

Linear spaces with mixed topology

bу

A. WIWEGER (Warszawa)

This paper (1) contains a systematic investigation of a topology called mixed topology and determined in a natural way by two given topologies defined in the same linear space X. The theory of mixed topologies here presented is closely related to Alexiewicz's investigation of two-norm spaces ([1], [2]) and Orlicz's investigation of Saks spaces ([9], [10]). Roughly speaking, the mixed topology is the unique natural neighbourhood topology corresponding to the sequential topology in a two-norm space. It is also the unique natural extension (to the whole space) of the topology in the unit sphere considered as a Saks space. The connection between spaces with mixed topology and Saks spaces or two-norm spaces makes it possible to apply the theory of linear topological spaces (in particular locally convex spaces) to the investigation of Saks spaces and two-norm spaces. As an example of such applications a theorem on the extension of γ -linear functionals will be proved (see 2.6.4)

1. Preliminaries. By a *linear space* we understand any linear space over the field of reals \mathcal{R} . The restriction to real spaces is not essential and the passage to complex spaces presents no difficulty. If X is a linear space and $a \in X$, $A \subseteq X$, $B \subseteq X$, $a \in \mathcal{R}$, then we shall use the following notation:

$$a+A = [a+x : x \in A],$$
 . $A \pm B = [x \pm y : x \in A \text{ and } y \in B],$ $aA = [ax : x \in A].$

If y = f(x) is a mapping from a set X into another set Y and $Z \subseteq X$, then the restriction of f to Z is denoted by f|Z.

Let X be a linear space. If a topology τ is defined in X in such a way that addition and multiplication by scalars are continuous in both

⁽¹⁾ Presented as a Doctor's Thesis at the Mathematical Institute of the Polish Academy of Sciences on May 9, 1959.

variables, then τ is called a *linear topology*. A linear space X with a linear topology τ is called a *linear topological space* and is denoted by $\langle X, \tau \rangle$. If τ is a linear topology, then $\mathfrak{U}(\tau)$ denotes a basis of neighbourhoods for 0 in the τ -topology. For each $a \in X$ the family of sets a + U, $U \in \mathfrak{U}(\tau)$, is then a basis of neighbourhoods for the element a.

If τ is a linear topology, then there exists a basis $\mathfrak{U}(\tau)$ satisfying the following conditions:

- (l_1) if $U \in \mathfrak{U}(\tau)$ and $\lambda \in \mathfrak{R}$, $\lambda \neq 0$, then $\lambda U \in \mathfrak{U}(\tau)$,
- (1_2) if $U \in \mathfrak{U}(\tau)$ and $\lambda \in \mathfrak{R}$, $|\lambda| \leq 1$, then $\lambda U \subset U$,
- (1_a) if $U \in \mathfrak{U}(\tau)$, then for every $w \in X$ there exists $\lambda \in \mathcal{R}$, $\lambda \neq 0$, such that $\lambda w \in U$,
- (l_4) if $U \in \mathfrak{U}(\tau)$ and $V \in \mathfrak{U}(\tau)$, then there exists $W \in \mathfrak{U}(\tau)$ such that $W \subset U \cap V$,
 - (l_5) if $U \in \mathfrak{U}(\tau)$, then there exists $V \in \mathfrak{U}(\tau)$ such that $V + V \subset U$.

In the sequel we shall always suppose that any basis of neighbourhoods under consideration satisfies all the conditions $(l_1) - (l_5)$.

If, conversely, $\mathfrak U$ is a family of subsets of X satisfying conditions (l_1) - (l_5) , then $\mathfrak U$ is a basis of neighbourhoods of 0 for some linear topology. A linear topology τ is called a *linear Hausdorff topology* if and only if the basis $\mathfrak U(\tau)$ satisfies the condition

 (l_s) for every $x \in X$, $x \neq 0$ there exists $U \in \mathfrak{U}(\tau)$ such that $x \notin U$.

A linear topology is called locally convex if and only if there exists a basis of convex neighbourhoods of 0. Let τ_1 and τ_2 be two linear topologies defined on X. If for every $U \in \mathfrak{U}(\tau_1)$ there exists a $V \in \mathfrak{U}(\tau_2)$ such that $V \subset U$, then we say that the topology τ_2 is finer than τ_1 (or that τ_1 is coarser than τ_2) and we write $\tau_1 \leqslant \tau_2$. If τ is a linear topology on X and $Z \subset X$, then for each element $a \in Z$ we can take the family of sets $(a+U) \cap Z$, where $U \in \mathfrak{U}(\tau)$, as the basis of neighbourhoods of a. The topology thus defined in Z is denoted by $\tau \mid Z$ and called topology induced on Z by τ .

If $\langle X, \tau_1 \rangle$ and $\langle Y, \tau_2 \rangle$ are (not necessarily linear) topological spaces, and if y = u(x) is a continuous operation from X to Y, then we say that the operation u is (τ_1, τ_2) -continuous. If in particular $\langle X, \tau_1 \rangle$ and $\langle Y, \tau_2 \rangle$ are linear topological spaces, then instead of "u is distributive and (τ_1, τ_2) -continuous" we say "u is (τ_1, τ_2) -linear".

Let X be a linear space. We say that a set $A \subset X$ absorbs a set $B \subset X$ if there exists a $\lambda > 0$ such that $\lambda B \subset A$. A subset B of a linear topological space $\langle X, \tau \rangle$ is said to be bounded (or τ -bounded) if B is absorbed by every neighbourhood of 0. The class of all τ -bounded sets is

denoted by $\mathrm{Bd}(\tau)$. A set B is τ -bounded if and only if for every sequence $\{x_n\}$ of elements of B the conditions $\lambda_n\geqslant 0$, $\lambda_n\to 0$ imply $\lambda_nx_n\to 0$ in the τ -topology.

Let $\langle X,\tau \rangle$ be a locally convex linear Hausdorff topological space. A set $A \subset X$ is called symmetric if $x \in A$ implies $-x \in A$. A set $A \subset X$ is called absorbing if, for every $x \in X$, there is a $\lambda > 0$ such that $\lambda x \in A$. A set A is called a barrel if A is convex, symmetric, absorbing and closed. The space $\langle X,\tau \rangle$ is called a t-space (espace tonnelé) if all barrels are neighbourhoods of 0 ([5], [6]). The space $\langle X,\tau \rangle$ is called bornological if any convex symmetric set in X which absorbs all bounded subsets of X is a neighbourhood of 0 (see [6]). It is known that

- (*) A locally convex linear Hausdorff topological space $\langle X, \tau \rangle$ is bornological if and only if, for every locally convex topology τ_1 defined on X, the condition $\mathrm{Bd}(\tau)=\mathrm{Bd}(\tau_1)$ implies $\tau_1\leqslant \tau$.
- **2.1.** Suppose that in a linear space X two linear Hausdorff topologies τ and τ^* are defined. Let $\mathfrak{U}(\tau)$ and $\mathfrak{U}(\tau^*)$ be bases of neighbourhoods for 0 in topologies τ and τ^* respectively. Neighbourhoods in $\mathfrak{U}(\tau)$ will be denoted by U, V, \ldots , and neighbourhoods in $\mathfrak{U}(\tau^*)$ will be denoted by U^*, V^*, \ldots In the sequel we shall sometimes postulate (but only when explicitly stated) the following conditions:
 - (n) $\tau^* \leqslant \tau$;
 - (o) the neighbourhoods belonging to $\mathfrak{U}(\tau)$ are τ -bounded;
 - (d) the neighbourhoods belonging to $\mathfrak{U}(\tau)$ are convex and τ^* -closed.

Condition (o) implies the metrisability of space $\langle X,\tau \rangle$. The space $\langle X,\tau \rangle$ is then a Fréchet space or an incomplete Fréchet space. If the topology τ is locally convex (and, in particular, if condition (d) is satisfied), then condition (o) is equivalent to the statement that the space $\langle X,\tau \rangle$ is a normed space (i. e. a B^* -space).

For each sequence $U_n^* \in \mathfrak{U}(\tau^*)$ and for each $U \in \mathfrak{U}(\tau)$, we shall denote by $\gamma(U_1^*, U_2^*, \ldots; U)$, or shortly by U^{γ} , the set

(1)
$$\bigcup_{n=1}^{\infty} (U_1^* \cap U + U_2^* \cap 2U + \ldots + U_n^* \cap nU),$$

i. e. the set of all sums $x_1+x_2+\ldots+x_n$ $(n=1,\,2,\,\ldots)$, where $x_k\in U_k^*$ and $\frac{1}{k}\,x_k\in U$.

It is easy to verify that the family \Re of all the sets (1) is a basis of neighbourhoods for 0 in a linear Hausdorff topology. In fact, if $\gamma(U_1^*, U_2^*, ...; U) \in \Re$ and $\lambda \in \Re$, then $\lambda \cdot \gamma(U_1^*, U_2^*, ...; U) = \gamma(\lambda U_1^*, \lambda U_2^*, ...; \lambda U)$. Therefore conditions (l₁) and (l₂) are satisfied. For each $x \in X$ there exists a $\lambda \in \Re$, $\lambda \neq 0$, such that $\lambda x \in U_1^*$ and $\lambda x \in U$. Then $\lambda x \in Y(U_1^*, U_2^*, ...; U) = \chi(\lambda U_1^*, \lambda U_2^*, ...; U)$.

