, |A] <1, then AUC U,

{
(13) if Uel(r), then for every weX there oxists 1K, A 3 0, such
that izeT,

(1) if Uell(r) and VelU(z), then there exists Well(r) sueh that
WCUAYV,

(L) if Uel(r), then there exists Vell(r) such that V4-VCU.

In the sequel we shall always suppose that any basis of neighbour-
hoods under consideration satisfies all the conditions (1,)-(1s). :

If, conversely, & iz a family of subsets of X satisfying conditions
(1;)-(15), then &l is o basis of neighbourhoods of 0 for some linear topology.
A linear topology = is called & linear Hausdorff topology if and only if
the bagis &(z) satisfies the condition

(1¢) for every weX, x = 0 there exists Ueil(z) such that we¢ U,

A linear topology is called locally comvex if and only if there oxists
4 basiy of convex neighbourhoods of 0. Let 7, and v, be two linear topolo-
gies defined on X. If for every Ue&l(v,) there exists a Ve &l(z,) such that
V¥ C U, then we say that the topology v, is finer than =, (or that =, is
coarser than 7,) and we write 7, < 7,. If 7 is a linear topology on X and
ZC X, then for each element aeZ we can take the family of sets
(a+TU) ~ Z, where Uell(z), as the basis of neighbowrhoods of a. The
topology thus defined in Z is denoted by v|Z and called topology in-
duced on Z by 1.

If <X, 7, and <X, 7, are (not necessarily linear) topological HPaces,
and if y = u(x) is a continuous operation from X to ¥, then we say that
the operation w i (1, 7,)-continuous. It in particular KX, vy and (¥, 7y
are linear topological spaces, then instead of “u is distributive and (r;, ¥5)-
~continuous” we say “u iy (v, 7,)-linear”, ' .

Let X be a linear space. We say that a set 4 C X absorbs a set
BC X if there exists a A > 0 such that ABC A. A subset B of a linear
topological space (X, =) is said to be bounded (or v-bounded) if B iy ab-
sorbed by every neighbourhood of 0. The elags of all z-bounded sets is
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denoted by Bd(r). A set B is z-bounded if and only if for every sequence
{wn} of elements of B the conditions 4, = 0, 4, — 0 imply 4,2, — 0 in the
7-topology.

Let (X, > be a locally convex linear FHausdorft topological space.
A set AC X ig called symmeiric if wed implies —zed. A set A C X is
called absorbing if, for every v X, there is a 4 >0 such that AzeAd. A set A
is called a barrel if 4 is convex, symmetric, absorbing and cloged. The
space (X, 7> is called a t-space (espace tonnelé) if all barrels ave neighbour-
hoods of 0 ([5], [6]). The space (X, 7 is called bornological if any convex
symmetric set in X which absorbs all bounded subsets of X is a neigh-
bourhood of 0 (see [6]). It is known that

(¥) A locally convex linear Hausdorff topological space (X, ) ds
bornological if and only f, for every locally convew topology =, defined on X,
the condition Bd(r) = Bd(z,) implies 7, < 7.

2.1. Suppose that in a linear space X two linear Hausdorff topolo-
gies 7 and 7" are defined. Let & (z) and ${(*) be bases of neighbourhoods
for 0 in topologies © and t* respectively. Neighbourhoods in $l(z) will
be denoted by U, V, ..., and neighbourhoods in $l(z*) will be denoted
by U*, ¥*, ... In the sequel we shall sometimes postulate (but only when.
explicitly stated) the following conditions:

(n) v* <7

(0) the neighbourhoods belonging to {(z) are »-bounded;

(d) the neighbourhoods belonging to ¢ (7) are eonvex and z*-closed.

Condition (o) implies the metrisability of space (X, z>. The space
<X, > is then a Fréchet space or an incomplete Fréchet space. If the
topology v is locally convex (and, in particular, if condition (d) is sa-
tisfied), then condition (o) is equivalent to the statement that the space
{X,7) is a normed space (i e. a B*-space).

For each sequence U, e (z*) and for each Uefl(r), we shall denote
by »(U%, U;,...; U), or shortly by U”, the set

) D(Ufﬁ U+ Uy ~2U0 ...+ Uy ~al),

A=1
i.e. the set of all sums @;+®y+...+@, (n =1,2,...), where z,eU%
1
and %mksU.

It is easy to verify that the family R of all the sets (1) is a basis of
neighbourhoods for 0 in a linear Hausdorff topology. In fact, if
(UL, Usy .. U)eR and AeR, then 1-y(U7F, Us,...; U) = y(AUY, AT;,
..+; AU). Therefore conditions (1,) and (l,) are satisfied. For each x<¢X
there exists a 2¢R, 4 7 0, such that Aze U} and AveU. Then Az ey (UT,
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¥, ...; U), which proves (13) H Wi Upe Vi (b= 1,2 l and.
WCUmV then »(Wy, Wi,.. W)cy(Ul,U“ ,U)my(Vl’ .
.; V), which proves (L) Oondltlon (1;) can be verified as follows: Let

us choose V*e8l(7*) and Vell(v) in such a way thab Vet Vo Uy and

V4+VCU. Then V*+V?C U, where V' =yp(Vi, Vy,...; V). In fact,
it eV’ VY, then o =y-2, where ¥ =yit¥atotUm, YieVi
, 1
,:;'.c.yke'[f (70———‘1,2,...,’%) and 2 7421’\”%\"‘"--- [ 2y ZMV;:; /{‘/. zkﬁvl
(k=1,2,...,n). Hence (if, for ingbance, m =) o == (Y 4-2) -+ (Yol 29) -+
A Yt ) 2R and .i1; follows  from 4y -|-2ge Uf,
‘%(?/k‘i‘zk)‘f U (k=1,2,...,m), %e U7n1 "“l"“zlre U (l=m | Lym|-2,...,0)
that xeU?.

Hence the family & is a basis of neighbourhoods for 0 in & new
linear topology. We shall call thls topology the mimed topology (*) deter-
mined by the topologies v and t*

‘We denote the mixed topology by y[v,7*] or shortly by <*. The
mixed topology satisties condition (1), i e. it is a Hausdorlf topology.
Thiz follows at once from the following statement:

2.1.1. For each U*eSl(z*) there emists a y(UY, Uy, ...;
that v(UY, Us,...; O)C U™

In fact, for every U*<8(z*) there oxists Uje&l(+*) such that
U¥+ U C U*. Furthermore, there exists U, <&l(z*) such that U‘,»{ Uy
C U!. By induction, there exists a U <$l(z*) such that Up-- Un C Un...
'We have Uf+ Uf-r...+ USC U* for each n, and theretore y(UY, U,

U)C U* for each U.

Lemma 2.1.1. may be written in the form

(2) ™ < ylr, 7.
If condition (n) is satisfied, then
(3) e, T <

In fact, for every U” of form (1) there exists a Vel (r) wuch thab
VCU~UCT.
If 7* > 7, then

(4) ylr, "] ="

U)e& such

. 1o fact, for every U” there exists a U*efl(") such that U"C
Ui ~ UCT" Hence v* = p[v, 7], which, together with (2), proves (4).

() The term “the space with mixed topology” was #irst used hy A. Alexiewicz
and Z. Semadeni in paper [3].
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If the topologies 7 and z* are locally convex, then the topology z”
is also locally convex. In fact, if U} (n =1,2,...) and U are convex,
then the sets Ui~ U-Us ~2U+...+Up ~aU a,re convex, ag alge-
braic sums of convex sets. Therefore the set y (U3, Us,...; U) is convex,
ag the set-theoretical union of an increasing sequence of convex sets.

Remark. We could take as a bagis of neighbourhoods of 0 in the
mixed topology the class of all sets of the form

(8) LJI(U;"“11U+U;’“a2U+-~-+U:n%U):
M=
where {a,} is an arbitrary fixed sequence of real numbers tending to
infinity. In fact, there exists a subsequence {a, } such that |an | > n.
Then
U, ~nUC Ty A om, U
and

V(Um17 U:ragy U Ul ~Nay U+ U nagU+...4+Un o, U).
Conversely, if {k,} is an increasing sequence of positive integers such
that %, > |a,|, then Uy ~a,UC Uy ~k,U, and

%E{(Uzl ~aU+Ug, ~agU+.. + UZ" ~a, U)Cy(UT, Usy...; U).

Therefore, the bages of neighbourhoods of the form (1) and (5) are
equivalent.

2.2. Let 7 and 7* be two linear Hausdorfﬁ topologies defined on X.
Let v be an arbitrary linear topology defined on X. We say that the
topology < satisfies condition (P,) (with respect to the pair (v,t")) if

(Py) ©'|Z ="|Z for each ZeBd().

2.2,1. The mized topology y[v, "] satisfies the condition (P,).
2.2.2. If the topology = satisfies condition (o), then for every linear
topology ' defined on X, the condition

W% <T|Z  for each  ZeBd(r)

implies the inequality
v L ylr, 7*].

. In particular, the mixed topology is the finest of all linear topologies
which satisfy (P,).
The proofs of lemmas 2.2.1. and 2.2.2. were given in my previous
paper [12].
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The topology ' is said to satisfy condition (P,) (with respect to the
pair (7, 7*)) provided
(Py) It y = u(w) is a distributive operation defined on X with values

belonging to another topological linear space <Y, z,», and if for
each ZeBd(r) the operation w|Z is (v*|Z, v )-continuous, then
the operation u is (7', v,)-linear.

2.2.3. If the topology = satisfies condition (o), then the topology
y[x, 7] satisfies the condition (P,). ’

2.2.4. ConorLrAry. If the topology =t satisfies condition (o), then
a distributive operation y = u(2) defined on X with values belonging to ano-
ther topological linear space (X, =y 48 (v, v,)-continuous if and only if
the operation u|Z is (v*|Z, v,)-continuous for each ZeBd(r).

2.2.5. If the topology v satisfies condition (o) and a linear topology '
satisfies condition (P,), then <’ z=+". In other words, the topology + is
the coarsest of all the linear topologies which satisfy (P,).

The proofs of 2.2.3-2.2.5 were given in [12]. The following theorem
is an immediate consequence of 2.2.2 and 2.2.5:

2.2.6. THEOREM. If the topology v satisfies condition (o) and if a linear
topology v’ satisfies conditions (P,) and (P,) simultaneously, then ' = "

Henceforth we shall assume that the topology v is locally convex
and that £(z) iy a basis of convex neighbourhoods of 0.

2.3. For each sequence Uyell(z™) (n=0,1,2,..)
Uell(r) let us write

and for each

(6) U =y, (U5, U, o5 U) = U N U+ Ux).
N
We shall prove that the class of all the sets (6) is & basis of neigh-
bourhoods for 0 in the mixed topology y[v, v*]. First we shall show, how-
ever, that if {a,} is an arbitrary sequence of positive numbers tending to
infinity, then every set of the form

(N Vorn M (@ V+V5), where Vell(z), Vaell(z"),
n=l

containg a set of form (6), and conversely. In fact, suppose that U is an
arbitrary set of form (6). Let {k,} be an increasing sequence of positive
integers such that %k, >uw, for w=1,2,... Let V¢${(+*) be such

L Fp+p—1
a sequence that Vi (M Uy, Vac () Uj. Then
=0 D=ky,

pig—1

Vi (@ U+Va)C Uf ~ nk (pU+ T}
P=ky,
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and
V5 N (. U+ V) C Us ~ N @U+ Uy).-
= p=

It can be shown by a similar argument that, for every set of form. (7),
there are neighbourhoods U*e8l(+*), n = 0,1,2, ..., such that set (7)
contains set (6) for U = V.

Now we shall show that every set (7) is a neighbourhood of 0 in the
mixed topology. On account of the preceding remark it suffices to show
that every set

(8). Ut A Fj (#n(n+1) U+ T2)

is @ neighbourhood of 0 in the mixed topology.
Let V3 be an arbitrary member of £l(7*), satisfying the condition
Vi+ViC U;. Let us take, by induction, V;efl(z*) (n >1) such that

V:“l‘ V': C U*—l la V‘—l-

We have .
(9) Vi+Vi+...+VacC Us,
and for every p '
(10) Vat Vet A Vagp C Vat+Vac Unae

By (10), we obtain

-]

WYL Ve, 3 0) = U (VA U4VE A 204+ Vo A (n—1) U+

p=1
+VnAnU—+.. .+ Vo~ (n+p)0) C U1 (U+2U04+...+(n—1)U+
Pe=

+Vate it Vrp) C dn(n—1) U+ U5,

The last inclusion being valid for each = >1, it follows from (9)
that set (8) conmtains the set y(Vy, V;,...; U). Therefore set (8) is
a neighbourhood of 0 in the mixed topology.