Hence the family \Re is a basis of neighbourhoods for 0 in a new linear topology. We shall call this topology the *mixed topology* (2) determined by the topologies τ and τ^* .

We denote the mixed topology by $\gamma[\tau, \tau^*]$ or shortly by τ^{ν} . The mixed topology satisfies condition (l_0) , i. e. it is a Hausdorff topology. This follows at once from the following statement:

2.1.1. For each $U^* \in \mathfrak{U}(\tau^*)$ there exists a $\gamma(U_1^*, U_2^*, \dots; U) \in \mathfrak{R}$ such that $\gamma(U_1^*, U_2^*, \dots; U) \subset U^*$.

In fact, for every $U^* \in \mathfrak{U}(\tau^*)$ there exists $U_1^* \in \mathfrak{U}(\tau^*)$ such that $U_1^* + U_1^* \subset U^*$. Furthermore, there exists $U_2^* \in \mathfrak{U}(\tau^*)$ such that $U_2^* + U_2^* \subset U_1^*$. By induction, there exists a $U_n^* \in \mathfrak{U}(\tau^*)$ such that $U_n^* + U_n^* \subset U_{n-1}^*$. We have $U_1^* + U_2^* + \ldots + U_n^* \subset U^*$ for each n, and therefore $\gamma(U_1^*, U_2^*, \ldots; U) \subset U^*$ for each U.

Lemma 2.1.1. may be written in the form

$$\tau^* \leqslant \gamma[\tau, \tau^*].$$

If condition (n) is satisfied, then

$$(3) \gamma[\tau, \tau^*] \leqslant \tau.$$

In fact, for every U^{γ} of form (1) there exists a $V \in \mathfrak{U}(\tau)$ such that $V \subset U_1^* \cap U \subset U^{\gamma}$.

If $\tau^* \geqslant \tau$, then

$$(4) \gamma[\tau, \tau^*] = \tau^*.$$

In fact, for every U^{γ} there exists a $U^* \in \mathfrak{U}(\tau^*)$ such that $U^* \subset U^* \cap U \subset U^{\gamma}$. Hence $\tau^* \geqslant \gamma[\tau, \tau^*]$, which, together with (2), proves (4).

If the topologies τ and τ^* are locally convex, then the topology τ^{γ} is also locally convex. In fact, if U_n^* $(n=1,2,\ldots)$ and U are convex, then the sets $U_1^* \cap U + U_2^* \cap 2U + \ldots + U_n^* \cap nU$ are convex, as algebraic sums of convex sets. Therefore the set $\gamma(U_1^*,U_2^*,\ldots;U)$ is convex, as the set-theoretical union of an increasing sequence of convex sets.

Remark. We could take as a basis of neighbourhoods of 0 in the mixed topology the class of all sets of the form

(5)
$$\bigcup_{n=1}^{\infty} (U_1^* \cap \alpha_1 U + U_2^* \cap \alpha_2 U + \ldots + U_n^* \cap \alpha_n U),$$

where $\{a_n\}$ is an arbitrary fixed sequence of real numbers tending to infinity. In fact, there exists a subsequence $\{a_{m_n}\}$ such that $|a_{m_n}| \geqslant n$. Then

$$U_{m_n}^* \cap nU \subset U_{m_n}^* \cap a_{m_n}U$$

and

$$\gamma(U_{m_1}^*, U_{m_2}^*, \ldots; U) \subset \bigcup_{n=1}^{\infty} (U_1^* \cap a_1 U + U_2^* \cap a_2 U + \ldots + U_n^* \cap a_n U).$$

Conversely, if $\{k_n\}$ is an increasing sequence of positive integers such that $k_n \geqslant |a_n|$, then $U_{k_n}^* \cap a_n U \subset U_{k_n}^* \cap k_n U$, and

$$\bigcup_{n=1}^{\infty} (U_{k_1}^* \cap a_1 U + U_{k_2}^* \cap a_2 U + \ldots + U_{k_n}^* \cap a_n U) \subset \gamma(U_1^*, U_2^*, \ldots; U).$$

Therefore, the bases of neighbourhoods of the form (1) and (5) are equivalent.

2.2. Let τ and τ^* be two linear Hausdorff topologies defined on X. Let τ' be an arbitrary linear topology defined on X. We say that the topology τ' satisfies *condition* (P_1) (with respect to the pair (τ, τ^*)) if

$$(P_1)$$
 $\tau'|Z = \tau^*|Z \quad \text{for each} \quad Z \in \mathrm{Bd}(\tau).$

2.2.1. The mixed topology $\gamma \left[\tau,\tau^*\right]$ satisfies the condition (P_i) .

2.2.2. If the topology τ satisfies condition (o), then for every linear topology τ' defined on X, the condition

$$\tau'|Z \leqslant \tau^*|Z \quad for \ each \quad Z \in \mathrm{Bd}(\tau)$$

implies the inequality

$$\tau' \leqslant \gamma[\tau, \tau^*].$$

In particular, the mixed topology is the finest of all linear topologies which satisfy (P_1) .

The proofs of lemmas 2.2.1. and 2.2.2. were given in my previous paper [12].

^{. (2)} The term "the space with mixed topology" was first used by A. Alexiewicz and Z. Semadeni in paper [3].

52

The topology τ' is said to satisfy *condition* (P₂) (with respect to the pair (τ, τ^*)) provided

- (P₂) If y = u(x) is a distributive operation defined on X with values belonging to another topological linear space $\langle Y, \tau_1 \rangle$, and if for each $Z \in Bd(\tau)$ the operation u|Z is $(\tau^*|Z, \tau_1)$ -continuous, then the operation u is (τ', τ_1) -linear.
- 2.2.3. If the topology τ satisfies condition (o), then the topology $\gamma[\tau, \tau^*]$ satisfies the condition (P_2) .
- 2.2.4. COROLLARY. If the topology τ satisfies condition (0), then a distributive operation y = u(x) defined on X with values belonging to another topological linear space $\langle Y, \tau_1 \rangle$ is $\langle \tau^{\gamma}, \tau_1 \rangle$ -continuous if and only if the operation u|Z is $\langle \tau^{*}|Z, \tau_1 \rangle$ -continuous for each $Z \in Bd(\tau)$.
- 2.2.5. If the topology τ satisfies condition (0) and a linear topology τ' satisfies condition (P₂), then $\tau' \geqslant \tau''$. In other words, the topology τ'' is the coarsest of all the linear topologies which satisfy (P₂).

The proofs of 2.2.3-2.2.5 were given in [12]. The following theorem is an immediate consequence of 2.2.2 and 2.2.5:

2.2.6. THEOREM. If the topology τ satisfies condition (0) and if a linear topology τ' satisfies conditions (P_1) and (P_2) simultaneously, then $\tau' = \tau^{\gamma}$.

Henceforth we shall assume that the topology τ is locally convex and that $\mathfrak{U}(\tau)$ is a basis of convex neighbourhoods of 0.

2.3. For each sequence $U_n^* \in \mathfrak{U}(\tau^*)$ $(n=0\,,1\,,2\,,\ldots)$ and for each $U \in \mathfrak{U}(\tau)$ let us write

(6)
$$U^{\gamma_1} = \gamma_1(U_0^*, U_1^*, ...; U) = U_0^* \cap \bigcap_{n=1}^{\infty} (nU + U_n^*).$$

We shall prove that the class of all the sets (6) is a basis of neighbourhoods for 0 in the mixed topology $\gamma[\tau, \tau^*]$. First we shall show, however, that if $\{a_n\}$ is an arbitrary sequence of positive numbers tending to infinity, then every set of the form

(7)
$$V_0^* \cap \bigcap_{n=1}^{\infty} (\alpha_n V + V_n^*), \quad \text{where} \quad V_{\epsilon} \mathfrak{U}(\tau), V_n^* \epsilon \mathfrak{U}(\tau^*),$$

contains a set of form (6), and conversely. In fact, suppose that U^n is an arbitrary set of form (6). Let $\{k_n\}$ be an increasing sequence of positive integers such that $k_n \geq a_n$ for $n = 1, 2, \ldots$ Let $V_n^* \in \mathfrak{U}(\tau^*)$ be such

a sequence that
$$V_0^* \subset \bigcap_{p=0}^{k_1-1} U_p^*$$
, $V_n^* \subset \bigcap_{p=k_n}^{k_{n+1}-1} U_p^*$. Then

$$V_0^* \cap (\alpha_n U + V_n^*) \subset U_0^* \cap \bigcap_{p=k_n}^{k_{n+1}-1} (p U + U_p^*)$$

and

$$V_0^* \cap \bigcap_{n=1}^{\infty} (\alpha_n U + V_n^*) \subset U_0^* \cap \bigcap_{p=1}^{\infty} (p U + U_p^*).$$

It can be shown by a similar argument that, for every set of form (7), there are neighbourhoods $U^* \in \mathfrak{U}(\tau^*)$, n=0,1,2,..., such that set (7) contains set (6) for U=V.