Now we shall show that every meighbourhood of 0 in the mixed
topology contains a set of form (6). Let U” = y(U%, U, ...; U) be
& neighbourhood of 0 in the mixed topology. Let us write, for brevity,
My =2n—1 (n=1,2,...). There exists a sequence Vi, V},..., such
that Vo+V3 C Unyy Voordt Vi1 C Unyy Vo D Vp(p =1,2,...). We
shall prove that V7 =y, (Vy,Vi,...;U0)C U”. Let V" Then
@V, and, for each n =1, 2, ..., there exists a decomposition # = ¥, -2,
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where y,enl, z,Va. Let @ =y, and @, =¥, —¥, ., for = >1. We
have, for every #, the following obvious identity:

(11) BBt @ 2 = Y (Ya— Yk
F W — Y1)+ 20 = Yut- 2y = .
Furthermore
By = Wy 2y,
and therefore @, = 2,..;— 2, < Vi_,-+Vr. On the other hand, ,, = ¥, — Yp1

enU+n—1)U = (2n—1) U = m,U. Hence
(Va1 V)Y~ (@un—1)T.

It follows immediately from the definition of V) that

Vo v FVaC Va4 Vo C U:;Ln'
Hence
(12) Bye Uy ~m,U.

It follows from the equality 2, = x—wy,, that 2, e(ky+n) U where k,
i8 a positive number such that @ ek, U. If 7y > Ty—1, then 2ny--1 = My
> koo and 2y, €(Kg+19) U C iy U. On the other hand,

* * * *
g € Vno c V'no + V'n.n C mg+1*
Therefore
%
(13) Zng € Unng1 ™ Ming 1 U

It follows from (11), (12) and (13) that

& =B+ %, +. --‘}“mnn+z7L05U:rLl Amy U+
+ U:nno ™ My, U+ U:nno-i-l N Myygp1 vcuon.

This proves that V" C T”.

Therefore all sets (6) (or all sets (7)) form a basis of neighbourhoods
of 0 in the mixed topology.

If, in particular, v is & normed topology defined by the norm. ||
and 8, = [#: |lz| < n], then the sets
(14) T; ~ ml (8 +Un), Unell(zh, r>0,
n=

compose a basis of neighbourhoods of 0 in the mixed topology.
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Remark. If the topologies v and 7* are locally convex and if con-
dition (o) is satisfied, then the clags of all the sets

oo
(15) conv | (Uy ~ n0)
n=1
is also a basis of neighbourhoods of 0 in the mixed topology.
In fact, it is clear that sets (15) form a basis of neighbourhoods for
a locally convex linear topology 7,. The inequality z, > =¥ is obvious.
The inverse inequality follows from 2.2.2, because the topology =, has
the property (P,).
2.3.1. THEOREM. Suppose that the topologies v and * satisfy condi-
tion (d). Then @, — @, in the mized topology if and only if simultaneously
a) @, — @y in the v -topology,
b) the sequence {x,} is bounded in the t-topology.
Proof (3). Let us suppose that x, - 4, in the 7*-topology and the

sequence {,} is r-bounded. Let Z be set of all elements 2,,n =0, 1,...
‘We have
2, > 7 |Z-topology.

The 7-boundedness of Z implies the equality <"|Z = '|Z, on
account of the proposition 2.2.1. Hence %, — z, in z¥|Z-topology, i. e.
x4, — @, in the mixed topology 7".

Suppose now that x, — 2, in the mixed topology. It follows from
the inequality +* < ¥ that #, =, in the z*-topology. It suffices to
prove that {z,} is =-bounded. Suppose the contrary. We may assume that
@, = 0, i. e. that @, — 0 in the mixed topology. If the sequence {w,} is
not v-bounded, then there exists a neighbourhood Uefl(r) and an
ineressing sequence of indices {k,} such that @ ¢nU forn =1,2,...
Tt follows from condition (d) that all the sets nU are v*-closed. Hence,
for each n, there exists Upel(z*) such that a ¢nU+ U,. Therefore

(=]

the set U = () (nU-+ Uy) contains no of the elements z,,. On the

n=1

other hand, the set U is a neighbourhood of 0 in the mixed topology.
This contradicts the hypothesis that {,} converges to 0 in the mixed
topology. Therefore the sequence {,} is z-bounded.

2.3.2. COROLLARY. Under the hypotheses of theorem 2.3.1, a sequence
{,} 4s a Cauchy sequence in the mived topology if and only if simultaneously

a) {@,) s a Cauchy sequence in the *-topology,

b) {@.} s v-bounded.

(%) T have proved this theorem in paper [12]. The proof given here is simpler
than that in [12].
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2.4. We suppose in this section that the topologies v and +* satisty
conditions (o) and (d).

2.4.1. A set ZC X is bounded in the mized topology if and only
if it is bounded in topologies v and v* simultaneously. In symbols

Bd(+*) = Bd(r) ~ Bd(s*).

Proof. Suppose that 4 eBd(r) ~ Bd(z"). If m, ¢4 and 4, =0, 4,0,
then 4,@, — 0 in both topologies v and z*. Hence the sequence {Anm,}
is 7-bounded. In virtue of theorem 2.3.1 we infer that A,a, — 0 in the
mixed topology, and consequently 4 eBd(+*). Therefore Bd(r) ~ Bd (")
C Bd(7"). Inequality (2) implies the inclusion Bd(z") C Bd(v"). Suppose
that 4 <Bd(z*). Let {wnlbe a sequence of elements of the set 4, and let
An =0, A, — 0. Since V1, — 0, we have Vi,a, 0 in the mixed topology.
In virtue _(_)f theorem 2.3.1 the sequence {l//lnw,,} is z-bounded. Conse~
quently Vi, Vi, @, = Au@, — 0 in the v-topology and therefore the set A
is 7-bounded. Hence Bd(z”) C Bd (7).

CoroLLARY. If the topologies T and z* satisfy condition (n), them
a set A C X is bounded in the mined topology if and only if it is v-bounded.

24.2. If y[r,7" ] =71, then v* 2. If, in particular, ©* <7, then
the equality y[7, 7] = 7 implies v = ©*.

Proof. Let ¥ be any z-bounded neighbourhood of 0 in the z-topo-
logy. By hypothesis, V' contains a neighbourhood y(U}, UL, ...,; U).
1t follows from the z-boundedness of the set V, that ¥V Cn, U for some
ny = 1. We shg.ll show *that Un+21C V. Suppose this inclusion is false.
Then there exists aye Unyi1y ¢ V. It is clear that Mo ¢V, Mye(ng+1)T
for a number 2, 0 < 1 < 1. We have Aw,e U:o_,_l (see condition (1,)). Hence

Mg Ungpr ~ (=) U C p(TY, UL, ...; U)C V.

Thig contradicts the assumption ‘Az,¢V. Therefore Up,.,C V, and
consequently * =r. 0

2.4.3. If 7|Z = 1}|Z for each ZeBd(v), then
(16)

In particular:
an)

7[7"'7;] = y[7, T;]
y[x, T*] = 7’[7"7 y[r, T*J]-
Proof. By 2.2.1,
yI6,%)lZ =72 =112 for ZeBd().

Therefore the *topology 7] [z, 721 has property (P,) (for 7* = 7). Conse-
quently y[z, 7] >7[7, 73], by 2.2.2. Replacing 7* by 7 and conversely
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we obtain the inverse inequality. Hence equality (16) is true. Setting in
(16) 7t = 1%, 1} = y[v,7*] we obtain equality (17).

It follows from 2.4.3 that, contrary to the case considered in 2.4.2, .
the equality y[7, "] = ¢* does not imply the equality v = <*. In fact,
if <y ¥t and 7t =yplr,1f], then 7 <7, 7F #v and o
= y[7, 7"}

2.4.4. If condition (n) is satisfied and if <X, y[7, 7 is a bornolo-
gical space, then T = 7%, :

Proof. By 2.4.1 (corollary) we have Bd(y[r,7"]) = Bd(z). There-
fore y[t,v*] =7, by (). Hence y[7, "] = 7, on account of inequality
(). This equality implies v = 7%, by 2.4.2.

2.4.5. If condition (n) is satisfied and if (X, ylz, T ds a t-space,
then © = 7%

Proof. Let Ue¥l(r). By condition (d), the neighbourhood U is
*-closed. It follows from the inequality +* < y[7,7"] that U is closed
in the mixed topology. Therefore the set U is a barvel in the space
(X, y[r,7*]> and consequently U is a neighbourhood of 0 in the mixed
topology. Hence y[z,7"] >7, and, by 2.4.2, 1 =1"

Theorems 2.4.4 and 2.4.5 show that, in non-trivial cases, spaces with
mized topology fail to be bornological or tonnelé.

2.5. Let X, be a linear subspace of the space X. We shall consider
on the space X, the following two topologies:

a) the topology y[7,7*]|X,, i.e. the topology induced on X, by
the mixed topology y[7,7"]

) the topology y[v|X,, 7¥| X,], i. e. the mixed topology constructed
from the topologies induced on X, by v and z*.

It is easy to verify that

[z, T*]I-Xn <yl X, T | Xo].
In fact, the sets
o
Xy~ Uy~ N (Untn0)
n=1
are neighbourhoods of 0 in the topology y[z, 7*]| X,, and the sets

=
Xo U: ~N (U: A Xo+nU ~ Xy)
n=1
are neighbourhoods of 0 in the topology y[z|X,, %] X,]. It is clear that
the second set is contained in the first. The inverse inclusion is, in general,
false.
Suppose now that the subspace X, and the topologies v and 7 satisty
the following condition:
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(¢,) if A C X, AeBd(v), A is v*-closed and A ~ X, = @, then there
exists V*e8l(7") such that (44 V*) ~ X, = @.

Condition (c,) is satisfied, in particular, if X, is +*-closed and if every
z-bounded 7*-closed set is compact (= bicompaet) in the r*-topologs;.

2.5.1. TaporEM. Suppose that conditions (d) and (0) are satisfied.
Then condition (c,) implies the equality .

(18) y o] Xy, 7 Xo] = y [, 71| X,.

Proot. Let Us ~ N (Up ~ Xy+nU ~ X,) be a neighbourhood of 0

n=1

in the topology y[7|X,, 7*|X,]. On account of conditions (d) and (o)
we may assume that the sets nU are t*-closed and z-bounded. Let W
be a 7*-open 7*-neighbourhood of 0, such that W--W*C U*. The set
wU ~ Xo++Wi is 7"-open. Hence the set

A, =nTUN (0T ~ X,+Wh)
i8 r*je‘losed. Since the set 4, is z-bounded and 4, ~ X, = @, then, by
condition (c,), there exists VyeSl(v*) such that (A,+ Vi) ~ X, = @.
‘We may suppose that V;; C W, and therefore W, -V C Uy,
We have
Xon (WU4V2)C Xy A [(Ay+V0) © (0U ~ Ko Wi V)]
CXyn [(Ap+Va) v (00 A Xp-- U] = Xy~ (0T ~ X+ Ub
=nUn~ JYO—[* U;t ~ XO.

The last equality follows from the fact that the set X, is linear. Therefore
N 0 ~ X+ Us ~ Xy),

XenUs n N MU+FVHC X, ~ Ut A
n=1 =1

wt%ich implies y[7, v"1| X, = y[v|X,, 7| X,]. The inverse inequality

being always valid, we get equality (18).

. 2.6. Let X be a linear space with a homogeneous norm. | ||, and let
1" be another F-.IIOI'II.I defined on the space X. A sequence {w,} of elements
of the space X is said to be y-comvergent to m,, in symbols x, - @, if

v

3
{16, — %ol — 0 and BELPH%H < oo. The y-convergence is also called fwo-norm

conwergence. The space X with y-convergence iy denoted by <X, || ||, || I*>
and called a two-norm space. The theory of two-norm. spaces has been
developed by Alexiewicz ([1],[2]). Two-norm convergence in some
c().ncrete spaces was examined earlier by G. Fichtenholz [7]. The follo-
wing conditions are important in the theory of two-norm spaces:

(@) llwal — 0 implies |ja,|* — 0,

(0g)  |in— " = 0 implies Hmint |,]| > |,

icm
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(m,) it [z <K, lim |jz, — 2,/* = 0, then there exists zyeX such
P—r00
(—»00

that |z < K and |z, —xl* = 0.