Now we shall show that every set (7) is a neighbourhood of 0 in the mixed topology. On account of the preceding remark it suffices to show that every set

(8)
$$U_0^* \cap \bigcap_{n=1}^{\infty} (\frac{1}{2}n(n+1)U + U_n^*)$$

is a neighbourhood of 0 in the mixed topology.

Let V_1^* be an arbitrary member of $\mathfrak{U}(\tau^*)$, satisfying the condition $V_1^* + V_1^* \subset U_0^*$. Let us take, by induction, $V_n^* \in \mathfrak{U}(\tau^*)$ (n > 1) such that

$$V_n^* + V_n^* \subset U_{n-1}^* \cap V_{n-1}^*$$

We have

$$(9) V_1^* + V_2^* + \ldots + V_n^* \subset U_0^*,$$

and for every p

(10)
$$V_n^* + V_{n+1}^* + \ldots + V_{n+p}^* \subset V_n^* + V_n^* \subset U_{n-1}^*.$$

By (10), we obtain

$$\gamma(V_1^*, V_2^*, ...; U) = \bigcup_{p=1}^{\infty} (V_1^* \cap U + V_2^* \cap 2U + ... + V_{n-1}^* \cap (n-1)U + ... + V_{$$

$$+V_{n}^{*} \cap nU + \ldots + V_{n+p}^{*} \cap (n+p)U) \subset \bigcup_{p=1}^{\infty} (U + 2U + \ldots + (n-1)U + V_{n}^{*} + \ldots + V_{n+p}^{*}) \subset \frac{1}{2}n(n-1)U + U_{n-1}^{*}.$$

The last inclusion being valid for each n > 1, it follows from (9) that set (8) contains the set $\gamma(V_1^*, V_2^*, \dots; U)$. Therefore set (8) is a neighbourhood of 0 in the mixed topology.

Now we shall show that every neighbourhood of 0 in the mixed topology contains a set of form (6). Let $U' = \gamma(U_1^*, U_2^*, \ldots; U)$ be a neighbourhood of 0 in the mixed topology. Let us write, for brevity, $m_n = 2n-1$ $(n=1,2,\ldots)$. There exists a sequence V_0^*, V_1^*, \ldots , such that $V_0^* + V_0^* \subset U_{m_1}^*, V_{p-1}^* + V_{p-1}^* \subset U_{m_p}^*, V_{p-1}^* \supset V_p^* \ (p=1,2,\ldots)$. We shall prove that $V'^1 = \gamma_1(V_0^*, V_1^*, \ldots; U) \subset U'$. Let $x \in V'^1$. Then $x \in V_0^*$ and, for each $n=1,2,\ldots$, there exists a decomposition $x=y_n+z_n$

where $y_n \in nU$, $z_n \in V_n^*$. Let $x_1 = y_1$ and $x_n = y_n - y_{n-1}$ for n > 1. We have, for every n, the following obvious identity:

(11)
$$x_1 + x_2 + \ldots + x_n + z_n = y_1 + (y_2 - y_1) + \ldots + (y_n - y_{n-1}) + z_n = y_n + z_n = x.$$

Furthermore

$$z_{n-1} = x_n + z_n,$$

and therefore $x_n=z_{n-1}-z_n\,\epsilon\,V_{n-1}^*+V_n^*$. On the other hand, $x_n=y_n-y_{n-1}$ $\epsilon\,n\,U+(n-1)\,U=(2n-1)\,U=m_n\,U$. Hence

$$x_n \in (V_{n-1}^* + V_n^*) \cap (2n-1) U$$
.

It follows immediately from the definition of V_n^* that

$$V_{n-1}^* + V_n^* \subset V_{n-1}^* + V_{n-1}^* \subset U_{m_n}^*$$
.

Hence

$$(12) x_n \epsilon U_{m_n}^* \cap m_n U.$$

It follows from the equality $z_n = x - y_n$ that $z_n \in (k_0 + n) U$ where k_0 is a positive number such that $x \in k_0 U$. If $n_0 > k_0 - 1$, then $2n_0 + 1 = m_{n_0 + 1} > k_0 + n_0$ and $z_{n_0} \in (k_0 + n_0) U \subset m_{n_0 + 1} U$. On the other hand,

$$z_{n_0} \in V_{n_0}^* \subset V_{n_0}^* + V_{n_0}^* \subset U_{m_{n_0}+1}^*.$$

Therefore

(13)
$$z_{n_0} \in U_{m_{n_0+1}}^* \cap m_{n_0+1} U.$$

It follows from (11), (12) and (13) that

$$\begin{split} x &= x_1 + x_2 + \ldots + x_{n_0} + z_{n_0} \in U_{m_1}^* \, \cap \, m_1 \, \, U + \ldots + \\ &\quad + U_{mn_0}^* \, \cap \, m_{n_0} \, \, U + U_{mn_0+1}^* \, \cap \, m_{n_0+1} \, \, U \subset \, U^{\gamma}. \end{split}$$

This proves that $V^{\gamma_1} \subset U^{\gamma}$.

Therefore all sets (6) (or all sets (7)) form a basis of neighbourhoods of 0 in the mixed topology.

If, in particular, τ is a normed topology defined by the norm $\|\cdot\|$ and $S_n = [x: ||x|| \le n]$, then the sets

(14)
$$U_0^* \smallfrown \bigcap_{n=1}^{\infty} (rS_n + U_n^*), \quad U_n^* \in \mathfrak{U}(\tau^*), \quad r > 0,$$

compose a basis of neighbourhoods of 0 in the mixed topology.

Remark. If the topologies τ and τ^* are locally convex and if condition (o) is satisfied, then the class of all the sets

(15)
$$\operatorname{conv} \bigcup_{n=1}^{\infty} (U_n^* \cap nU)$$

is also a basis of neighbourhoods of 0 in the mixed topology.

In fact, it is clear that sets (15) form a basis of neighbourhoods for a locally convex linear topology τ_1 . The inequality $\tau_1 \geqslant \tau^{\gamma}$ is obvious. The inverse inequality follows from 2.2.2, because the topology τ_1 has the property (P_1) .

- 2.3.1. THEOREM. Suppose that the topologies τ and τ^* satisfy condition (d). Then $x_n \to x_0$ in the mixed topology if and only if simultaneously
 - a) $x_n \to x_0$ in the τ^* -topology,
 - b) the sequence $\{x_n\}$ is bounded in the τ -topology.

Proof (3). Let us suppose that $x_n \to x_0$ in the τ^* -topology and the sequence $\{x_n\}$ is τ -bounded. Let Z be set of all elements x_n , n=0, 1, ... We have

$$x_n \to x_0$$
 in $\tau^* | Z$ -topology.

The τ -boundedness of Z implies the equality $\tau^*|Z=\tau^{\gamma}|Z$, on account of the proposition 2.2.1. Hence $x_n\to x_0$ in $\tau^{\gamma}|Z$ -topology, i. e. $x_n\to x_0$ in the mixed topology τ^{γ} .

Suppose now that $x_n \to x_0$ in the mixed topology. It follows from the inequality $\tau^* \leqslant \tau^{\nu}$ that $x_n \to x_0$ in the τ^* -topology. It suffices to prove that $\{x_n\}$ is τ -bounded. Suppose the contrary. We may assume that $x_0 = 0$, i. e. that $x_n \to 0$ in the mixed topology. If the sequence $\{x_n\}$ is not τ -bounded, then there exists a neighbourhood $U \in \mathfrak{U}(\tau)$ and an increasing sequence of indices $\{k_n\}$ such that $x_{k_n} \in nU$ for $n = 1, 2, \ldots$. It follows from condition (d) that all the sets nU are τ^* -closed. Hence, for each n, there exists $U_n^* \in \mathfrak{U}(\tau^*)$ such that $x_{k_n} \in nU + U_n^*$. Therefore the set $U^{\gamma_1} = \bigcap_{n=1}^{\infty} (nU + U_n^*)$ contains no of the elements x_{k_n} . On the other hand, the set U^{γ_1} is a neighbourhood of 0 in the mixed topology. This contradicts the hypothesis that $\{x_n\}$ converges to 0 in the mixed topology. Therefore the sequence $\{x_n\}$ is τ -bounded.

2.3.2. COROLLARY. Under the hypotheses of theorem 2.3.1, a sequence $\{x_n\}$ is a Cauchy sequence in the mixed topology if and only if simultaneously

- a) $\{x_n\}$ is a Cauchy sequence in the τ^* -topology,
- b) $\{x_n\}$ is τ -bounded.

⁽³⁾ I have proved this theorem in paper [12]. The proof given here is simpler than that in [12].

- **2.4.** We suppose in this section that the topologies τ and τ^* satisfy conditions (o) and (d).
- 2.4.1. A set $Z \subseteq X$ is bounded in the mixed topology if and only if it is bounded in topologies τ and τ^* simultaneously. In symbols

$$\operatorname{Bd}(\tau^{\gamma}) = \operatorname{Bd}(\tau) \cap \operatorname{Bd}(\tau^{*}).$$

Proof. Suppose that $A \in \mathrm{Bd}(\tau) \cap \mathrm{Bd}(\tau^*)$. If $x_n \in A$ and $\lambda_n \geqslant 0$, $\lambda_n \to 0$, then $\lambda_n x_n \to 0$ in both topologies τ and τ^* . Hence the sequence $\{\lambda_n x_n\}$ is τ -bounded. In virtue of theorem 2.3.1 we infer that $\lambda_n x_n \to 0$ in the mixed topology, and consequently $A \in \mathrm{Bd}(\tau^{\nu})$. Therefore $\mathrm{Bd}(\tau) \cap \mathrm{Bd}(\tau^*)$ C $\mathrm{Bd}(\tau^*)$. Inequality (2) implies the inclusion $\mathrm{Bd}(\tau^{\nu}) \subset \mathrm{Bd}(\tau^*)$. Suppose that $A \in \mathrm{Bd}(\tau^{\nu})$. Let $\{x_n\}$ be a sequence of elements of the set A, and let $\lambda_n \geqslant 0$, $\lambda_n \to 0$. Since $\sqrt{\lambda_n} \to 0$, we have $\sqrt{\lambda_n} x_n \to 0$ in the mixed topology. In virtue of theorem 2.3.1 the sequence $\{\sqrt{\lambda_n} x_n\}$ is τ -bounded. Consequently $\sqrt{\lambda_n} \cdot \sqrt{\lambda_n} x_n = \lambda_n x_n \to 0$ in the τ -topology and therefore the set A is τ -bounded. Hence $\mathrm{Bd}(\tau^{\nu}) \subset \mathrm{Bd}(\tau)$.

COROLLARY. If the topologies τ and τ^* satisfy condition (n), then a set $A \subset X$ is bounded in the mixed topology if and only if it is τ -bounded.

2.4.2. If $\gamma[\tau, \tau^*] = \tau$, then $\tau^* \geqslant \tau$. If, in particular, $\tau^* \leqslant \tau$, then the equality $\gamma[\tau, \tau^*] = \tau$ implies $\tau = \tau^*$.

Proof. Let V be any τ -bounded neighbourhood of 0 in the τ -topology. By hypothesis, V contains a neighbourhood $\gamma(U_1^*, U_2^*, \ldots, ; U)$. It follows from the τ -boundedness of the set V, that $V \subset n_0 U$ for some $n_0 \ge 1$. We shall show that $U_{n_0+1}^* \subset V$. Suppose this inclusion is false. Then there exists $x_0 \in U_{n_0+1}^*$, $x_0 \in V$. It is clear that $\lambda x_0 \in V$, $\lambda x_0 \in (n_0+1) U$ for a number λ , $0 < \lambda \le 1$. We have $\lambda x_0 \in U_{n_0+1}^*$ (see condition (l_2)). Hence

$$\lambda x_0 \in U_{n_0+1}^* \cap (n_0+1) U \subset \gamma(U_1^*, U_2^*, ...; U) \subset V.$$

This contradicts the assumption $\lambda x_0 \in V$. Therefore $U_{n_0+1}^* \subset V$, and consequently $\tau^* \geqslant \tau$.

2.4.3. If
$$\tau_1^*|Z = \tau_2^*|Z$$
 for each $Z \in Bd(\tau)$, then

$$\gamma[\tau, \tau_1^*] = \gamma[\tau, \tau_2^*].$$

In particular:

(17)
$$\gamma[\tau, \tau^*] = \gamma[\tau, \gamma[\tau, \tau^*]].$$

Proof. By 2.2.1,

$$\gamma[\tau, \tau_2^*]|Z = \tau_2^*|Z = \tau_1^*|Z \quad \text{for} \quad Z \in \operatorname{Bd}(\tau).$$

Therefore the topology $\gamma[\tau, \tau_2^*]$ has property (P_1) (for $\tau^* = \tau_1^*$). Consequently $\gamma[\tau, \tau_1^*] \geqslant \gamma[\tau, \tau_2^*]$, by 2.2.2. Replacing τ_1^* by τ_2^* and conversely

we obtain the inverse inequality. Hence equality (16) is true. Setting in (16) $\tau_1^* = \tau^*$, $\tau_2^* = \gamma[\tau, \tau^*]$ we obtain equality (17).

It follows from 2.4.3 that, contrary to the case considered in 2.4.2, the equality $\gamma[\tau, \tau^*] = \tau^*$ does not imply the equality $\tau = \tau^*$. In fact, if $\tau_1^* \leq \tau$, $\tau_1^* \neq \tau$ and $\tau^* = \gamma[\tau, \tau_1^*]$, then $\tau^* \leq \tau$, $\tau^* \neq \tau$ and $\tau^* = \gamma[\tau, \tau^*]$.

2.4.4. If condition (n) is satisfied and if $\langle X, \gamma[\tau, \tau^*] \rangle$ is a bornological space, then $\tau = \tau^*$.

Proof. By 2.4.1 (corollary) we have $\operatorname{Bd}(\gamma[\tau, \tau^*]) = \operatorname{Bd}(\tau)$. Therefore $\gamma[\tau, \tau^*] \ge \tau$, by (*). Hence $\gamma[\tau, \tau^*] = \tau$, on account of inequality (3). This equality implies $\tau = \tau^*$, by 2.4.2.

2.4.5. If condition (n) is satisfied and if $\langle X, \gamma[\tau, \tau^*] \rangle$ is a t-space, then $\tau = \tau^*$.

Proof. Let $U_{\epsilon}\mathfrak{U}(\tau)$. By condition (d), the neighbourhood U is τ^* -closed. It follows from the inequality $\tau^* \leqslant \gamma[\tau,\tau^*]$ that U is closed in the mixed topology. Therefore the set U is a barrel in the space $\langle X, \gamma[\tau,\tau^*] \rangle$ and consequently U is a neighbourhood of 0 in the mixed topology. Hence $\gamma[\tau,\tau^*] \geqslant \tau$, and, by 2.4.2, $\tau=\tau^*$.

Theorems 2.4.4 and 2.4.5 show that, in non-trivial cases, spaces with mixed topology fail to be bornological or tonnelé.

- **2.5.** Let X_0 be a linear subspace of the space X. We shall consider on the space X_0 the following two topologies:
- a) the topology $\gamma[\tau, \tau^*]|X_0$, i. e. the topology induced on X_0 by the mixed topology $\gamma[\tau, \tau^*]$.
- b) the topology $\gamma[\tau|X_0, \tau^*|X_0]$, i. e. the mixed topology constructed from the topologies induced on X_0 by τ and τ^* .

It is easy to verify that

$$\gamma[\tau, \tau^*] | X_0 \leq \gamma[\tau | X_0, \tau^* | X_0].$$

In fact, the sets

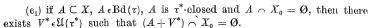
$$X_0 \cap U_0^* \cap \bigcap_{n=1}^{\infty} (U_n^* + nU)$$

are neighbourhoods of 0 in the topology $\gamma[\tau, \tau^*]|X_0$, and the sets

$$X_0 \cap U_0^* \cap \bigcap_{n=1}^{\infty} (U_n^* \cap X_0 + nU \cap X_0)$$

are neighbourhoods of 0 in the topology $\gamma[\tau|X_0, \tau^*|X_0]$. It is clear that the second set is contained in the first. The inverse inclusion is, in general, false.

Suppose now that the subspace X_0 and the topologies τ and τ^* satisfy the following condition:



Condition (c₁) is satisfied, in particular, if X_0 is τ^* -closed and if every τ -bounded τ^* -closed set is compact (= bicompact) in the τ^* -topology.

2.5.1. Theorem. Suppose that conditions (d) and (o) are satisfied. Then condition (c_1) implies the equality

(18)
$$\gamma[\tau | X_0, \tau^* | X_0] = \gamma[\tau, \tau^*] | X_0.$$

Proof. Let $U_0^* \cap \bigcap_{n=1}^{\infty} (U_n^* \cap X_0 + nU \cap X_0)$ be a neighbourhood of 0 in the topology $\gamma[\tau|X_0, \tau^*|X_0]$. On account of conditions (d) and (o) we may assume that the sets nU are τ^* -closed and τ -bounded. Let W_n^* be a τ^* -open τ^* -neighbourhood of 0, such that $W_n^* + W_n^* \subset U_n^*$. The set $nU \cap X_0 + W_n^*$ is τ^* -open. Hence the set

$$A_n = n U \setminus (n U \cap X_0 + W_n^*)$$

is τ^* -closed. Since the set A_n is τ -bounded and $A_n \cap X_0 = \emptyset$, then, by condition (c_1) , there exists $V_n^* \in \mathfrak{U}(\tau^*)$ such that $(A_n + V_n^*) \cap X_0 = \emptyset$. We may suppose that $V_n^* \subset W_n^*$ and therefore $W_n^* + V_n^* \subset U_n^*$.