Let 7 be the linear topology defined by the norm || |, and let " be
the linear topology defined by the norm || II*. Let (%) be the class of all
golid spheres S, = [z: ||lz]l < r]. Condition (o) from 2.1. is obviously sa-
tistied. Condition (n) from 2.1 is identical with (n,), and condition (d)
is identical with (n,).

It {¥, 7> is a topological linear space and if ¥ = u(x)is a distri-
butive operation defined on X with values in Y, then the operation
is said to be (y, z;)-linear provided B, > Ty implies u(w,) ;)u(m,,). In
particular, a distributive functional £(x) defined on X is said to be y-linear
provided z, — x, implies &(z,) > &(z)-

The connection between the two-norm spaces and the spaces with
mixed topology is stated by the following theorem:

2.6.1. TEEOREM. A) If (X, I, | IS s a two-norm space satisfying
condition (n,), then the mized topology " = y[7, 7] has the following
properties:

() 7|8 = 7|8, where 8 = [: o] <1];

(ii) @, ) if and only if @, — @, in the "-topology;

(iii) for every linear iopological space (Y, 1.0, and for every operation
y == u(x) from X to ¥, u is (y, v,)-Uinear if and only if it is (77, T1)-linear.

B) The mimed topology y[v, <*] is @ unique linear topology possessing
properties (i) and (iii).

Proof of A). Property (i) follows from 2.2.1. Property (ii) is an
immediate consequence of theorem 2.3.1. A distributive operation u
is (y, 7,)-linear if and only if the operation |8 is (7*| 8, 71)-continuous,
or, which is the same, if and only if, for each Z <Bd(r) the operation u|Z
is (7*|Z, v,)-continuous. Therefore property (iii) follows at once from
2.2.4. i

Proof of B). Suppose that a topology 7’ has properties (i) and (iii).
Tt follows from (i) that the topology ' satisfies condition (P,) from 2.2.
Hence v < 7, by 2.2.2. If the operation u from X to Y is distributive
and w|§ is (z*|8, ,)-continuous, then, by condition (iii), w is (z', 71)-
linear. Consequently, the topology 7’ satisfies condition (P,) from 2.2,
and 7' > ¢ by 2.2.5. Consequently 7' = 7".

There exists a close relation between two-norm spaces and Saks
spaces. The theory of Saks spaces has been developed by W. Orlicz ([9],
[10]). His definitions are as follows. Let X, = S be the unit solid sphere
in a normed space <X, || >, and let || I be another F-norm defined on X.
If the set X, with the metric d(2,, 2,;) = oy — @ol|* (2, #5¢X,) I8 a com-
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plete metric space (i. e. if eondition (n,) is satistied), then the space
(X, 7| X, is called a Saks space. Lot (Y, 7,y be any topological linear
space and let y = u(2) be an operation defined on the space X, with values
in Y. The operation u is called distributive if the conditions Ayy Are R,
@1y Bpe Xy, L1+ 3@y e X, imply w (A 20, Ay 2,) = A (®y) -+ Agu(z,). If the
operation « is distributive and (r*]Xa, 7;)-continuous, then u is called
(X, Y)-linear.

As long as we deal with convergence and linear operations, it makes
no difference whether we consider Saks spaces or two-norm §paces. In
fact, if x, — m, in the Saks space (X,, 7| XD, then &, -> %, in the two-
norm space <X, | ||, || II">. Conversely, if x, = & in the spajvce <X Iy IS,
then there exists 1¢92, 4 540 such that Aty e Xy, Amye X, and Am, - I,
in the space (X,, v*|X,p. If y = u(x) is a (X, Y)-linear operation fron:
‘;.Y"‘ to (¥, 71>, then u may be extended in a unique manner to a (yy T)-
1¥near operation defined on the whole space X. Conversely, if « is a (¥, 74)-
linear operation from X to Y, then the operation u | X, i8 (X, ¥)-linear.

The following theorem states the relation between condition (ng)
and the properties of mixed topology:

2.6.2. Condition (n,) is satisfied if and only if simullaneously

a) the topologies v and t* satisfy condition (d) from 2.1,

b) the space (X, vy is sequentially complele.

This theorem easily follows from theorem 2.3.1 and corollary 2.3.2,

It follows from a theorem due to D.A. Raikov ([11], p.223) that
2.6.2. may be strengthened as follows: T
) 2.6.3. If condition (ny) is satisfied, then the space (X, "> is complete,
$. 6. every Oauchy filter on <X, v’y converges to a point of the space.

It follows from theorem 2.6.1 that a distributive operation from
(X , r."> into another topological linear space i3 continuous if and only
if it is sequentially continuous. Thus we see that the space <X, "),
a.lthon.ghi_t fails to be bornological (see 2.4.4), has in this cage the
f?llo.wmg Important property of bornological spaces: the notions of con-
tufmfiy and sequential continuity of operations defined on this space
comclde.. A. Alexiewicz and Z. Semadeni have shown [3] that if * is
nonmetrizable, then the space (X y 7> does not a.lwa,ys‘ possess this
property. The example due to Alexiewicz and Semadeni is ag follows. Let
X De the space of all bounded measurable functions z = @ (t) defined on
<0,1}. The z-topology is defined by the norm. |w|| = sup | (t)|, and the

[P 24

* . .
T -topology is defined bylthe set of peeudonorms |||} _—f];@” (0 <t <)
The functional £(z) =

. ']fm(t)dt, defined on the space (X, ">, is sequen-
tially continuous, but not continuous.
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Alexiewicz and Semadeni [4] have constructed another linear topo-
logy generating y-convergence. The procedure applied by Alexiewiez
and Semadeni requires the hypothesis that the space (X, | |*> is Bs-
space. Their definition is as follows: Suppose that eondition (n,;) is satis-
fied. Let & be the conjugate space to (X, | ||> with the wusual norm
|l = sup|&(w)|. Let =, be the space of all y-linear functionals defined

<

<t
on (X, | lI, | i*>. Since Z,C &, the norm ||£]} is defined for each feZ,.
Let U ell(7"), £,¢5,, &l <1, 0 < a, — co. We write

V(U*y {&)s {ah) = 2 ﬁqp1[m: [&n(@)] < anl.