We have

$$X_{0} \cap (nU + V_{n}^{*}) \subset X_{0} \cap [(A_{n} + V_{n}^{*}) \cup (nU \cap X_{0} + W_{n}^{*} + V_{n}^{*})]$$

$$\subset X_{0} \cap [(A_{n} + V_{n}^{*}) \cup (nU \cap X_{0} + U_{n}^{*})] = X_{0} \cap (nU \cap X_{0} + U_{n}^{*})$$

$$= nU \cap X_{0} + U_{n}^{*} \cap X_{0}.$$

The last equality follows from the fact that the set X_0 is linear. Therefore

$$X_0 \cap U_0^* \cap \bigcap_{n=1}^{\infty} (nU + V_n^*) \subset X_0 \cap U_0^* \cap \bigcap_{n=1}^{\infty} (nU \cap X_0 + U_n^* \cap X_0),$$

which implies $\gamma[\tau, \tau^*] | X_0 \geqslant \gamma[\tau | X_0, \tau^* | X_0]$. The inverse inequality being always valid, we get equality (18).

2.6. Let X be a linear space with a homogeneous norm $\| \|$, and let $\| \|^*$ be another F-norm defined on the space X. A sequence $\{x_n\}$ of elements of the space X is said to be γ -convergent to x_0 , in symbols $x_n \xrightarrow{\gamma} x_0$, if $\|x_n - x_0\|^* \to 0$ and $\sup_n \|x_n\| < \infty$. The γ -convergence is also called two-norm convergence. The space X with γ -convergence is denoted by $\langle X, \| \|, \| \|^* \rangle$ and called a two-norm space. The theory of two-norm spaces has been developed by Alexiewicz ([1], [2]). Two-norm convergence in some concrete spaces was examined earlier by G. Fichtenholz [7]. The following conditions are important in the theory of two-norm spaces:

- (n_1) $||x_n|| \to 0$ implies $||x_n||^* \to 0$,
- $(\mathrm{n}_2) \quad \|x_n x_0\|^* o 0 \ \ \mathrm{implies} \ \liminf_{n o \infty} \|x_n\| \geqslant \|x_0\|,$

 $(\mathbf{n}_3) \quad \text{ if } \|x_n\| \leqslant K, \ \lim_{\substack{p \to \infty \\ q \to \infty}} \|x_p - x_q\|^* = 0, \ \text{then there exists } x_0 \, \epsilon \, X \ \text{ such }$

that $||x_0|| \le K$ and $||x_n - x_0||^* \to 0$.

Let τ be the linear topology defined by the norm $\|\cdot\|$, and let τ^* be the linear topology defined by the norm $\|\cdot\|^*$. Let $\mathfrak{U}(\tau)$ be the class of all solid spheres $S_r = [x: \|x\| \leqslant r]$. Condition (o) from 2.1. is obviously satisfied. Condition (n) from 2.1 is identical with (n_1) , and condition (d) is identical with (n_2) .

If $\langle Y, \tau_1 \rangle$ is a topological linear space and if y = u(x) is a distributive operation defined on X with values in Y, then the operation u is said to be (γ, τ_1) -linear provided $x_n \underset{\gamma}{\rightarrow} x_0$ implies $u(x_n) \underset{\tau_1}{\rightarrow} u(x_0)$. In particular, a distributive functional $\xi(x)$ defined on X is said to be γ -linear provided $x_n \underset{\gamma}{\rightarrow} x_0$ implies $\xi(x_n) \rightarrow \xi(x_0)$.

The connection between the two-norm spaces and the spaces with mixed topology is stated by the following theorem:

2.6.1. THEOREM. A) If $\langle X, \| \|, \| \|^* \rangle$ is a two-norm space satisfying condition (n_2) , then the mixed topology $\tau^{\gamma} = \gamma [\tau, \tau^*]$ has the following properties:

- (i) $\tau^{\nu} | S = \tau^* | S$, where $S = [x: ||x|| \le 1]$;
- (ii) $x_n \to x_0$ if and only if $x_n \to x_0$ in the τ^{γ} -topology;
- (iii) for every linear topological space $\langle Y, \tau_1 \rangle$, and for every operation y = u(x) from X to Y, u is (γ, τ_1) -linear if and only if it is (τ^{γ}, τ_1) -linear.
- B) The mixed topology $\gamma[\tau, \tau^*]$ is a unique linear topology possessing properties (i) and (iii).

Proof of A). Property (i) follows from 2.2.1. Property (ii) is an immediate consequence of theorem 2.3.1. A distributive operation u is (γ, τ_1) -linear if and only if the operation $u \mid S$ is $(\tau^* \mid S, \tau_1)$ -continuous, or, which is the same, if and only if, for each $Z \in \mathrm{Bd}(\tau)$ the operation $u \mid Z$ is $(\tau^* \mid Z, \tau_1)$ -continuous. Therefore property (iii) follows at once from 2.2.4.

Proof of B). Suppose that a topology τ' has properties (i) and (iii). It follows from (i) that the topology τ' satisfies condition (P₁) from 2.2. Hence $\tau' \leqslant \tau^{\gamma}$, by 2.2.2. If the operation u from X to Y is distributive and $u \mid S$ is $(\tau^* \mid S, \tau_1)$ -continuous, then, by condition (iii), u is (τ', τ_1) -linear. Consequently, the topology τ' satisfies condition (P₂) from 2.2, and $\tau' \geqslant \tau^{\gamma}$ by 2.2.5. Consequently $\tau' = \tau^{\gamma}$.

There exists a close relation between two-norm spaces and Saks spaces. The theory of Saks spaces has been developed by W. Orlicz ([9], [10]). His definitions are as follows. Let $X_s = S$ be the unit solid sphere in a normed space $\langle X, \| \| \rangle$, and let $\| \|^*$ be another F-norm defined on X. If the set X_s with the metric $d(x_1, x_2) = \|x_1 - x_2\|^*$ $(x_1, x_2 \in X_s)$ is a com-

plete metric space (i. e. if condition (n_3) is satisfied), then the space $\langle X_s, \tau^* | X_s \rangle$ is called a Saks space. Let $\langle Y, \tau_1 \rangle$ be any topological linear space and let y = u(x) be an operation defined on the space X_s with values in Y. The operation u is called distributive if the conditions $\lambda_1, \lambda_2 \in \mathcal{N}$, $x_1, x_2 \in X_s, \lambda_1 x_1 + \lambda_2 x_2 \in X_s$ imply $u(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 u(x_1) + \lambda_2 u(x_2)$. If the operation u is distributive and $(\tau^* | X_s, \tau_1)$ -continuous, then u is called (X_s, Y) -linear.

As long as we deal with convergence and linear operations, it makes no difference whether we consider Saks spaces or two-norm spaces. In fact, if $x_n \to x_0$ in the Saks space $\langle X_s, \tau^* | X_s \rangle$, then $x_n \to x_0$ in the two-norm space $\langle X, \| \|, \| \|^* \rangle$. Conversely, if $x_n \to x_0$ in the space $\langle X, \| \|, \| \|^* \rangle$, then there exists $\lambda \in \Omega$, $\lambda \neq 0$ such that $\lambda x_n \in X_s$, $\lambda x_0 \in X_s$ and $\lambda x_n \to \lambda x_0$ in the space $\langle X_s, \tau^* | X_s \rangle$. If y = u(x) is a (X_s, Y) -linear operation from X_s to $\langle Y, \tau_1 \rangle$, then u may be extended in a unique manner to a (γ, τ_1) -linear operation defined on the whole space X. Conversely, if u is a (γ, τ_1) -linear operation from X to Y, then the operation $u \mid X_s$ is (X_s, Y) -linear.

The following theorem states the relation between condition (n_3) and the properties of mixed topology:

- 2.6.2. Condition (n₃) is satisfied if and only if simultaneously
- a) the topologies τ and τ^* satisfy condition (d) from 2.1,
- b) the space $\langle X, \tau^{\gamma} \rangle$ is sequentially complete.

This theorem easily follows from theorem 2.3.1 and corollary 2.3.2. It follows from a theorem due to D. A. Raikov ([11], p. 223) that 2.6.2. may be strengthened as follows:

2.6.3. If condition (n_3) is satisfied, then the space $\langle X, \tau^r \rangle$ is complete, i.e. every Cauchy filter on $\langle X, \tau^r \rangle$ converges to a point of the space.

It follows from theorem 2.6.1 that a distributive operation from $\langle X, \tau^{\gamma} \rangle$ into another topological linear space is continuous if and only if it is sequentially continuous. Thus we see that the space $\langle X, \tau^{\gamma} \rangle$, although it fails to be bornological (see 2.4.4), has in this case the following important property of bornological spaces: the notions of continuity and sequential continuity of operations defined on this space coincide. A. Alexiewicz and Z. Semadeni have shown [3] that if τ^* is nonmetrizable, then the space $\langle X, \tau^{\gamma} \rangle$ does not always possess this property. The example due to Alexiewicz and Semadeni is as follows. Let X be the space of all bounded measurable functions x = x(t) defined on $\langle 0, 1 \rangle$. The τ -topology is defined by the norm $||x|| = \sup_{0 < t < 1} |x(t)|$, and the τ^* -topology is defined by the set of pseudonorms $||x||_t^t = |x(t)|$ $(0 \le t \le 1)$. The functional $\xi(x) = \int_0^1 x(t) \, dt$, defined on the space $\langle X, \tau^{\gamma} \rangle$, is sequentially continuous, but not continuous.

Alexiewicz and Semadeni [4] have constructed another linear topology generating γ -convergence. The procedure applied by Alexiewicz and Semadeni requires the hypothesis that the space $\langle X, \| \|^* \rangle$ is B_0^* -space. Their definition is as follows: Suppose that condition (n_1) is satisfied. Let \mathcal{Z} be the conjugate space to $\langle X, \| \| \rangle$ with the usual norm $\|\xi\| = \sup_{\|x\| \le 1} |\xi(x)|$. Let \mathcal{Z}_{γ} be the space of all γ -linear functionals defined on $\langle X, \| \|, \| \|^* \rangle$. Since $\mathcal{Z}_{\gamma} \subset \mathcal{Z}$, the norm $\|\xi\|$ is defined for each $\xi \in \mathcal{Z}_{\gamma}$. Let $U^* \in \mathcal{U}(\tau^*)$, $\xi_n \in \mathcal{Z}_{\gamma}$, $\|\xi_n\| \le 1$, $0 < \alpha_p \to \infty$. We write

$$V(U^*, \{\xi_n\}, \{a_n\}) = U^* \cap \bigcap_{n=1}^{\infty} [x: |\xi_n(x)| \leqslant a_n].$$

The sets $V(U^*, \{\xi_n\}, \{\alpha_n\})$ constitute a basis of neighbourhoods for 0 in a locally convex linear topology on X. This is the topology μ of Alexiewicz and Semadeni. The topology μ has the following properties ([4], p. 127):

- (a) $x_n \Rightarrow x_0$ if and only if $x_n \Rightarrow x_0$,
- (β) the γ -linear functionals are identical with the functionals linear with respect to the topology μ .

Following Alexiewicz and Semadeni a linear locally convex Hausdorff topology τ' is called appropriate if it satisfies conditions (α) and (β) , i. e. if for sequences γ -convergence is equivalent to τ' -convergence, and if the class of γ -linear functionals is identical with the class of functionals linear in the topology τ' . Alexiewicz and Semadeni have shown that there exist different appropriate topologies for the space $\langle X, \| \|, \| \|^* \rangle$ ([4], p. 134). It follows from theorem 2.6.1 that, if we modify the definition of "appropriate" topology taking conditions (i) and (iii) in the place of (α) and (β) , then the "appropriate" topology is determined uniquely.

Theorem 2.6.1 enables us to apply the mixed topology to the study of two-norm spaces. For example, the problem of extension of γ -linear functionals is closely connected with the problem of relativization of the mixed topology to a linear subspace. This is shown by the following theorem:

2.6.4. Theorem. Let $\langle X, \| \|, \| \|^* \rangle$ be a two-norm space such that $\langle X, \| \|^* \rangle$ is a B_0^* -space. Let X_0 be a linear subspace of the space X such that

$$\gamma[\tau, \tau^*]|X_0 = \gamma[\tau|X_0, \tau^*|X_0].$$

Let ξ_0 be some γ -linear functional on X_0 . Then there exists a γ -linear extension ξ of ξ_0 on the whole space X.

Theorem 2.6.4 is an immediate consequence of theorem 2.6.1 and

of the well-known theorem on extension of linear functionals in locally convex spaces.

Alexiewicz and Semadeni [4] have shown that γ -linear functionals do not have, in general, the extension property. Hence, equality (18) is not true in general. However, we considered in 2.5 a case where equality (18) was true. From theorems 2.5.1 and 2.6.3 we obtain

2.6.5. THEOREM. Let $\langle X, || ||, || ||^* \rangle$ be a two-norm space such that $\langle X, || ||^* \rangle$ is a B_0^* -space and such that the following condition is satisfied: (c) the sphere $S = [x: ||x|| \leq 1]$ is τ^* -compact.

If a linear subspace $X_0 \subset X$ is τ^* -closed and if ξ_0 is a γ -linear functional on X_0 , then there exists a γ -linear extension ξ of ξ_0 on the whole space X.

Another theorem on extension of γ -linear functionals for two-norm spaces which are simultaneously vector lattices, has been proved by Alexiewicz and Semadeni [3].

- 3. We shall now give some examples of spaces with mixed topology. These examples will be preceded by theorem 3.1.1 which enables us to establish the form of τ^{ν} -neighbourhoods in many concrete spaces.
- **3.1.** Suppose that in a linear space X the topology τ is defined by a homogeneous norm $\| \ \|$, and the topology τ^* is defined by a set (uncountable, in general) of homogeneous pseudonorms $\| \ \|_{\beta}^*$ ($\beta \in B$). Suppose, moreover, that the norm $\| \ \|$ and the pseudonorms $\| \ \|_{\beta}^*$ satisfy the condition

(19)
$$||x|| = \sup_{\beta \in B} ||x||_{\beta}^* \quad \text{for each} \quad x \in X.$$

It is obvious that the topologies τ and τ^* satisfy conditions (o), (n) and (d) from 2.1.

We shall need in the next theorem the following property:

- (r) If $\beta_n \in B$, $x \in X$ and $\varepsilon > 0$, then for every positive integer p there are elements y and z in X, such that x = y + z, $\|z\|_{\beta_1}^* = 0$ for $i = 1, 2, \ldots, p$, and $\|y\| \leqslant \max(\|x\|_{\beta_1}^*, \|x\|_{\beta_2}^*, \ldots, \|x\|_{\beta_n}^*) + \varepsilon$.
- 3.1.1. THEOREM. Suppose that conditions (19) and (c) (see theorem 2.6.5), or (19) and (r) are satisfied. Then the sets

(20)
$$\bigcap_{i=1}^{\infty} [x: ||x||_{\beta_i}^* \leqslant a_i],$$

where $\beta_i \in B$ and $0 < \alpha_i \to \infty$, constitute the basis of neighbourhoods of 0 in the mixed topology $\gamma[\tau, \tau^*]$. The mixed topology is also determined by the pseudonorms

$$[x]_{(\beta_i),(a_i)} = \sup_i \frac{\|x\|_{\beta_i}^*}{a_i}, \quad \beta_i \in B, \ 0 < a_i \to \infty.$$

Proof. It is easy to verify that the class of all sets (20) is a basis of neighbourhoods for 0 in a locally convex linear topology τ_1 . Let $Z \in Bd(\tau)$, i. e.

$$Z \subset [x: ||x|| \leqslant r]$$

for some r > 0. Take any neighbourhood of an element $x_0 \in Z$ in the $\tau_1|Z$ -topology. We can suppose that this neighbourhood is of the form

$$Z \cap \bigcap_{i=1}^{\infty} [x: \|x - x_0\|_{\beta_i}^* \leqslant a_i], \quad 0 < a_i \to \infty, \quad \beta_i \in B.$$

If $x, x_0 \in \mathbb{Z}$, then, in virtue of (19), $||x-x_0||_{\beta_i}^* \leq ||x-x_0|| \leq 2r$. It follows from the condition $a_i \to \infty$ that there exists an integer i_0 such that $a_i > 2r$ for $i \geqslant i_0$. We have

$$Z \cap \bigcap_{i=1}^{i_0} \left[x \colon \|x - x_0\|_{\beta_i}^* \leqslant a_i\right] = Z \cap \bigcap_{i=1}^{\infty} \left[x \colon \|x - x_0\|_{\beta_i}^* \leqslant a_i\right].$$

Hence $\tau^*|Z \geqslant \tau_1|Z$, and consequently $\tau_1 \leqslant \gamma[\tau, \tau^*]$, by 2.2.2.

The proof of the inverse inequality requires the hypothesis that either condition (r) or condition (c) is satisfied.