The sets- V(U*, [&), {a,}) constitute a basis of neighbourhoods
for 0 in a locally convex linear topology on X. This is the topology u of
Alexiewicz and Semadeni. The topology x has the following properties
{[4], p.127):

(e) - %o it and only if @, = o5

(B) the y-linear functionals are identical with the functionals linear
with respect to the topology u.

Following Alexiewicz and Semadeni & linear locally convex Haus-
dorff topology 7' is called appropriate if it satisfies conditions (&) and (B),
i. e. if for sequences y-convergence is equivalent to z'-convergence, and
if the class of y-linear functionals is identical with the class of functionals
linear in the topology +'. Alexiewicz and Semadeni have shown that
there exist different appropriate topologies for the space (X, |||, >
([4], p. 134). It follows from theorem 2.6.1 that, if we modify the defi-
nition of “appropriate” topology taking conditions (i) and (ili) in the
place of (z) and (B), then the “appropriate” topology is determined
uniquely.

Theorem 2.6.1 enables us to apply the mixed topology to the study
of two-norm spaces. For example, the problem of extension of y-linear
functionals is closely connected with the problem of relativization -of
the mixed topology to a linear subspace. This is shown by the follow-
ing theorem:

2.6.4. TEmorREM. Let (X, |||, | |*> be & two-norm space such that

(X, I*> is @ Bs-space. Let X, be a lincar subspace of the space X such
that

ylv, T*]|Xo = y[7]| X,, T*lxo]-

Let &, be some p-linear functional on X,. Then there exists a y-linear
extension & of &, on the whole space X.
Theorem 2.6.4 is an immediate consequence of theorem 2.6.1 and
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of the well-known theorem on extengion of linear functionals in locally
convex spaces.

Alexiewicz and Semadeni [4] have shown that y-linear funectionals
do not have, in general, the extension property. Hence, equality (18)
is not true in general. owever, we considered in 2.0 a case where equa-
lity (18) was true. From theorems 2.5.1 and 2.6.3 we obtain

2.6.5. TumorEM. Let (X, ||, || "> be a two-norm space such that
(X, | 1II* is @ Bi-space and such that the following condition is satisfied:

(c) the sphere 8 = [a: o] << 1] i +"-compact.

If a linear subspace X,C X is v*-closed and if & 4 a y-linear function-
al on X, then there enists a y-lincar extension & of & on the whole space X.

Another theorem on extension of y-linear functionals for two-norm
spaces wl}ich are simultaneously vector lattices, has been proved by
Alexiewicz and Semadeni [31.

3. We shall now give some examples of spaces with mixed topology.
These examples will be preceded by theorem 3.1.1 which enables us to
establish the form of 7"-neighbourhoods in many eoncrete spaces.

3.1. Suppose that in a linear space X the topology v is defined by
& homogeneous norm | ||, and the topology =* is defined by a set (uncoun-
table, in general) of homogeneous pseudonorms | ||§ (B «B). Suppose,
moreover, that the norm || || and the psendonorms || ||;§ satisfy the con-
dition

(19) ol = suplz|l; for each weX.
feB

It is obvious that the topologies v and +* satisfy conditions (o), (n)
and (d) from 2.1.

We shall need in the next theorem the following property:

(r) If BreB, <X and ¢ >0, then for overy Tpositive integer p
t-here are elements y and #z in X, such that @ = y- 2, Hzl[;'. =0 for
i=1,2,...,p, and |yl < max(all,, ol , ..., [o]})+e. '

3.L.1. THROREM. Suppose that conditions (19) and (¢) (see theorem
2.6.5), or (19) and (r) are satisfied. Then the sets

(20) N Lo el < ),

@here Bi s~B and 0 < a; - oo, constitule the basis of neighbourhoods of 0
i the miwed topology y[r,t"]. The mized topology is also determined by
the pseudonorms

2] el
i, ) = SUP =, BieB, 0 < a; —» oo,
1
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Proof. It is easy to verify that the class of all sets (20) is a basis
of neighbourhoods for 0 in a locally convex linear topology z,. Leb
ZeBd (1), i e.

ZC [x: ol < 7]

for some r > 0. Take any neighbourhood of an element z,eZ in the
7, |Z-topology. We can suppose that this neighbourhood is of the form

Zo ) [ p—aly <el, 0<a—>oo, pieB.
=1

If ©, ®yeZ, then, in virtue of (19), Hm—wo\l;i < |le— 2l < 2r. It follows
from the condition a; — oo that there exists an integer i, such that «; > 2r
for i >1,. We have

ip . S .
2 () o ooy <ol =2~ () 22— alf, <ol
=1 i=

Hence 7°|Z >1,|Z, and consequently =, < y[r, 7"}, by 2.2.2.

The proof of the inverse inequality requires the hypothesis that
either condition (r) or condition (c) is satisfied.

Suppose first that condition (r) holds. Every neighbourhood of 0
in the mixed topology y[r, "] contains a set

o
(21) 0~ () (Tt D),

n=
where U = [5: ||w|| <r], r>0, U: = [#: ]ﬂ:a'x “m“;L < &ly ﬁi eB, ¢, >0,

I<i<hy,
by < kpyr for m=0,1,... Let a; = min (e, #/2) for 1 <i <k, and
a; = ynr for ky,_; < i <k, Let » be an arbitrary element of set (20).
We have falff, <o g for 1 <1<k and therefore z<U;. Let m be
a positive integer. It follows from condition (r) (for p =kp, ¢ = %:n'r)
that there are elements y ¢ X and ze X such that y+2 =, |yl él 323; lzllg; +

*

+imr, 2y, =0 for 1 < i<k, We have zeUp, and |ly|| < %mr—i—%.m-r
= mr, i.e. yemU. Consequently zemU-+ Ux. The number m being
arbitrary, we infer that # belongs to set (21). Therefore set (21) contains
set (20) and ©, = yl[7, 71, which, together with the preceding inequality,
gives the equality 7, = y[z, 7] .