Suppose first that condition (r) holds. Every neighbourhood of 0 in the mixed topology $\gamma[\tau, \tau^*]$ contains a set

$$(21) U_0^* \smallfrown \bigcap_{n=1}^{\infty} (U_n^* + nU),$$

where $U = [x: ||x|| \leqslant r]$, r > 0, $U_n^* = [x: \max_{1 \leqslant i \leqslant k_n} ||x||_{\beta_i}^* \leqslant \varepsilon_n]$, $\beta_i \epsilon B$, $\varepsilon_n > 0$, $k_n < k_{n+1}$ for $n = 0, 1, \ldots$ Let $\alpha_i = \min(\varepsilon_0, r/2)$ for $1 \leqslant i \leqslant k_0$ and $\alpha_i = \frac{1}{2}nr$ for $k_{n-1} < i \leqslant k_n$. Let x be an arbitrary element of set (20). We have $||x||_{\beta_i}^* \leqslant \alpha_i \leqslant \varepsilon_0$ for $1 \leqslant i \leqslant k_0$ and therefore $x \in U_0^*$. Let m be a positive integer. It follows from condition (r) (for $p = k_m$, $\varepsilon = \frac{1}{2}mr$) that there are elements $y \in X$ and $z \in X$ such that y + z = x, $||y|| \leqslant \max_{1 \leqslant i \leqslant k_m} ||x||_{\beta_i}^* + \sum_{1 \leqslant i \leqslant$

 $+\frac{1}{2}mr$, $||z||_{\hat{\theta}_i}^* = 0$ for $1 \le i \le k_m$. We have $z \in U_m^*$ and $||y|| \le \frac{1}{2}mr + \frac{1}{2}mr = mr$, i.e. $y \in mU$. Consequently $x \in mU + U_m^*$. The number m being arbitrary, we infer that x belongs to set (21). Therefore set (21) contains set (20) and $\tau_1 \ge \gamma[\tau, \tau^*]$, which, together with the preceding inequality, gives the equality $\tau_1 = \gamma[\tau, \tau^*]$.

Suppose now that condition (c) is satisfied. We shall use in this case arguments similar to those used in the proof of lemma 1 in [5] (p. 73). Let U^{γ} be an open neighbourhood of 0 in the mixed topology. It follows form the equality $\tau^*|S=\gamma[\tau,\tau^*]|S$ that there are $\beta_1,\beta_2,\ldots,\beta_{k_1}\epsilon B$, such that

$$\bigcap_{i=1}^{k_1} [x: ||x||_{\beta_i}^* \leqslant \varepsilon] \cap S \subset U^{\gamma} \cap S.$$

Suppose that there are indices $\beta_1, \beta_2, \ldots, \beta_{k_1}, \beta_{k_1+1}, \ldots, \beta_{k_n}$ such that

(22)
$$\bigcap_{p=1}^{n} \bigcap_{i=k_{p-1}+1}^{k_{p}} [x: ||x||]_{\beta_{i}}^{*} \leqslant a_{i}] \cap nS \subset U^{\gamma} \cap nS,$$

where $\alpha_i = \varepsilon$ for $1 \le i \le k_1$, $\alpha_i = p-1$ for $k_{p-1} < i \le k_p$ $(p=2,3,\ldots)$, $k_0 = 0$. We shall prove that there are $\beta_{k_n+1},\ldots,\beta_{k_{n+1}}$ such that, setting $\alpha_i = n$ for $k_n < i \le k_{n+1}$, we shall have

$$\bigcap_{p=1}^{n+1}\bigcap_{i=k_{p-1}+1}^{k_p}\left[x\colon \|x\|_{\beta_i}^*\leqslant a_i\right]\smallfrown (n+1)S\subset U^{\gamma}\smallfrown (n+1)S.$$

Suppose this be false. Then the set

$$(23) C_{\gamma_1, \gamma_2, \dots, \gamma_l} = \bigcap_{p=1}^n \bigcap_{i=k_{p-1}+1}^{k_p} [x: ||x||_{\theta_i}^* \leqslant \alpha_i] \cap \bigcap_{j=1}^l [x: ||x||_{\gamma_j}^* \leqslant n]$$

has, for each finite sequence of indices $\gamma_1, \gamma_2, \ldots, \gamma_l \in B$, a non-void intersection with the set $(n+1)S \setminus U^{\tau}$. But $\tau^* | (n+1)S = \gamma[\tau, \tau^*] | (n+1)S$ and the set U^{τ} is $\gamma[\tau, \tau^*]$ -open. Therefore, by condition (c), the set $(n+1)S \setminus U^{\tau}$ is τ^* -compact. Sets (23) are τ^* -closed, and it follows from the equality

$$C_{\nu_1, \ \nu_2, \ \dots, \ \nu_l} \cap C_{\nu'_1, \ \nu'_2, \ \dots, \ \nu'_{l_*}} \equiv C_{\nu_1, \ \nu_2, \ \dots, \ \nu_l, \ \nu'_1, \ \nu'_2, \ \dots, \ \nu'_{l'}}$$

that the intersection of the members of each finite family of sets (23) has common elements with the τ^* -compact set $(n+1)S \setminus U'$. Hence there exists an element

$$(24) x_0 \in [(n+1)S \setminus U^{\gamma}] \cap \bigcap_{\gamma_1, \dots, \gamma_l} C_{\gamma_1, \dots, \gamma_l}.$$

We have $||x_0||_p^* \leq n$ for each $\gamma \in B$, and, by condition (19), $||x_0|| \leq n$, i. e. $x_0 \in nS$. Hence, by (22),

$$x_0 \in U^{\gamma} \cap nS \subset U^{\gamma} \cap (n+1)S$$

in contradiction to (24). Consequently, there exist a sequence of indices $\beta_i \in B$ $(i=1,2,\ldots)$, an increasing sequence of positive integers k_n $(n=1,2,\ldots)$ and a sequence $0<\alpha_i\to\infty$ $(i=1,2,\ldots)$ such that the inclusion (22) is true for each n. We shall have

$$\bigcap_{i=1}^{\infty} [x: ||x||_{\beta_i}^* \leqslant a_i] \cap nS \subset U^{\gamma},$$

and, since n is arbitrary,

$$\bigcap_{i=1}^{\infty} [x: ||x||_{\beta_i}^* \leqslant \alpha_i] \subset U^{\gamma}.$$

Consequently $\tau_1 \ge \gamma[\tau, \tau^*]$. This completes the proof of theorem 3.1.1. We now give some examples of spaces with mixed topology satisfying the conditions of theorem 3.1.1.

A) Let X be the space m of bounded sequences $x = \{t_i\}$ of real num-

bers. The topology τ is defined by the norm $\|x\| = \sup_i |t_i|$, and the topology τ^* is defined by the pseudonorms $\|x\|_i^* = |t_i|$ (i = 1, 2, ...). It is obvious that conditions (19), (r) and (c) are satisfied. Consequently, the sets $\bigcap_{i=1}^{\infty} [x: |t_i| \leq a_i]$, where $0 < a_i \to \infty$, constitute, by theorem 3.1.1, a basis of neighbourhoods for 0 in the mixed topology.

- B) Let X be the space l of sequences $x=\{t_i\}$ of real numbers such that $\sum_{i=1}^{\infty}|t_i|<\infty$. The topology τ is defined by the norm $\|x\|=\sum_{i=1}^{\infty}|t_i|$, and the topology τ^* is defined by the pseudonorms $\|x\|_i^*=|t_i|$ $(i=1,2,\ldots)$. The pseudonorms $\|\cdot\|_i^*$ do not satisfy condition (19). We easily observe, however, that the pseudonorms $\|\cdot\|_i^*$ are equivalent to the pseudonorms $[x]_i=\sum_{k=1}^{\infty}|t_k|$ $(i=1,2,\ldots)$, and the pseudonorms $[\cdot]_i$ satisfy condition (19). Conditions (c) and (r) are also satisfied and we conclude, by theorem 3.1.1, that the sets $\sum_{i=1}^{\infty}|t_k|\leqslant \alpha_i$, where $0<\alpha_i\to\infty$, constitute a basis of neighbourhoods for 0 in the mixed topology.
- C) Let T be an abstract set, and let X be the space of all bounded, real-valued functions x=x(t) defined on T. The topology τ is defined by the norm $\|x\|=\sup_{t\in T}|x(t)|$, and the topology τ^* is defined by the pseudonorms $\|x\|_t^*=|x(t)|$ ($t\in T$). Conditions (19), (r) and (c) are satisfied. The sets $\bigcap_{i=1}^{\infty}[x\colon|x(t_i)|\leqslant a_i]$, where $t_i\in T$, $0<\alpha_i\to\infty$, constitute a basis of neighbourhoods for 0 in the mixed topology.
- D) Let T be a completely regular Hausdorff space. Let X be the space $C^*(T)$ of bounded, real-valued, continuous functions x = x(t) on T. Let $\{T_\beta\}_{\beta\in B}$ be a family of (non-necessarily all) compact subsets of T such that $\bigcup_{\beta\in B}T_\beta=T$. The topology τ is defined by the norm $\|x\|=\sup_{t\in T}|x(t)|$, and the topology τ^* is defined by the pseudonorms $\|x\|_{\beta}^*=\sup_{t\in T_\beta}|x(t)|$. Condition (19) is obviously satisfied. We shall prove that condition (r) is also satisfied. Let $\beta_n\in B$, $x\in X$, $\varepsilon>0$, and let p be a positive integer. It is obvious that there exists an open set $G_p\subset T$ such that $\bigcup_{t=1}^p T_{\beta_t}\subset G_p$, and

$$(25) \qquad \sup_{t \in G_p} |x(t)| \leqslant \sup_{t \in \bigcup_{t=1}^{p} |x(t)| + \varepsilon} = \max(||x||_{\beta_1}^*, \ldots, ||x||_{\beta_p}^*) + \varepsilon.$$

The set $T \setminus G_p$ is closed and disjoint with the compact set $F_p = \bigcup_{i=1}^p T_{\beta_i}$.