Suppose now that condition (e) is satisfied. We shall use in this
case arguments similar to those used in the proof of lemma 1 in [5]
(p. 78). Let U? be an open neighbourhood of 0 in the mixed topology.
It follows form the equality z*|8 = y[z, v"]|8 that there are fi, B,
-.+y Br e B, such that

x
ﬁ [o: Haﬂllzb Le]n8C U~ 8.
i=1
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Suppose that there are indices fy, B, ...
n kp
N N
P=1 t=ky_y-+1
where oy = e for 1 <6 < ky, ey =p—1For by, <@ <hy (
%, = 0. We shall prove that there are f, 41, ..
o =n for %y < i K kyy1, we shall have

? /3/511 ﬂkr%l? teay
[@: el < &] ~n8CT” ~ ul,

Br,, Such thag
(22)

=2,3,...)
oy Py 1 such that, setting

n41 c
N kﬂ [w: ol < a]l~ (e+1)8C T~ (1) 8.
P=l = p— 1+
Suppose this be false. Then the set
1
23) C = @ |2l < o] w: follh, <50
(23)  Chp,p, ., p(le . kp“l[ l@llg; < o) 191[ lly; = nl

has, for each finite sequence of indices yl,yg, , eB, & non-void
intersection with the set ( n—|v Y8\ U”. But v*|(n+ 1);3’ =y, "] (n+1)8
and the set U? is y[r, v*]-open. Therefore, by condition (e), the set
(n4+-1)8\ U7 is v"-compact. Sets (23) are 7*-closed, and it follows from
the equality

0 ~ (,7‘,1 ’ 7 0

Y1 V2 M Vo Pho oo ¥, == V0000 o V6 P e e Y
that the intersection of the members of each finite family of sets (23)
has common elements with the =*-compact set (n--1)8\ U7”. Hence

there exists an element

(24) Boe[(n+L)N\T I~ N OYL el
VLo e V1

We have ||y < n for each yeB, and, by condition (19), (2] < n,
i. e. #yenS. Hence, by (22),
BT ~aSc U ~ (n41)8,

in contradiction to (24). Consequently, there exist a sequence of indices
BieB (4 =1,2,..), an increasing sequence of positive integers ¥k,
(n=1,2,...) and a sequence 0 < o; - oo (¢ =1, 2,...) such that the
inclusion (22) is true for each n. We shall have

P ¢
() [o: llallp,
=1
and, since n is arbitrary,
0 [: |, <
Consequently v, > p[v, 7*]. This completes the proof of theorem 3.1.1.

We now give some examples of spaces with mixed topology satisfying
the conditions of theorem 3.1.1.

A) Let X be the space m of bounded sequences @ = {#;} of real num-

Lalnn8c U7,

a]C T,

icm
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bers. The topology v is defined by the norm |z = sup|t;|, and the topology
i

7* iz defined by the pseudonorms fjaff = |t;| (¢ = 1,2, ..
that conditions (19),
ﬂ [e: 1] <
of neighbourhoods for 0 in the mixed topology.

B) Let X Dbe the space ! of sequences & = {f;} of real Immbers such

2 [t:|, and

the topology z* is defined by the psendonorms |jz[f = || (4 = 1 2,00,
The pseudonorms || || do not satisfy condition (19). We easily observe,
however, that the pseudonorms | || are equivalent to the pseudonorms

(@] =kletkl (i=1,2,
(19). Conditions (¢) and (r) are also satistied and we conclude, by theorem

1

oo
3.1.1, that the sets () [@: 3 [t| < o], where 0 < a; — oo, constitute a basis
i=1 k=1

). It is obvious
(r) a,nd () are satisfied. Consequently, the sets

a;], where 0 < a; — oo, constitute, by theorem 3.1.1, a basis

that Z\til < oo, The topology v is defined by the norm |jzf| =

...), and the pseudonorms []; satisfy condition

of neighbourhoods for 0 in the mixed topology.

C) Let T be an abstract set, and let X be the space of all bounded,
real-valued functions x = #(t) defined on 7. The topology r is defined
by the norm |[jz|| = ?qu]w(t)i, and the topology <" is defined by the

pseudonorms llolif = |&(8)] (teT). Conditions (19), (r) and (c) are satisfied.

The sets ﬂ[m @ ()] <

of nelghbourhoods for 0 in the mixed topology.

D) Let T be a completely regular Hausdorff space. Let X be the
gpace C*(T) of bounded, real-valued, continuous funections z = (%)
on T. Let {Ty)s.p be a family of (non-necessarily all) compact subsets
of T such that UT,, = T. The topology = i3 defined by the morm

a;], where t;eT, 0 < a; — oo, constitute a basis

BeB
llw| = sup |o(t)], and the topology <" is defined by the pseudonorms

Il = sup | (¢)]. Condition (19) is obviously satisfied. We shall prove

that condmon (r) is also satisfied. Let f,eB, w<X, £¢ >0, and let p be
a positive mteger It is obvious that there exists an open set G,C T

such that U Ty, C Gy, and

i=1
sup [o()] < sup [o(0)]+-e = max(ol,, -
€ ?

(4 “ingﬂi

(25) s ol + -

2
The set T\ Gy, is closed and disjoint with the compaet set Fy =\ T),.
im1

Studia Mathematica XX H
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The space T’ being completely regular, there exists & bounded, real-valued,
continuous function f(#) on X such that 0 <f(f) <1 for each tel,
f()) = 0 for teF,, f(1) =1 for teT\Gp. Let y(j) = [L—F(t)]-2(t) and
2() = f(t)-®(t). We have yeX, 2¢X and & = gz Furthermore, |ly|j;
< |lell; and. Jizl|5 < [lw]; for each feB. Since 2(f) = 0 for tel,, we have
lelly, = 0 for ¢ =1,82,...,p. Since y(t) =0 for teI'\Gp, we have in
view of formula (25) ly|| = gugly(wl = ts%ply(t)l < is%plw(t)l < max(|lo|f,,

ey IImH’,fp)-l- s. Congequently, the fu.netiong y and = have required pro-
perties, and condition (r) has been proved.
Applying theorem 3.1.1 we see that the gebs

() [2: sup [a(t)] < ag],

Gl taTﬂi
where f;eB and 0 < a; - oo, constitute a basis of neighbourhoods for 0
in the mixed topology +*. In this cage the mixed topology is identical
with the topology introduced by J. Madik [8].

E) Let X be the space conjugate to a normed space Z. Let v be the
strong topology on X, defined by the usual norm II'll of elements of X
as functionals, and let =* be the weak topology o (X, Z). The topology ©*
may be defined by the pseudonorms |#[} = |@ ()], Wwhere ReZ, |kl <1.
The pseundonorms || |} satisfy condition (19). It is well known that condition

o0
(¢) is also satisfied. By theorem 3.1.1 the sets (M [@: |#(2)| < a;], where
il

Zedy |l <1, 0 < a; — oo, constitute a basis of meighbourhoods for 0
in the topology 7. We ean also say that the gets

(26) [: sup oo (z)] <11,

where 2z;¢Z, |l#;]| — 0, constitute a basis of neighbourhoods for 0 in the
mixed topology. Consequently, the mixed topology is identical in this
cage with the topology 7, of uniform convergence of functionals on the
compact subsets of Z ([5], p. 74). In fact, the inequality =, > y[r, v*]
follows at once from (26). On the other hand, the topology 7, has pro-
perty (P,) from 2.2, and therefore y[r, +*] > 7., by 2.2.2.

3.2. We now give two other examples of gpaces with mixed topology.
The spaces mentioned in F) and G) do not satisfy the conditions of
theorem 3.1.1.

F) Let X be the space M of meagurable, real-valued functions w(t)
equivalent to bounded functions on <0, 1). The topology = is defined by
the nornll [os]] = sglptes;s lo(£)l, and the topology +* is defined by the norm

|ls|® = of |(?)|dt. Conditions (o), (n) and (d) from 2.1 are satistied.
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For each function #¢X and for each p >0 we write

s@)—p i @) =p,
Ty () =1 0 B —p<aft) <p,
a(t)+p # a@) < —p.

The homothetic images (with centre 0) of sets
o0 1 .
@7) N [o: [ lom®ldt < e,
N= 0

where {s,} are arbitrary sequences of positive numbers, constitute a basis
of neighbourhoods for 0 in the mixed topology. In fact, set (27) is iden-
1

tical with the set Us ~ (\(Un-+nT), where Up = [o: [lo(t)|dt < &,} and
=1 ¢

U = [w: o] <11
G) Let X be the space L of integrable functions on {0,1>. The

1
topology 7 is defined by the norm |iafj = [|o(t)|dt and the topology <*
[

is defined by the norm

" & ()]
olly = | ———— di.
el J 1+]e @)

Conditions (o), (n) and (d) from 2.1 are satisfied. In this case the mixed
topology 7* is not locally convex. Alexiewicz ([2], p. 54) has shown that
there are no non-trivial linear functionals on the space (X, r*>.

References

[11 A. Alexiewicz, On sequences of operations (IT), Studia Math. 11 (1950),
P- 200-2386.

[2] ~ On the two-norm comvergence, ibidem 14 (1954), p. 49-56.

[8] A. Alexiewicz and Z. Semadeni, 4 generalication of two-norm spaces,
Bull. Pol. Acad. Sci. 6 (1958), p. 135-139.

[4] — Linear functionals on two-norm spaces, Studia Math. 17 (1958), p. 121-140.

[51 N. Bourbaki, Kléments de mathématique, Livre V : BEspaces vectoriels topo-
logiques, Chapters III-V, Act. sci. et ind., no 1229, Paris 1955.
— [6]1 J. A. Dieudonné, Recent developments in the theory of locally comvex wector
spaces, Bull. Amer. Math. Soc. 59 (1953), p. 495-512.

[7]1 G. Fichtenholz, Sur les fonctionnelles lindaires continues au sens généralisé,
Mat. Sbornik 4 (1938), p. 193-214.

[81 J. Matik, Les fonctionnelles sur Tensemble des fonctions continues bornées,
définies dans un ensemble topologique, Studia Math. 16 (1957), p. 86-94.


GUEST


68 A. Wiweger

[9] W. Orlicz, Linear operations in Saks spaces (I), ibidem 11 (1950),
p. 237-272.

[10] — TLinear “operations in Saks spaces (II), ibidem 15 (1958), p. 1-25.

[11] D. A. Raikov (D. A. Paitxon), ITpusnak nosnomu J0KaAbio 8URYKANL
npoempancme, Yenexn MareMarTitecKux Hayx 14, 1 (85) (1859), p. 223-229.

[12] A. Wiweger, A topologisation of Saks spaces, Bull. Pol. Acad. Sci.
5 (1957), p. 7718-777.

INSTYTUT MATEMATYCZNY POLSKIEY ARADEMIL NAUK
MATHEMATIOAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCHS

Regu par la Rédaction le 29. 3. 1960

icm°

STUDIA MATHEMATICA, T. XX. (1961)

Extinguishing a class of functions

by

H. FAST (Jerusalem) and K. URBANIK (Wroclaw)

Let B be a set of real positive numbers. By L(E) we shall denote
the family of all intervals of the form

I={@y):a+y=1 2>0,y>0}

where acH and 0 < i< oco. A complex-valued continuous function ¢
of two variables defined on the first quadrant is said to be emtinguished
by the set B J':EI[qa(:c, y)ds = 0 for any interval IeL(E). It is well known

([2], p. 63) that

() The unique function extinguished by the right half-line is the function
identically equal to 0. :

Let of, denote the clags of all complex-valued functions ¢ of two
variables defined on the first quadrant and having the representation

p(@,9) = D h(@)9®),
=1

where all the functions f, fas ---s fny §15 g2y -+ g are continuous on the
right half-line. By €, we shall denote the class of all sets £ of positive
numbers such that the unique function belonging to <f, and extinguished
by E is the function identically equal to 0. From Titchmarsh’s Theorem
on convolution ([3], p. 327) it follows that all one-point sets belong to G,.
Indeed, if a function p is extinguished by a set {a} and ¢(z, y) = f(2)9(y),
then we have the equality

f®)g(y)ds =0

axt+y=i

(t >0).
Hence for any positive ¢ we get the equality

[
[f@)glait—a)de =0,
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