The space T being completely regular, there exists a bounded, real-valued, continuous function f(t) on X such that $0 \le f(t) \le 1$ for each $t \in T$, f(t) = 0 for $t \in F_p$, f(t) = 1 for $t \in T \setminus G_p$. Let $y(t) = [1 - f(t)] \cdot x(t)$ and $z(t) = f(t) \cdot x(t)$. As $y \in X$, $z \in X$ and x = y + z. Furthermore, $\|y\|_{\beta}^* \le \|x\|_{\beta}^*$ and $\|z\|_{\beta}^* \le \|x\|_{\beta}^*$ for each $\beta \in B$. Since z(t) = 0 for $t \in F_p$, we have $\|z\|_{\beta_t}^* = 0$ for $i = 1, 2, \ldots, p$. Since y(t) = 0 for $t \in T \setminus G_p$, we have in view of formula (25) $\|y\| = \sup_{t \in T} |y(t)| \le \sup_{t \in G_p} |y(t)| \le \max_{t \in G_p} |x(t)| \le \min_{t \in G_p} |x$

Applying theorem 3.1.1 we see that the sets

$$\bigcap_{i=1}^{\infty} [x: \sup_{t \in T_{\beta_i}} |x(t)| \leqslant \alpha_i],$$

where $\beta_i \in B$ and $0 < \alpha_i \to \infty$, constitute a basis of neighbourhoods for 0 in the mixed topology τ' . In this case the mixed topology is identical with the topology introduced by J. Mařík [8].

- E) Let X be the space conjugate to a normed space Z. Let τ be the strong topology on X, defined by the usual norm $\| \|$ of elements of X as functionals, and let τ^* be the weak topology $\sigma(X,Z)$. The topology τ^* may be defined by the pseudonorms $\|x\|_s^s = |x(z)|$, where $z \in Z$, $\|z\| \leq 1$. The pseudonorms $\|\|_s^s$ satisfy condition (19). It is well known that condition
- (c) is also satisfied. By theorem 3.1.1 the sets $\bigcap_{i=1}^{\infty} [x\colon |x(z_i)|\leqslant a_i]$, where $z_i \in \mathbb{Z}, \ ||z_i||\leqslant 1, \ 0<\alpha_i\to\infty$, constitute a basis of neighbourhoods for 0 in the topology τ' . We can also say that the sets

$$[x: \sup_{i} |x(z_i)| \leqslant 1],$$

where $z_i \in \mathbb{Z}$, $||z_i|| \to 0$, constitute a basis of neighbourhoods for 0 in the mixed topology. Consequently, the mixed topology is identical in this case with the topology τ_c of uniform convergence of functionals on the compact subsets of Z ([5], p. 74). In fact, the inequality $\tau_c \geqslant \gamma[\tau, \tau^*]$ follows at once from (26). On the other hand, the topology τ_c has property (P₁) from 2.2, and therefore $\gamma[\tau, \tau^*] \geqslant \tau_c$, by 2.2.2.

- 3.2. We now give two other examples of spaces with mixed topology. The spaces mentioned in F) and G) do not satisfy the conditions of theorem 3.1.1.
- F) Let X be the space M of measurable, real-valued functions x(t) equivalent to bounded functions on $\langle 0, 1 \rangle$. The topology τ is defined by the norm $||x|| = \sup_{0 \leqslant t \leqslant 1} |x(t)|$, and the topology τ^* is defined by the norm $||x||^* = \int_0^1 |x(t)| \, dt$. Conditions (o), (n) and (d) from 2.1 are satisfied.

For each function $x \in X$ and for each $p \ge 0$ we write

$$x_{(p)}(t) = \left\{egin{array}{ll} x(t)-p & ext{if} & x(t) \geqslant p, \ 0 & ext{if} & -p \leqslant x(t) \leqslant p, \ x(t)+p & ext{if} & x(t) \leqslant -p. \end{array}
ight.$$

The homothetic images (with centre 0) of sets

(27)
$$\bigcap_{n=0}^{\infty} \left[x : \int_{0}^{1} |x_{(n)}(t)| dt \leqslant \varepsilon_{n} \right],$$

where $\{\varepsilon_n\}$ are arbitrary sequences of positive numbers, constitute a basis of neighbourhoods for 0 in the mixed topology. In fact, set (27) is identical with the set $U_0^* \cap \bigcap_{n=1}^{\infty} (U_n^* + nU)$, where $U_n^* = [x: \int_0^1 |x(t)| dt \leqslant \varepsilon_n]$ and $U = [x: ||x|| \leqslant 1]$.

G) Let X be the space L of integrable functions on $\langle 0, 1 \rangle$. The topology τ is defined by the norm $||x|| = \int\limits_0^1 |x(t)| \, dt$ and the topology τ^* is defined by the norm

$$||x||_{1}^{*} = \int_{0}^{1} \frac{|x(t)|}{1+|x(t)|} dt.$$

Conditions (o), (n) and (d) from 2.1 are satisfied. In this case the mixed topology τ^{ν} is not locally convex. Alexiewicz ([2], p. 54) has shown that there are no non-trivial linear functionals on the space $\langle X, \tau^{\nu} \rangle$.

References

- [1] A. Alexiewicz, On sequences of operations (II), Studia Math. 11 (1950), p. 200-236.
 - [2] On the two-norm convergence, ibidem 14 (1954), p. 49-56.
- [3] A. Alexiewicz and Z. Semadeni, A generalization of two-norm spaces, Bull. Pol. Acad. Sci. 6 (1958), p. 135-139.
 - [4] Linear functionals on two-norm spaces, Studia Math. 17 (1958), p. 121-140.
- [5] N. Bourbaki, Éléments de mathématique, Livre V: Espaces vectoriels topologiques, Chapters III-V, Act. sci. et ind., no 1229, Paris 1955.
- [6] J. A. Dieudonné, Recent developments in the theory of locally convex vector spaces, Bull. Amer. Math. Soc. 59 (1953), p. 495-512.
- [7] G. Fichtenholz, Sur les fonctionnelles linéaires continues au sens généralisé, Mat. Sbornik 4 (1938), p. 193-214.
- [8] J. Mařík, Les fonctionnelles sur l'ensemble des fonctions continues bornées, définies dans un ensemble topologique, Studia Math. 16 (1957), p. 86-94.

р. 237 - 272.

68

[9] W. Orlicz, Linear operations in Saks spaces (I), ibidem 11 (1950),

[10] - Linear operations in Saks spaces (II), ibidem 15 (1956), p. 1-25.

[11] D. A. Raikov (D. A. Райков), Признак полноты локально выпуклых пространств, Успехи Математических Наук 14, 1 (85) (1959), р. 223-229.

[12] A. Wiweger, A topologisation of Saks spaces, Bull. Pol. Acad. Sci. 5 (1957), p. 773-777.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Recu par la Rédaction le 29. 3. 1960

STUDIA MATHEMATICA, T. XX. (1961)

Extinguishing a class of functions

by

H. FAST (Jerusalem) and K. URBANIK (Wrocław)

Let E be a set of real positive numbers. By L(E) we shall denote the family of all intervals of the form

$$I = \{(x, y) : ax + y = t, x \ge 0, y \ge 0\},$$

where $a \in E$ and $0 < t < \infty$. A complex-valued continuous function φ of two variables defined on the first quadrant is said to be extinguished by the set E if $\int \varphi(x,y) ds = 0$ for any interval $I \in L(E)$. It is well known ([2], p. 63) that

(*) The unique function extinguished by the right half-line is the function identically equal to 0.

Let \mathcal{A}_n denote the class of all complex-valued functions φ of two variables defined on the first quadrant and having the representation

$$\varphi(x, y) = \sum_{j=1}^n f_j(x) g_j(y),$$

where all the functions $f_1, f_2, ..., f_n, g_1, g_2, ..., g_n$ are continuous on the right half-line. By \mathfrak{E}_n we shall denote the class of all sets E of positive numbers such that the unique function belonging to \mathcal{A}_n and extinguished by E is the function identically equal to 0. From Titchmarsh's Theorem on convolution ([3], p. 327) it follows that all one-point sets belong to E1. Indeed, if a function φ is extinguished by a set $\{\alpha\}$ and $\varphi(x,y) = f(x)g(y)$, then we have the equality

$$\int_{ax+y=t} f(x)g(y)ds = 0 \qquad (t > 0).$$

Hence for any positive t we get the equality

$$\int_{0}^{t} f(x) g(a(t-x)) dx = 0,$$